CN109509813A - 一种无掩膜的p型全背电极接触晶硅太阳电池的制备方法 - Google Patents

一种无掩膜的p型全背电极接触晶硅太阳电池的制备方法 Download PDF

Info

Publication number
CN109509813A
CN109509813A CN201811418726.1A CN201811418726A CN109509813A CN 109509813 A CN109509813 A CN 109509813A CN 201811418726 A CN201811418726 A CN 201811418726A CN 109509813 A CN109509813 A CN 109509813A
Authority
CN
China
Prior art keywords
silicon
film
solution
area
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811418726.1A
Other languages
English (en)
Inventor
崔艳峰
袁声召
万义茂
黄强
林海峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Risheng (changzhou) New Energy Co Ltd
Original Assignee
Dongfang Risheng (changzhou) New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Risheng (changzhou) New Energy Co Ltd filed Critical Dongfang Risheng (changzhou) New Energy Co Ltd
Priority to CN201811418726.1A priority Critical patent/CN109509813A/zh
Publication of CN109509813A publication Critical patent/CN109509813A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及太阳电池技术领域,尤其是一种无掩膜的P型全背电极接触晶硅太阳电池的制备方法;包括以下步骤:制绒;沉积隧穿氧化硅和本征多晶硅薄膜,磷离子图案化注入;然后刻蚀:采用TMAH溶液,浓度为1%‑2%,溶液温度25‑80℃,刻蚀掉非n+区的本征多晶硅层和正面的本征多晶硅层;紧接着在1‑5%的HF溶液中浸泡1‑2分钟去除该区域的隧穿氧化层SiO2;然后退火:激活离子注入当中的磷原子,从而在硅中形成均匀的掺杂,以形成pn结区;最后去除pn结区表面的磷硅玻璃、沉积钝化层、激光开膜、丝网印刷;本发明提出的方法,生产流程简单,电池效率高,无硼扩散等昂贵工艺,可以极大的降低全背电极接触太阳电池的成本,且适合大规模产业化应用。

