CN109994570A - 一种高效p型钝化接触晶硅太阳电池的制备方法 - Google Patents

一种高效p型钝化接触晶硅太阳电池的制备方法 Download PDF

Info

Publication number
CN109994570A
CN109994570A CN201811428076.9A CN201811428076A CN109994570A CN 109994570 A CN109994570 A CN 109994570A CN 201811428076 A CN201811428076 A CN 201811428076A CN 109994570 A CN109994570 A CN 109994570A
Authority
CN
China
Prior art keywords
silicon
solution
preparation
type
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811428076.9A
Other languages
English (en)
Other versions
CN109994570B (zh
Inventor
万义茂
崔艳峰
袁声召
黄强
林海峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Risheng (changzhou) New Energy Co Ltd
Original Assignee
Dongfang Risheng (changzhou) New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Risheng (changzhou) New Energy Co Ltd filed Critical Dongfang Risheng (changzhou) New Energy Co Ltd
Priority to CN201811428076.9A priority Critical patent/CN109994570B/zh
Publication of CN109994570A publication Critical patent/CN109994570A/zh
Application granted granted Critical
Publication of CN109994570B publication Critical patent/CN109994570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及太阳电池技术领域,尤其是一种高效P型钝化接触晶硅太阳电池的制备方法;所述制备方法包括以下步骤:以P型单晶硅片作为硅衬底,首先进行抛光(或者制绒处理),硅片采用PECVD设备,在背面生长隧穿氧化硅薄膜和掺杂的p型非晶硅薄膜,采用PECVD设备,在背面沉积硼硅玻璃BSG薄膜,在KOH溶液中进行制绒处理,在电池正面形成金字塔结构,扩散炉,钝化层生长;丝网印刷、烧结,本发明中通过将非晶硅的高温晶化过程与标准磷扩散工艺在扩散管中一步完成,优化了工艺流程,减少了工艺步骤,从而极大的提高了产能,降低了污染的风险,有利于成本的降低和高转换效率的实现,为规模化应用奠定基础。