Description

一种无掩膜的P型全背电极接触晶硅太阳电池的制备方法
技术领域
本发明涉及太阳电池技术领域,尤其是一种无掩膜的P型全背电极接触晶硅太阳电池的制备方法。
背景技术
IBC(Inter digitated back contact指交叉背接触)电池,是指电池正面无电极,正负两极金属栅线呈指状交叉排列于电池背面。IBC电池最大的特点是PN结和金属接触都处于电池的背面,正面没有金属电极遮挡的影响因此具有更高的短路电流Jsc,同时背面可以容许较宽的金属栅线来降低串联电阻Rs从而提高填充因子FF;加上电池前表面场(FrontSurface Field, FSF)以及良好钝化作用带来的开路电压增益,使得这种正面无遮挡的电池不仅转换效率高,而且看上去更美观,同时,全背电极的组件更易于装配。IBC电池是目前实现高效晶体硅电池的技术方向之一。
较之传统太阳电池,IBC电池的工艺流程要复杂得多。其关键问题,是如何在电池背面制备出呈叉指状间隔排列的P区和N区,以及在其上面分别形成金属化接触和栅线。因此,制备过程中需要多次掩膜工艺,使得其工艺流程繁琐复杂,成本居高不下。
发明内容
本发明的目的是:提供一种成本低,适用于工业化生产的无掩膜的P型全背电极接触晶硅太阳电池的制备方法。
为解决上述技术问题,本发明采用的技术方案如下:
一种无掩膜的P型全背电极接触晶硅太阳电池的制备方法,所述制备方法包括以下步骤:
(1)制绒:以P型单晶硅片作为硅衬底,首先进行制绒处理,所用的溶液通常为KOH溶液,温度为80℃;然后在2-5%的HF溶液中进行清洗,清洗干净硅片表面;
(2)沉积隧穿氧化硅和本征多晶硅薄膜:在硅片的两面沉积一层薄薄的隧穿氧化硅薄膜,厚度控制<2nm,沉积温度在500-700℃之间,紧接着生长一层本征多晶硅层,厚度>200nm,生长温度为400-700℃之间;
(3)磷离子图案化注入:采用磷离子注入,在需要形成n+区的区域进行磷离子注入,使得本征多晶硅薄膜变成掺杂的n型多晶硅薄膜;同时离子注入会在表面形成一层薄薄的n型非晶硅层;
(4)刻蚀:采用TMAH溶液,浓度为1%--2%,溶液温度25-80℃,刻蚀掉背面n+区外的本征多晶硅薄膜和正面的本征多晶硅薄膜;最后在1-5%的HF溶液中浸泡1-2分钟去除该区域的隧穿氧化硅薄膜;
(5)退火:激活离子注入当中的磷原子,使得n型多晶硅薄膜形成均匀的掺杂,以形成pn结区;
(6)去除pn结区表面的磷硅玻璃:在1-5%的HF溶液中浸泡1-5分钟去除退火过程中形成的磷硅玻璃;
(7)钝化层:对n+区,匹配的钝化膜为SiN或者SiO2/SiN叠层膜;p区,匹配的钝化膜为AlO/SiN叠层;
(8)激光开膜:激光烧蚀p区的氧化铝/氮化硅薄膜以便于形成局域铝背场;
(9)丝网印刷:背面按照网版图形进行丝网印刷、烧结时,浆料宽度控制在小于50μm,高度大于5μm;烧结峰值温度在760℃左右,时间40秒。
进一步的,所述步骤(3)中的掩膜层不需要额外单独生长,而是利用离子注入过程中形成的非晶硅层作为掩膜层,简化电池制备工艺和成本。
进一步的,所述步骤(5)中的退火温度700-900℃,退火时间10-60min,退火气氛N2,或N2和O2混合气氛。
进一步的,所述步骤(7)中SiO2厚度1-10nm,AlO厚度1-50nm,SiN厚度50-200nm。
采用本发明的技术方案的有益效果是:
本发明利用离子注入后形成的非晶硅层作为掩膜层,不需要额外生长掩膜层,替代了传统的氧化硅或者氮化硅掩膜;同时在去除本征多晶硅薄膜的同时,会在p区和n+区之间形成高度差,区分开pn结区和背场区,而无需激光刻蚀开膜,大大简化了全背电极接触太阳电池的制备工艺流程,降低成本。同时,pn结区采用掺杂多晶硅/隧穿氧化硅叠层薄膜,与金属银电极接触后,由于有n型多晶硅层的阻挡,因此金属不会穿透到pn结,从而完全消除金属区的复合。同时n型多晶硅薄膜有良好的导电性,因此仍然可以形成良好的欧姆接触,最终大大提高电池效率。
本发明提出的方法,生产流程简单,电池效率高,无硼扩散等昂贵工艺,可以极大的降低全背电极接触太阳电池的成本,且适合大规模产业化应用。
与传统全背电极接触晶硅太阳电池不同,退火步骤中的pn结不是采用硼扩散形成,而是通过n型多晶硅薄膜形成,有良好的导电性,因此仍然可以形成良好的欧姆接触,最终大大提高电池效率。
附图说明
图1为本发明中无掩膜的P型全背电极接触晶硅太阳电池的结构示意图。
图中:1-氧化铝,2-氮化硅, 3-pn结区(n型多晶硅薄膜),4-遂穿氧化硅薄膜,5-铝背场,6-银电极。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
图1为本发明中无掩膜的P型全背电极接触晶硅太阳电池的结构示意图。
一种无掩膜的P型全背电极接触晶硅太阳电池的制备方法,包括以下步骤:
(1)制绒:以P型单晶硅片作为硅衬底,首先进行制绒处理,所用的溶液通常为KOH溶液,KOH溶液一般按照KOH:添加剂:H2O=20:3:160的比例配制,温度为80℃。然后在2-5%的HF溶液中进行清洗,清洗干净硅片表面;
(2)沉积隧穿氧化硅和本征多晶硅薄膜,采用LPCVD设备,在硅片的两面沉积一层薄薄的隧穿SiO2薄膜4,厚度控制<2nm,沉积温度在500-700℃之间,紧接着生长一层本征多晶硅层,厚度>200nm,生长温度为400-700℃之间;
(3)磷离子图案化注入:采用磷离子注入,在需要形成n+区的区域进行磷离子注入,使得本征多晶硅薄膜变成掺杂的n型多晶硅薄膜3。同时离子注入会在表面形成一层薄薄的n型非晶硅层,这一层可以作为掩膜层,阻挡后面的刻蚀液的腐蚀,保护其下面的n型多晶硅/氧化硅薄膜;根据文献可知,经过离子注入处理后,会有所谓的离子轰击减缓刻蚀IBRE (ion-bombardment-retarded etching )效应,即在表面形成一层非晶硅层(amorphoussilicon),该层非晶硅抗有机碱刻蚀;
(4)刻蚀:采用TMAH溶液,浓度为1%-2%,溶液温度25-80℃,刻蚀掉背面n+区外的本征多晶硅薄膜和正面的本征多晶硅薄膜;n+区因为有离子注入形成的非晶硅层,不会被TMAH刻蚀掉,从而被保留;而其他区域则被TMAH刻蚀掉。最后在1-5%的HF溶液中浸泡1-2分钟去除该区域的隧穿氧化硅薄膜4;
(5)退火:激活离子注入当中的磷原子,使得n型多晶硅薄膜3形成均匀的掺杂,以形成pn结区3;退火温度700-900℃,退火时间10-60min,退火气氛N2,或N2和O2混合气氛。
(6)去除pn结区3表面的磷硅玻璃:在1-5%的HF溶液中浸泡1-5分钟去除退火过程中形成的磷硅玻璃;
(7)钝化层:对n+区,匹配的钝化膜为SiN膜2或者SiO2/SiN叠层膜;p区,匹配的钝化膜为AlO/SiN叠层。SiO2厚度1-10nm, AlO厚度1-50nm,SiN厚度50-200nm;
(8)激光开膜:激光烧蚀p区的氧化铝1/氮化硅2薄膜以便于形成局域铝背场5;
(9)丝网印刷:背面按照网版图形进行丝网印刷、烧结。pn结区3采用银浆,p区采用类似于PERC电池的背银+铝浆结构,铝浆用于形成局域铝背场5,背银(银电极6)用于焊接。浆料宽度控制在小于50μm,高度大于5μm;烧结峰值温度在760℃左右,时间40秒。
上述方法制得的无掩膜的P型全背电极接触晶硅太阳电池的结构示意图如图1。
所属领域的普通技术人员应该能够理解的是,
本发明利用离子注入后形成的非晶硅层作为掩膜层,不需要额外生长掩膜层,替代了传统的氧化硅或者氮化硅掩膜;同时在去除本征多晶硅薄膜的同时,会在p区和n+区之间形成高度差,区分开pn结区和背场区,而无需激光刻蚀开膜,大大简化了全背电极接触太阳电池的制备工艺流程,降低成本。同时,pn结区采用掺杂多晶硅/隧穿氧化硅叠层薄膜,与金属银电极接触后,由于有n型多晶硅层的阻挡,因此金属不会穿透到pn结,从而完全消除金属区的复合。同时n型多晶硅薄膜有良好的导电性,因此仍然可以形成良好的欧姆接触,最终大大提高电池效率。
本发明提出的方法,生产流程简单,电池效率高,无硼扩散等昂贵工艺,可以极大的降低全背电极接触太阳电池的成本,且适合大规模产业化应用。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (4)

1.一种无掩膜的P型全背电极接触晶硅太阳电池的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)制绒:以P型单晶硅片作为硅衬底,首先进行制绒处理,所用的溶液通常为KOH溶液,温度为80℃;然后在2-5%的HF溶液中进行清洗,清洗干净硅片表面;
(2)沉积隧穿氧化硅和本征多晶硅薄膜:在硅片的两面沉积一层薄薄的隧穿氧化硅薄膜,厚度控制<2nm,沉积温度在500-700℃之间,紧接着生长一层本征多晶硅层,厚度>200nm,生长温度为400-700℃之间;
(3)磷离子图案化注入:采用磷离子注入,在需要形成n+区的区域进行磷离子注入,使得本征多晶硅薄膜变成掺杂的n型多晶硅薄膜;同时离子注入会在表面形成一层薄薄的n型非晶硅层;
(4)刻蚀:采用TMAH溶液,浓度为1%-2%,溶液温度25-80℃,刻蚀掉背面n+区外的本征多晶硅薄膜和正面的本征多晶硅薄膜;最后在1-5%的HF溶液中浸泡1-2分钟去除该区域的隧穿氧化硅薄膜;
(5)退火:激活离子注入当中的磷原子,使得n型多晶硅薄膜形成均匀的掺杂,以形成pn结区;
(6)去除pn结区表面的磷硅玻璃:在1-5%的HF溶液中浸泡1-5分钟去除退火过程中形成的磷硅玻璃;
(7)钝化层:对n+区,匹配的钝化膜为SiN或者SiO2/SiN叠层膜;p区,匹配的钝化膜为AlO/SiN叠层;
(8)激光开膜:激光烧蚀p区的氧化铝/氮化硅薄膜以便于形成局域铝背场;
(9)丝网印刷:背面按照网版图形进行丝网印刷、烧结时,浆料宽度控制在小于50μm,高度大于5μm;烧结峰值温度为760±2℃,时间40秒。
2.根据权利要求1所述的一种无掩膜的P型全背电极接触晶硅太阳电池的制备方法,其特征在于:所述步骤(4)中的刻蚀液为低浓度的TMAH溶液,浓度为1%-2%。
3.根据权利要求1所述的一种无掩膜的P型全背电极接触晶硅太阳电池的制备方法,其特征在于:所述步骤(5)中的退火温度700-900℃,退火时间10-60min,退火气氛N2,或N2和O2混合气氛。
4.根据权利要求1所述的一种无掩膜的P型全背电极接触晶硅太阳电池的制备方法,其特征在于:所述步骤(7)中SiO2厚度1-10nm,AlO厚度1-50nm,SiN厚度50-200nm。
CN201811418726.1A 2018-11-26 2018-11-26 一种无掩膜的p型全背电极接触晶硅太阳电池的制备方法 Pending CN109509813A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811418726.1A CN109509813A (zh) 2018-11-26 2018-11-26 一种无掩膜的p型全背电极接触晶硅太阳电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811418726.1A CN109509813A (zh) 2018-11-26 2018-11-26 一种无掩膜的p型全背电极接触晶硅太阳电池的制备方法