Description

一种高效P型钝化接触晶硅太阳电池的制备方法
技术领域
本发明涉及太阳电池技术领域,尤其是一种高效P型钝化接触晶硅太阳电池的制备方法。
背景技术
近年来,钝化接触技术在晶体硅太阳电池领域受到了广泛的关注,被认为是继PERC之后最有希望产业化的一种高效电池技术。目前该种结构的电池最高效率是由德国弗朗恩禾费太阳能系统研究所创造的N型电池,效率为25.8%,其钝化接触采用隧穿二氧化硅层,以及叠加在隧穿二氧化硅层上的多晶硅薄膜。该钝化接触太阳电池采用真空蒸镀法制备金属电极,短期内还无法大规模生产。
目前制备多晶硅薄膜的方法主要包括:(1)首先沉积本征非晶硅层,再通过扩散或者离子注入实现掺杂P型或者n型微晶硅;(2)首先沉积掺杂型非晶硅层,再进行高温退火。无论哪种方法,在制备电池的过程中总要经历一个700-990度之间的高温过程,这个高温过程会对电池其他的工艺产生很大的影响,是钝化接触电池面临的一个难题。尤其是,目前制备微晶硅薄膜采用的设备为LPCVD或者PECVD,绕度现象难以避免。这就意味着需要多次掩膜工艺,影响了产能以及高电池转换效率的获得。基于此,需要设计一种新型的钝化接触电池工艺路线,既可以实现电池的高效率,又利于量产化的推广。
在文献以及一些专利报道的P型钝化接触晶硅太阳电池的制备流程,通常的做法为:制绒—磷扩散---刻蚀---隧穿氧化硅/微晶硅---高温退火---氮化硅----丝网印刷烧结。这个流程是一个非常理想化的流程,它没有考虑到1)高温退火对磷扩散的影响,以及2)绕度的隧穿氧化硅/微晶硅造成的并联影响。因此很难实现高效率。
发明内容
本发明的目的是:克服现有技术中的不足,提供一种高效P型钝化接触晶硅太阳电池的制备方法。
为解决上述技术问题,本发明采用的技术方案如下:
一种高效P型钝化接触晶硅太阳电池的制备方法,所述制备方法包括以下步骤:
(1)以P型单晶硅片作为硅衬底,首先进行抛光(或者制绒)处理,所用的溶液通常为KOH溶液,所述KOH溶液按照KOH:制绒添加剂:H2O=20:3:160的比例配制,温度为80℃;
(2)步骤(1)处理后的硅衬底在2-5%的HF溶液中进行清洗,清洗干净硅片表面;
(3)步骤(2)处理后的硅片采用PECVD设备,在背面生长隧穿氧化硅薄膜和掺杂的p型非晶硅薄膜,隧穿氧化硅厚度<2nm,微晶硅厚度>100nm;
(4)步骤(3)处理后的硅片采用PECVD设备,在背面沉积硼硅玻璃BSG薄膜,厚度>50nm;
(5)将步骤(4)处理后的硅片置于5%的HF溶液中,清洗掉正面的氧化物;
(6)步骤(5)处理后的硅片在KOH溶液中进行制绒处理,在电池正面形成金字塔结构;所述KOH溶液按照KOH:制绒添加剂:H2O=8:1.5:160的比例配制,温度为80℃;
(7)步骤(6)处理后的硅片在磷扩散炉管中,首先对P型非晶硅进行高温退火处理,温度在850-960℃,时间0.5h-1h;然后接着将温度降低到750-860℃,进行磷扩散工艺,时间0.5h-2h,在电池的正面形成n+区,方阻控制在50-100ohm/sq;
(8)步骤(7)处理后的硅片在5%左右的HF溶液中,清洗掉步骤(4)和步骤(7)中形成的BSG和PSG;
(9)步骤(8)处理后的硅片进行钝化层生长;
(10)按照网版图形进行丝网印刷、烧结时,浆料宽度控制在小于50μm,高度大于5μm,烧结峰值温度在730-780℃,时间40秒,与N区接触的电极为Ag电极,与P区接触的电极为Ag/Al电极。
进一步的,所述步骤(1)和步骤(7)中的KOH溶液用四甲基氢氧化铵溶液代替。
进一步的,所述步骤(9)中钝化层生长采用SiN或者是SiO2/SiN叠层进行钝化。
进一步的,SIN厚度为80±1nm,SiO2厚度为5±0.1nm。