Publications (1)

Publication Number Publication Date
CN109509813A true CN109509813A (zh) 2019-03-22

Family

ID=65750640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811418726.1A Pending CN109509813A (zh) 2018-11-26 2018-11-26 一种无掩膜的p型全背电极接触晶硅太阳电池的制备方法

Country Status (1)

Country Link
CN (1) CN109509813A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980051A (zh) * 2019-04-29 2019-07-05 浙江晶科能源有限公司 P型全背接触晶硅电池的制作系统及方法
CN110610997A (zh) * 2019-09-17 2019-12-24 泰州中来光电科技有限公司 一种局部钝化接触结构的制备方法
CN110931600A (zh) * 2019-11-16 2020-03-27 江西昌大高新能源材料技术有限公司 一种hacl太阳电池的制备方法
CN111739984A (zh) * 2020-08-10 2020-10-02 浙江晶科能源有限公司 太阳能电池及其制作方法
CN111952408A (zh) * 2020-06-29 2020-11-17 泰州中来光电科技有限公司 一种钝化金属接触的背结太阳能电池及其制备方法
CN112786738A (zh) * 2021-01-28 2021-05-11 晶澳太阳能有限公司 太阳能电池及其制备方法
CN112786739A (zh) * 2021-01-28 2021-05-11 晶澳太阳能有限公司 太阳能电池及其制备方法
CN115020534A (zh) * 2022-04-30 2022-09-06 常州时创能源股份有限公司 一种ibc电池的背面图形化n区制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105659395A (zh) * 2013-12-09 2016-06-08 太阳能公司 使用离子注入制造太阳能电池发射极区
CN108271424A (zh) * 2015-09-30 2018-07-10 泰姆普雷斯艾普公司 制造太阳能电池的方法
WO2018147739A1 (en) * 2017-02-10 2018-08-16 Tempress Ip B.V. Method of manufacturing a passivated solar cell and resulting passivated solar cell
CN108666377A (zh) * 2018-07-11 2018-10-16 泰州隆基乐叶光伏科技有限公司 一种p型背接触太阳电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105659395A (zh) * 2013-12-09 2016-06-08 太阳能公司 使用离子注入制造太阳能电池发射极区
CN108271424A (zh) * 2015-09-30 2018-07-10 泰姆普雷斯艾普公司 制造太阳能电池的方法
WO2018147739A1 (en) * 2017-02-10 2018-08-16 Tempress Ip B.V. Method of manufacturing a passivated solar cell and resulting passivated solar cell
CN108666377A (zh) * 2018-07-11 2018-10-16 泰州隆基乐叶光伏科技有限公司 一种p型背接触太阳电池及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980051A (zh) * 2019-04-29 2019-07-05 浙江晶科能源有限公司 P型全背接触晶硅电池的制作系统及方法
CN110610997A (zh) * 2019-09-17 2019-12-24 泰州中来光电科技有限公司 一种局部钝化接触结构的制备方法
CN110610997B (zh) * 2019-09-17 2022-02-08 泰州中来光电科技有限公司 一种局部钝化接触结构的制备方法
CN110931600A (zh) * 2019-11-16 2020-03-27 江西昌大高新能源材料技术有限公司 一种hacl太阳电池的制备方法
CN111952408A (zh) * 2020-06-29 2020-11-17 泰州中来光电科技有限公司 一种钝化金属接触的背结太阳能电池及其制备方法
CN111739984A (zh) * 2020-08-10 2020-10-02 浙江晶科能源有限公司 太阳能电池及其制作方法
CN112786738A (zh) * 2021-01-28 2021-05-11 晶澳太阳能有限公司 太阳能电池及其制备方法
CN112786739A (zh) * 2021-01-28 2021-05-11 晶澳太阳能有限公司 太阳能电池及其制备方法
CN112786739B (zh) * 2021-01-28 2022-10-25 晶澳太阳能有限公司 太阳能电池及其制备方法
CN112786738B (zh) * 2021-01-28 2023-02-28 晶澳太阳能有限公司 太阳能电池及其制备方法
CN115020534A (zh) * 2022-04-30 2022-09-06 常州时创能源股份有限公司 一种ibc电池的背面图形化n区制备方法