进一步的,所述步骤(1)和步骤(6)中的制绒添加剂为碱性,其组成以质量比计为:氢氧化钠0.1%~3%,异丙醇2%~10%,添加剂0.01%~2%,其余为水;其中添加剂的配方以质量比计为:葡萄糖、葡萄糖酸钠或葡萄糖酸钾0.001%~3%,聚氧乙烯醚100ppb~8000ppb,乳酸钠或柠檬酸钠0.001%~2%,丙二醇0.001%~2%,硅酸钠0.01%~6%,碳酸钠或碳酸氢钠0.001%~2%,其余为水。
采用本发明的技术方案的有益效果是:
1、本发明中硅片采用PECVD设备,在背面沉积硼硅玻璃BSG薄膜,厚度>50nm,作用是作为掩膜层来保护电池背面结构;
2、本发明中硅片在KOH溶液中进行制绒处理,在电池正面形成金字塔结构,达到陷光的效果;同时KOH溶液还可以去除绕度到正面的微晶等。由于BSG不与KOH溶液反应,因此其可以作为一个掩膜层达到保护背面的目的。
3、本发明中硅片在磷扩散炉管中,首先对P型非晶硅进行高温退火处理,温度在950度左右,时间0.5h-1h,目的是使B原子形成均匀掺杂,同时将非晶硅转变为具有一定结晶度的微晶硅。
4、本发明中通过将非晶硅的高温晶化过程与标准磷扩散工艺在扩散管中一步完成,优化了工艺流程,减少了工艺步骤,从而极大的提高了产能,降低了污染的风险,有利于成本的降低和高转换效率的实现,为规模化应用奠定基础。
具体实施方式
现在结合具体实施例对本发明作进一步详细的说明。
实施例1
一种高效P型钝化接触晶硅电池的制备方法,步骤如下:
(1)以P型单晶硅片作为硅衬底,首先进行抛光(或者制绒)处理,所用的溶液通常为KOH溶液,KOH溶液一般按照KOH:制绒添加剂:H2O=20:3:160的比例配制,温度为80℃;此外也可以用四甲基氢氧化铵(TMAH)溶液代替;
(2)然后在2%的HF溶液中进行清洗,清洗干净硅片表面;
(3)采用PECVD设备,在背面生长隧穿氧化硅薄膜和掺杂的p型非晶硅薄膜,隧穿氧化硅厚度<2nm,微晶硅厚度>100nm;
(4)采用PECVD设备,在背面沉积硼硅玻璃BSG薄膜,厚度>50nm,作用是作为掩膜层来保护电池背面结构;
(5)步骤(4)处理后的硅片置于5%的HF溶液中,清洗掉正面的氧化物;
(6)在KOH溶液中进行制绒处理,从而在电池正面形成金字塔结构,达到陷光的效果。同时KOH溶液还可以去除绕度到正面的微晶等。KOH溶液一般按照KOH:添加剂:制绒H2O=8:1.5:160的比例配制,温度为80℃。此外也可以用四甲基氢氧化铵(TMAH)溶液代替;此处,由于BSG不与KOH溶液反应,因此其可以作为一个掩膜层达到保护背面的目的;
(7)在磷扩散炉管中,首先对P型非晶硅进行高温退火处理,温度在850℃,时间0.5hh,目的是使B原子形成均匀掺杂,同时将非晶硅转变为具有一定结晶度的微晶硅;然后接着将温度降低到750℃,进行传统的磷扩散工艺,时间0.5hh,从而在电池的正面形成n+区,方阻控制在50ohm/sq的范围内;
(8)在5%左右的HF溶液中,清洗掉步骤(4)和步骤(7)过程形成的BSG和PSG;
(9)钝化层生长:可以采用SiN,也可以是SiO2/SiN叠层来进行钝化。SIN厚度在80nm左右,SiO2厚度在5nm左右;
(10)按照网版图形进行丝网印刷、烧结时,浆料宽度控制在小于50μm,高度大于5μm,烧结峰值温度在760℃左右,时间40秒,与N区接触的电极优选为Ag电极,与P区接触的电极优选为Ag/Al电极。
实施例2
一种高效P型钝化接触晶硅电池的制备方法,步骤如下:
(1)以P型单晶硅片作为硅衬底,首先进行抛光(或者制绒)处理,所用的溶液通常为KOH溶液,KOH溶液一般按照KOH:制绒添加剂:H2O=20:3:160的比例配制,温度为80℃;此外也可以用四甲基氢氧化铵(TMAH)溶液代替;