Similar Documents

Publication Publication Date Title
CN109524480B (zh) 一种局域接触钝化的p型晶硅太阳电池及其制备方法
CN109509813A (zh) 一种无掩膜的p型全背电极接触晶硅太阳电池的制备方法
US8110431B2 (en) Ion implanted selective emitter solar cells with in situ surface passivation
CN102222726B (zh) 采用离子注入法制作交错背接触ibc晶体硅太阳能电池的工艺
CN110061083A (zh) 一种全正面钝化接触高效p型晶硅太阳电池的制备方法
CN102623517B (zh) 一种背接触型晶体硅太阳能电池及其制作方法
EP2650926B1 (en) Solar cell and method of making a solar cell
US20140102524A1 (en) Novel electron collectors for silicon photovoltaic cells
CN110838536A (zh) 具有多种隧道结结构的背接触太阳能电池及其制备方法
US20110139231A1 (en) Back junction solar cell with selective front surface field
EP2071632B1 (en) Thin-film solar cell and process for its manufacture
CN110707159A (zh) 一种正背面全面积接触钝化的p型晶硅太阳电池及其制备方法
JP2004193350A (ja) 太陽電池セルおよびその製造方法
CN105185866A (zh) 一种高效钝化接触晶体硅太阳电池的制备方法
US20160197207A1 (en) Solar cell, solar cell module, and manufacturing method of solar cell
CN109713065A (zh) 一种印刷金属电极的钝化太阳能电池及其制备方法
CN110610998A (zh) 一种正面局域钝化接触的晶硅太阳电池及其制备方法
KR101768907B1 (ko) 태양 전지 제조 방법
CN102820343B (zh) 具有无发射极区的太阳能电池及其制备方法
CN110233189A (zh) 一种背面局域重掺杂的太阳能电池及其制备方法
US9397239B2 (en) Insitu epitaxial deposition of front and back junctions in single crystal silicon solar cells
CN209199966U (zh) 一种低成本p型全背电极晶硅太阳电池
CN102683504B (zh) 通过离子注入砷改进晶体硅太阳能电池制作工艺的方法
US20170012149A1 (en) High efficiency single crystal silicon solar cell with epitaxially deposited silicon layers with deep junction(s)
CN112736164A (zh) 一种正面载流子的选择性钝化方法、基于该方法的太阳能电池及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190322

RJ01 Rejection of invention patent application after publication