(2)然后在3%的HF溶液中进行清洗,清洗干净硅片表面;
(3)采用PECVD设备,在背面生长隧穿氧化硅薄膜和掺杂的p型非晶硅薄膜,隧穿氧化硅厚度<2nm,微晶硅厚度>100nm;
(4)采用PECVD设备,在背面沉积硼硅玻璃BSG薄膜,厚度>50nm,作用是作为掩膜层来保护电池背面结构;
(5)步骤(4)处理后的硅片置于5%的HF溶液中,清洗掉正面的氧化物;
(6)在KOH溶液中进行制绒处理,从而在电池正面形成金字塔结构,达到陷光的效果。同时KOH溶液还可以去除绕度到正面的微晶等。KOH溶液一般按照KOH:添加剂:制绒H2O=8:1.5:160的比例配制,温度为80℃。此外也可以用四甲基氢氧化铵(TMAH)溶液代替;此处,由于BSG不与KOH溶液反应,因此其可以作为一个掩膜层达到保护背面的目的;
(7)在磷扩散炉管中,首先对P型非晶硅进行高温退火处理,温度在900℃,时间0.45h,目的是使B原子形成均匀掺杂,同时将非晶硅转变为具有一定结晶度的微晶硅;然后接着将温度降低到800℃,进行传统的磷扩散工艺,时间1h,从而在电池的正面形成n+区,方阻控制在75ohm/sq的范围内;
(8)在5%左右的HF溶液中,清洗掉步骤(4)和步骤(7)过程形成的BSG和PSG;
(9)钝化层生长:可以采用SiN,也可以是SiO2/SiN叠层来进行钝化。SIN厚度在80nm左右,SiO2厚度在5nm左右;
(10)按照网版图形进行丝网印刷、烧结时,浆料宽度控制在小于50μm,高度大于5μm,烧结峰值温度在760℃左右,时间40秒,与N区接触的电极优选为Ag电极,与P区接触的电极优选为Ag/Al电极。
实施例3
一种高效P型钝化接触晶硅电池的制备方法,步骤如下:
(1)以P型单晶硅片作为硅衬底,首先进行抛光(或者制绒)处理,所用的溶液通常为KOH溶液,KOH溶液一般按照KOH:制绒添加剂:H2O=20:3:160的比例配制,温度为80℃;此外也可以用四甲基氢氧化铵(TMAH)溶液代替;
(2)然后在5%的HF溶液中进行清洗,清洗干净硅片表面;
(3)采用PECVD设备,在背面生长隧穿氧化硅薄膜和掺杂的p型非晶硅薄膜,隧穿氧化硅厚度<2nm,微晶硅厚度>100nm;
(4)采用PECVD设备,在背面沉积硼硅玻璃BSG薄膜,厚度>50nm,作用是作为掩膜层来保护电池背面结构;
(5)步骤(4)处理后的硅片置于5%的HF溶液中,清洗掉正面的氧化物;
(6)在KOH溶液中进行制绒处理,从而在电池正面形成金字塔结构,达到陷光的效果。同时KOH溶液还可以去除绕度到正面的微晶等。KOH溶液一般按照KOH:添加剂:制绒H2O=8:1.5:160的比例配制,温度为80℃。此外也可以用四甲基氢氧化铵(TMAH)溶液代替;此处,由于BSG不与KOH溶液反应,因此其可以作为一个掩膜层达到保护背面的目的;
(7)在磷扩散炉管中,首先对P型非晶硅进行高温退火处理,温度在960℃,时间1h,目的是使B原子形成均匀掺杂,同时将非晶硅转变为具有一定结晶度的微晶硅;然后接着将温度降低到860℃,进行传统的磷扩散工艺,时间2h,从而在电池的正面形成n+区,方阻控制在100ohm/sq的范围内;
(8)在5%左右的HF溶液中,清洗掉步骤(4)和步骤(7)过程形成的BSG和PSG;
(9)钝化层生长:可以采用SiN,也可以是SiO2/SiN叠层来进行钝化。SIN厚度在80nm左右,SiO2厚度在5nm左右;
(10)按照网版图形进行丝网印刷、烧结时,浆料宽度控制在小于50μm,高度大于5μm,烧结峰值温度在760℃左右,时间40秒,与N区接触的电极优选为Ag电极,与P区接触的电极优选为Ag/Al电极。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (5)

1.一种高效P型钝化接触晶硅太阳电池的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)以P型单晶硅片作为硅衬底,首先进行抛光(或者制绒)处理,所用的溶液通常为KOH溶液,所述KOH溶液按照KOH:制绒添加剂:H2O=20:3:160的比例配制,温度为80℃;
(2)步骤(1)处理后的硅衬底在2-5%的HF溶液中进行清洗,清洗干净硅片表面;
(3)步骤(2)处理后的硅片采用PECVD设备,在背面生长隧穿氧化硅薄膜和掺杂的p型非晶硅薄膜,隧穿氧化硅厚度<2nm,微晶硅厚度>100nm;
(4)步骤(3)处理后的硅片采用PECVD设备,在背面沉积硼硅玻璃BSG薄膜,厚度>50nm;
(5)将步骤(4)处理后的硅片置于5%的HF溶液中,清洗掉正面的氧化物;
(6)步骤(5)处理后的硅片在KOH溶液中进行制绒处理,在电池正面形成金字塔结构;所述KOH溶液按照KOH:制绒添加剂:H2O=8:1.5:160的比例配制,温度为80℃;
(7)步骤(6)处理后的硅片在磷扩散炉管中,首先对P型非晶硅进行高温退火处理,温度在850-960℃,时间0.5h-1h;然后接着将温度降低到750-860℃,进行磷扩散工艺,时间0.5h-2h,在电池的正面形成n+区,方阻控制在50-100ohm/sq;
(8)步骤(7)处理后的硅片在5%左右的HF溶液中,清洗掉步骤(4)和步骤(7)中形成的BSG和PSG;
(9)步骤(8)处理后的硅片进行钝化层生长;
(10)按照网版图形进行丝网印刷、烧结时,浆料宽度控制在小于50μm,高度大于5μm,烧结峰值温度在730-780℃,时间40秒,与N区接触的电极为Ag电极,与P区接触的电极为Ag/Al电极。
2.根据权利要求1所述的一种高效P型钝化接触晶硅太阳电池的制备方法,其特征在于:所述步骤(1)和步骤(7)中的KOH溶液用四甲基氢氧化铵溶液代替。
3.根据权利要求1所述的一种高效P型钝化接触晶硅太阳电池的制备方法,其特征在于:所述步骤(9)中钝化层生长采用SiN或者是SiO2/SiN叠层进行钝化。
4.根据权利要求3所述的一种高效P型钝化接触晶硅太阳电池的制备方法,其特征在于:SIN厚度为80±1nm,SiO2厚度为5±0.1nm。
5.根据权利要求1所述的一种高效P型钝化接触晶硅太阳电池的制备方法,其特征在于:所述步骤(1)和步骤(6)中的制绒添加剂为碱性,其组成以质量比计为:氢氧化钠0.1%~3%,异丙醇2%~10%,添加剂0.01%~2%,其余为水;其中添加剂的配方以质量比计为:葡萄糖、葡萄糖酸钠或葡萄糖酸钾0.001%~3%,聚氧乙烯醚100ppb~8000ppb,乳酸钠或柠檬酸钠0.001%~2%,丙二醇0.001%~2%,硅酸钠0.01%~6%,碳酸钠或碳酸氢钠0.001%~2%,其余为水。
CN201811428076.9A 2018-11-27 2018-11-27 一种高效p型钝化接触晶硅太阳电池的制备方法 Active CN109994570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811428076.9A CN109994570B (zh) 2018-11-27 2018-11-27 一种高效p型钝化接触晶硅太阳电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811428076.9A CN109994570B (zh) 2018-11-27 2018-11-27 一种高效p型钝化接触晶硅太阳电池的制备方法

Publications (2)

Publication Number Publication Date
CN109994570A true CN109994570A (zh) 2019-07-09
CN109994570B CN109994570B (zh) 2021-04-30

Family

ID=67128370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811428076.9A Active CN109994570B (zh) 2018-11-27 2018-11-27 一种高效p型钝化接触晶硅太阳电池的制备方法

Country Status (1)

Country Link
CN (1) CN109994570B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571304A (zh) * 2019-08-08 2019-12-13 江西展宇新能源股份有限公司 一种钝化接触双面太阳电池的制作方法
CN110739367A (zh) * 2019-10-23 2020-01-31 泰州中来光电科技有限公司 一种N型TOPCon太阳能电池制备方法
CN110867516A (zh) * 2019-11-16 2020-03-06 东方日升(常州)新能源有限公司 新型基于钙钛矿和晶硅背钝化叠层太阳电池及其制造方法
CN110931604A (zh) * 2019-12-10 2020-03-27 江苏微导纳米科技股份有限公司 Topcon结构太阳能电池的制备方法
CN111029438A (zh) * 2019-12-04 2020-04-17 江苏杰太光电技术有限公司 一种n型钝化接触太阳能电池的制备方法
CN111785809A (zh) * 2020-07-15 2020-10-16 常州时创能源股份有限公司 钝化接触电池的制备方法
CN112349816A (zh) * 2020-11-19 2021-02-09 江苏大学 一种基于PECVD技术的高效低成本N型TOPCon电池的制备方法
CN112458540A (zh) * 2020-10-27 2021-03-09 山西潞安太阳能科技有限责任公司 一种太阳能单晶制绒工艺
CN114400261A (zh) * 2021-12-27 2022-04-26 理想晶延半导体设备(上海)股份有限公司 电池背部结构及其制备方法、电池
CN114784142A (zh) * 2022-04-20 2022-07-22 通威太阳能(眉山)有限公司 P型背接触太阳电池及其制备方法
US20230307573A1 (en) * 2022-03-25 2023-09-28 Jiangsu Runergy Century Photovoltaic Technology Co., Ltd. Low-cost passivated contact full-back electrode solar cell and preparation method thereof
WO2023178918A1 (zh) * 2022-03-25 2023-09-28 江苏润阳世纪光伏科技有限公司 一种低成本接触钝化全背电极太阳能电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010033744A2 (en) * 2008-09-19 2010-03-25 Applied Materials, Inc. Methods of making an emitter having a desired dopant profile
CN105655427A (zh) * 2014-11-28 2016-06-08 Lg电子株式会社 太阳能电池及其制造方法
CN105826428A (zh) * 2016-04-26 2016-08-03 泰州中来光电科技有限公司 一种钝化接触n型晶体硅电池及制备方法和组件、系统
CN107195699A (zh) * 2017-07-12 2017-09-22 泰州中来光电科技有限公司 一种钝化接触太阳能电池及制备方法
WO2018102852A1 (en) * 2016-12-06 2018-06-14 The Australian National University Solar cell fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010033744A2 (en) * 2008-09-19 2010-03-25 Applied Materials, Inc. Methods of making an emitter having a desired dopant profile
CN105655427A (zh) * 2014-11-28 2016-06-08 Lg电子株式会社 太阳能电池及其制造方法
CN105826428A (zh) * 2016-04-26 2016-08-03 泰州中来光电科技有限公司 一种钝化接触n型晶体硅电池及制备方法和组件、系统
WO2018102852A1 (en) * 2016-12-06 2018-06-14 The Australian National University Solar cell fabrication
CN107195699A (zh) * 2017-07-12 2017-09-22 泰州中来光电科技有限公司 一种钝化接触太阳能电池及制备方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571304A (zh) * 2019-08-08 2019-12-13 江西展宇新能源股份有限公司 一种钝化接触双面太阳电池的制作方法
CN110739367A (zh) * 2019-10-23 2020-01-31 泰州中来光电科技有限公司 一种N型TOPCon太阳能电池制备方法
CN110867516A (zh) * 2019-11-16 2020-03-06 东方日升(常州)新能源有限公司 新型基于钙钛矿和晶硅背钝化叠层太阳电池及其制造方法
CN111029438A (zh) * 2019-12-04 2020-04-17 江苏杰太光电技术有限公司 一种n型钝化接触太阳能电池的制备方法
CN110931604A (zh) * 2019-12-10 2020-03-27 江苏微导纳米科技股份有限公司 Topcon结构太阳能电池的制备方法
CN111785809A (zh) * 2020-07-15 2020-10-16 常州时创能源股份有限公司 钝化接触电池的制备方法
CN112458540A (zh) * 2020-10-27 2021-03-09 山西潞安太阳能科技有限责任公司 一种太阳能单晶制绒工艺
WO2022105192A1 (zh) * 2020-11-19 2022-05-27 江苏大学 一种基于PECVD技术的高效低成本N型TOPCon电池的制备方法
CN112349816A (zh) * 2020-11-19 2021-02-09 江苏大学 一种基于PECVD技术的高效低成本N型TOPCon电池的制备方法
CN112349816B (zh) * 2020-11-19 2022-05-17 江苏大学 一种基于PECVD技术的高效低成本N型TOPCon电池的制备方法
CN114400261A (zh) * 2021-12-27 2022-04-26 理想晶延半导体设备(上海)股份有限公司 电池背部结构及其制备方法、电池
CN114400261B (zh) * 2021-12-27 2023-09-15 理想晶延半导体设备(上海)股份有限公司 电池背部结构及其制备方法、电池
US20230307573A1 (en) * 2022-03-25 2023-09-28 Jiangsu Runergy Century Photovoltaic Technology Co., Ltd. Low-cost passivated contact full-back electrode solar cell and preparation method thereof
WO2023178918A1 (zh) * 2022-03-25 2023-09-28 江苏润阳世纪光伏科技有限公司 一种低成本接触钝化全背电极太阳能电池及其制备方法
US11996494B2 (en) * 2022-03-25 2024-05-28 Jiangsu Runergy Century Photovoltaic Technology Co., Ltd. Low-cost passivated contact full-back electrode solar cell and preparation method thereof
CN114784142A (zh) * 2022-04-20 2022-07-22 通威太阳能(眉山)有限公司 P型背接触太阳电池及其制备方法

Also Published As

Publication number Publication date
CN109994570B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
CN109994570A (zh) 一种高效p型钝化接触晶硅太阳电池的制备方法
CN112349816B (zh) 一种基于PECVD技术的高效低成本N型TOPCon电池的制备方法
CN109216473B (zh) 一种晶硅太阳电池的表界面钝化层及其钝化方法
CN109524480A (zh) 一种局域接触钝化的p型晶硅太阳电池及其制备方法
CN110581198A (zh) 一种局域接触钝化太阳电池及其制备方法
CN112164728A (zh) 图形化的钝化接触太阳能电池及其制造方法
CN101800266B (zh) 一种选择性发射极晶体硅太阳能电池的制备方法
CN107195699A (zh) 一种钝化接触太阳能电池及制备方法
CN115621333B (zh) 双面隧穿氧化硅钝化的背接触太阳能电池及其制备方法
CN105810779B (zh) 一种perc太阳能电池的制备方法
CN206595264U (zh) 一种钝化接触全背电极太阳电池结构
CN103996746B (zh) 一种可量产的perl晶体硅太阳电池的制作方法
CN109216499A (zh) 基于单晶perc正面发射结隧穿氧化钝化电池制备方法
CN106784069A (zh) 背表面隧道氧化钝化交指式背结背接触电池制作方法
CN110620159B (zh) 一种P-TOPCon光伏太阳能电池结构的制备方法
CN105405899A (zh) N型双面电池及其制作方法
CN109616528B (zh) 一种太阳能电池选择性发射极的制备方法
CN102403369A (zh) 一种用于太阳能电池的钝化介质膜
CN106784128A (zh) 前发射结背面隧道氧化钝化接触高效电池的制作方法
CN109509813A (zh) 一种无掩膜的p型全背电极接触晶硅太阳电池的制备方法
CN209592050U (zh) 一种具有钝化层结构的太阳电池
CN110148636A (zh) 一种太阳能电池及其制备方法、光伏组件
CN108987505A (zh) 一种太阳能电池及其制备方法
CN109285896A (zh) 一种太阳能电池及其制备方法
CN108922936A (zh) 一种mwt太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant