CN109994135B - 一种正负压电荷泵稳压电路 - Google Patents

一种正负压电荷泵稳压电路 Download PDF

Info

Publication number
CN109994135B
CN109994135B CN201711472067.5A CN201711472067A CN109994135B CN 109994135 B CN109994135 B CN 109994135B CN 201711472067 A CN201711472067 A CN 201711472067A CN 109994135 B CN109994135 B CN 109994135B
Authority
CN
China
Prior art keywords
voltage
charge pump
positive
negative
negative voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711472067.5A
Other languages
English (en)
Other versions
CN109994135A (zh
Inventor
马继荣
于海霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ziguang Tongxin Microelectronics Co Ltd
Original Assignee
Ziguang Tongxin Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ziguang Tongxin Microelectronics Co Ltd filed Critical Ziguang Tongxin Microelectronics Co Ltd
Priority to CN201711472067.5A priority Critical patent/CN109994135B/zh
Publication of CN109994135A publication Critical patent/CN109994135A/zh
Application granted granted Critical
Publication of CN109994135B publication Critical patent/CN109994135B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • G11C5/146Substrate bias generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明提供了一种正负压电荷泵稳压电路,所述正负压电荷泵稳压电路包括正压电荷泵、第一建立时间控制电路、负压电荷泵、第二建立时间控制电路、误差放大器、与非门、电阻、负压储能电容、正压储能电容和地线GND;本发明的正负压电荷泵稳压电路将0V作为参考电压,不需特定电路产生参考电压,因此,正压电荷泵的输出正压VPOS的电压确定后,负压电荷泵的输出负压VNEG的电压值也随之确定,而且,负压电荷泵和正压电荷泵达到建立稳定值的时间相等,因而,正负压电荷泵稳压电路稳定性很好,该压差值在高低温的电压值保持稳定,并且,整个测试修调过不需要测试负压VNEG的电压值,因而测试设备的兼容性很好,能有效节省测试成本。

Description

一种正负压电荷泵稳压电路
技术领域
本发明涉及模拟集成电路技术领域,尤其涉及非挥发存储器中的电荷泵电路,具体为一种正负压电荷泵稳压电路。
背景技术
在非挥发存储器中,正压(VPOS)和负压(VNEG)电荷泵是常见的两种电路,其作用是为擦写操作提供必要的高压,从而实现存储数据的改变。常见的擦写原理是FN遂穿效应,其在出处单元中的氧化层两端加高压偏置,形成强电场,使得电子穿过氧化层。存储单元擦写的效果,即FN遂穿效应的程度大小,和氧化层两端加的高压值压差偏置呈线性关系,即和VPOS-VNEG的电压差值呈线性关系,但是实际电路中都是独立设计VPOS和VNEG的电压值,而不是直接设计VPOS-VNEG的压差值。
在集成电路中,一般分别用两个独立的电路实现正压电荷泵稳压电路和负压电荷泵稳压电路来实现。图1是现有的一种正压电荷泵稳压电路结构图,在该正压电荷泵稳压电路中,101是正压电荷泵,其输入是时钟信号CLK_P,输出是正压VPOS;102是建立时间控制电路,其输出接101中,用来控制正压VPOS的上升建立时间;正压VPOS到地线GND间串联电阻103和104,其电阻值分别为RP1和RP2,中间节点是正压VPOS采样信号VDET_P;误差放大器105的正负输入端分别接参考电压信号VREF和正压VPOS采样信号VDET_P;与非门106的输入端接误差放大器的输出和时钟信号CLK;107是正压VPOS的储能电容。该电路的稳压原理是,VDET_P=VPOS*RP2/(RP1+RP2),当VDET_P>VREF时,误差放大器105输出’0’,使得CLK_P信号将时钟保持’1’的状态,从而正压电荷泵101停止给正压VPOS供电;反之,VDET_P≥VREF时,正压电荷泵101持续给正压VPOS供电,这样实现了正压VPOS稳压值。
VPOS=VREF*(RP1+RP2)/RP2------公式1
图2是现有的一种负压电荷泵稳压电路结构图,在该负压电荷泵稳压电路中,201是负压电荷泵,其输入是时钟信号CLK_N,输出是负压VNEG;202是建立时间控制电路,其输出接201中,用来控制负压VNEG的下降建立时间;负压VNEG到V1间串联电阻203和204,其电阻值分别为RN1和RN2,中间节点是负压VNEG采样信号VDET_N;误差放大器205的负正输入端分别接参考电压信号VREF和负压VNEG采样信号VDET_N;与非门206的输入端接误差放大器的输出和时钟信号CLK;207是正压VPOS的储能电容;V1到地线GND间串联电阻210和211,中间节点是V1采样信号VDET_1;误差放大器209正负端分别接VNET_V1和参考电压VREF,输出接PMOS管208的栅极;PMOS晶体管208的源极接VDD,漏极接V1,从而使得V1=VREF*R2/(R1+R2)。该电路的稳压原理是,VDET_N=(V1-VNEG)*RP2/(RN1+RN2),当VDET_P<VREF时,误差放大器205输出’0’,使得CLK_N信号将时钟保持’1’的状态,从而正压电荷泵201停止给正压VPOS供电;反之,VDET_N≥VREF时,正压电荷泵201持续给正压VPOS供电,这样实现了负压VNEG的稳压值。
VNEG=V1-(V1-VREF)*(RN1+RN2)/RN2---公式2
在芯片生产出来后,芯片测试阶段,需要分别修调正压和负压的电压值。图1和图2的正压和负压电荷泵稳压电路,是两个完全不相关的电路。根据公式1,要想改变正压VPOS值,需要通过改变TRIM_P的值来改变电阻RP2值来调节;根据公式2,要想改变负压VNEG值,需要通过改变TRIM_N的值来改变电阻RN2值来调节,或者再进一步的通过改变TRIM_V1的值来改变电阻R2值来调节。
修调电压的操作对于芯片测试过程来说,占据的时间是很长的。修调电压的操作的增加这就造成了测试成本的增加。
从公式1和公式2可以看出,正压VPOS和负压VNEG都是和参考电压信号VREF呈线性关系,不过VREF的稳定性出现问题,正压VPOS和负压VNEG的稳定性也一定会出现问题。比如VREF的高低温的值发生偏差,正压VPOS和负压VNEG的值也一定会发生偏差。
此外,测试负压VNEG,对于测试设备的兼容性提出了较高的要求,一些低成本的测试设备由于测试量程和测试精度问题,不能直接来测试负压,这样同样增加了芯片测试成本。
发明内容
针对上述现有技术中存在的不足,本发明的目的是提供一种正负压电荷泵稳压电路,以解决正压和负压电荷泵稳压电路的修调过程测试时间长问题,以及正压和负压电荷泵电压值的稳定性受参考电压稳定性影响问题,以及测试设备兼容性问题。
为了达到上述技术目的,本发明所采用的技术方案是:
一种正负压电荷泵稳压电路,所述正负压电荷泵稳压电路包括正压电荷泵、第一建立时间控制电路、负压电荷泵、第二建立时间控制电路、误差放大器、与非门、电阻、负压储能电容、正压储能电容和地线GND,正压电荷泵接外部输入时钟信号,其输出正压VPOS,第一建立时间控制电路输出端接正压电荷泵以控制正压VPOS的上升建立时间,负压电荷泵接外部输入时钟信号,其输出负压VNEG,第二建立时间控制电路输出端接负压电荷泵以控制负压VNEG的下降建立时间,正压VPOS到负压VNEG之间有两个以上电阻串联,提取串联电阻的一个抽头作为高压采样电压,高压采样电压输入到误差放大器的正端,误差放大器的负端接地线GND的0V电压做为参考电位,与非门的输入端接误差放大器的输出端和时钟信号,与非门的输出接外部输入时钟信号,外部接入的修调电压控制信号同时调节提取一抽头串联电阻的电阻值;
所述正负压电荷泵稳压电路工作时,正压电荷泵和负压电荷泵,且设置地线GND电压0V作为参考电压,正压电荷泵输出正压VPOS,负压电荷泵输出负压VNEG,正压VPOS和负压VNEG之间有两个以上电阻串联,提取串联电阻的一个抽头作为高压采样电压输入到误差放大器的正端,误差放大器的负端接地线GND的0V电压作为参考电位;当高压采样电压大于0V时,正压电荷泵和负压电荷泵都工作,反之,正压电荷泵和负压电荷泵都停止工作,正压电荷泵和负压电压泵分别连接第一建立时间控制电路和第二建立时间控制电路,实现负压电荷泵和正压电荷泵建立时间相等,正压电荷泵通过测试修调好后,负压电荷泵值不需要再修调,负压电荷泵值和正压电荷泵值线性相关,仅通过修调正压电荷泵的输出电压值,就能够同时修调正压电荷泵和负压电荷泵的电压值。
本发明由于采用了上述将0V作为参考电压,不需特定电路产生参考电压,所获得的有益效果是,正压电荷泵的输出正压VPOS的电压确定后,负压电荷泵的输出负压VNEG的电压值也随之确定,负压电荷泵的负压VNEG的电压值与正压电荷泵的正压VPOS的电压值线性相关VNEG=-k*VPOS,其中k为大于0的常数,其值只和电阻的比例有关,那么二者的压差值为VPOS-VNEG=(1+k)*VPOS,而且,负压电荷泵的建立时间控制电路使得负压电荷泵先于正压电荷泵电路启动,并且负压电荷泵和正压电荷泵达到建立稳定值的时间相等,这样,本发明的正负压电荷泵稳压电路仅需修调正压VPOS的电压值即可,而不需修调负压VNEG和参考电压VREF的电压值;
而且,本发明的正负压电荷泵稳压电路中,正压电荷泵输出正压VPOS和负压电荷泵输出负压VNEG的压差值VPOS-VNEG=(1+k)*VPOS,由于正压VPOS的电压值仅与电阻的比例k有关系,因而稳定性很好,该压差值在高低温的电压值保持稳定;
而且,本发明的正负压电荷泵稳压电路中,整个测试修调过不需要测试负压VNEG的电压值,因而测试设备的兼容性很好,能有效节省测试成本。
下面结合附图和具体实施方式对本发明做进一步说明。
附图说明
图1是现有的一种正压电荷泵稳压电路结构图。
图2是现有的一种负压电荷泵稳压电路结构图。
图3是本发明具体实施的正负压电荷泵稳压电路结构图。
图4是本发明具体实施的正负压电荷泵稳压电路之正负压建立时间波形图。
具体实施方式
参看图3所示,为本发明具体实施的正负压电荷泵稳压电路结构图。该正负压电荷泵稳压电路包括正压电荷泵301、第一建立时间控制电路302、负压电荷泵303、第二建立时间控制电路304、误差放大器305、与非门306、第一电阻307、第二电阻308、第三电阻309、第四电阻310、负压储能电容311、正压储能电容312和地线GND313。
在该正负压电荷泵稳压电路中,正压电荷泵301接外部输入时钟信号CLK_PN,其输出正压VPOS,第一建立时间控制电路302输出端接正压电荷泵301以控制正压VPOS的上升建立时间,负压电荷泵303接外部输入时钟信号CLK_PN,其输出负压VNEG,第二建立时间控制电路304输出端接负压电荷泵303以控制负压VNEG的下降建立时间,正压VPOS到负压VNEG之间串联第一电阻307、第二电阻308、第三电阻309和第四电阻310,第二电阻308和第三电阻309之间的中间节点为高压采样电压VDET_PN,高压采样电压VDET_PN输入到误差放大器305的正端,误差放大器305的负端接地线GND313的0V电压做为参考电位,与非门306的输入端接误差放大器305的输出端和时钟信号CLK,与非门306的输出接外部输入时钟信号CLK_PN,外部接入的修调电压控制信号TRIM_PN同时调节第二电阻308和第三电阻309的电阻值。
所述正负压电荷泵稳压电路工作时,正压电荷泵301和负压电荷泵303,且设置地线GND313电压0V作为参考电压,正压电荷泵301输出正压VPOS,负压电荷泵303输出负压VNEG,正压VPOS和负压VNEG之间有第一电阻307、第二电阻308、第三电阻309和第四电阻310,第二电阻308和第三电阻309串联,提取第二电阻308和第三电阻309串联电阻的一个抽头作为高压采样电压VDET_PN输入到误差放大器305的正端,误差放大器305的负端接地线GND313的0V电压作为参考电位;当高压采样电压VDET_PN大于0V时,正压电荷泵301和负压电荷泵303都工作,反之,正压电荷泵301和负压电荷泵303都停止工作;正压电荷泵301和负压电压泵303分别连接第一建立时间控制电路302和第二建立时间控制电路304,实现负压电荷泵303和正压电荷泵301建立时间相等;正压电荷泵301通过测试修调好后,负压电荷泵303的电压值不需要再修调,负压电荷泵303的电压值和正压电荷泵301的电压值线性相关,只通过修调正压电荷泵301的输出电压值,就可以同时修调正压电荷泵301和负压电荷泵303的电压值。
参看图4,为本发明具体实施的正负压电荷泵稳压电路之正负压建立时间波形图。对于第一建立时间控制电路302和第二建立时间控制电路304而言,分别控制正压VPOS和负压VNEG的建立时间如图4所示,即要使得正压VPOS和负压VNEG的建立时间相等。设计正压VPOS和负压VNEG的初始值如图4所示,即正压VPOS初始值为VDD电压,即芯片的电源电压,而负压VNEG初始值为0V电压。这样在正压VPOS和负压VNEG的电压建立过程中,始终能保证VDET_PN>0。
该正负压电荷泵稳压电路的稳压原理是,VDET_PN=VPOS-(VPOS-VNEG)*(RP1+RP2)/(RP1+RP2+RN1+RN2),当VDET_PN<0时,误差放大器305输出’0’,使得CLK_PN信号将时钟保持’1’的状态,从而正压电荷泵301和负压电荷泵303同时停止工作;反之,VDET_PN≥0时,正压电荷泵301和负压电荷泵303持续工作,持续给正压VPOS和负压VNEG供电。该正负压电荷泵稳压电路结构,一方面保证了在高压建立阶段的Ts时间内(图4中)正压电荷泵301和负压电荷泵303持续工作,另一方面,实现了VPOS-VNEG稳压值:
VPOS-VNEG=VPOS*(RP1+RP2+RN1+RN2)/(RP1+RP2)------公式3,
在测试过程中,通过修调正压VPOS的电压值,就能实现稳定的VPOS-VNEG电压值,
从公式3中可以看出,VPOS-VNEG值,只和(RP1+RP2+RN1+RN2)/(RP1+RP2)之间的比例值有关系,而和温度无关系,因而能实现很好的温度特性,修调电压的操作只需要修调正压VPOS值,而不需修调负压VNEG和参考电压VREF的电压值。
本发明并不限于上文讨论的实施方式,以上对具体实施方式的描述旨在于为了描述和说明本发明涉及的技术方案。基于本发明启示的显而易见的变换或替代也应当被认为落入本发明的保护范围;以上的具体实施方式用来揭示本发明的最佳实施方法,以使得本领域的普通技术人员能够应用本发明的多种实施方式以及多种替代方式来达到本发明的目的。

Claims (1)

1.一种正负压电荷泵稳压电路,其特征在于,所述正负压电荷泵稳压电路包括正压电荷泵、第一建立时间控制电路、负压电荷泵、第二建立时间控制电路、误差放大器、与非门、电阻、负压储能电容、正压储能电容和地线GND;
正压电荷泵接外部输入时钟信号,其输出正压VPOS,第一建立时间控制电路输出端接正压电荷泵以控制正压VPOS的上升建立时间,负压电荷泵接外部输入时钟信号,其输出负压VNEG,第二建立时间控制电路输出端接负压电荷泵以控制负压VNEG的下降建立时间,正压VPOS到负压VNEG之间有两个以上电阻串联,提取串联电阻的一个抽头作为高压采样电压,高压采样电压输入到误差放大器的正端,误差放大器的负端接地线GND的0V电压做为参考电位,与非门的输入端接误差放大器的输出端和时钟信号,与非门的输出接外部输入时钟信号,外部接入的修调电压控制信号同时调节提取一抽头串联电阻的电阻值;
所述正负压电荷泵稳压电路工作时,正压电荷泵和负压电荷泵,且设置地线GND电压0V作为参考电压,正压电荷泵输出正压VPOS,负压电荷泵输出负压VNEG,正压VPOS和负压VNEG之间有两个以上电阻串联,提取串联电阻的一个抽头作为高压采样电压输入到误差放大器的正端,误差放大器的负端接地线GND的0V电压作为参考电位;当高压采样电压大于0V时,正压电荷泵和负压电荷泵都工作,反之,正压电荷泵和负压电荷泵都停止工作,正压电荷泵和负压电压泵分别连接第一建立时间控制电路和第二建立时间控制电路,实现负压电荷泵和正压电荷泵建立时间相等,正压电荷泵通过测试修调好后,负压电荷泵值不需要再修调,负压电荷泵值和正压电荷泵值线性相关,仅通过修调正压电荷泵的输出电压值,就能够同时修调正压电荷泵和负压电荷泵的电压值。
CN201711472067.5A 2017-12-29 2017-12-29 一种正负压电荷泵稳压电路 Active CN109994135B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711472067.5A CN109994135B (zh) 2017-12-29 2017-12-29 一种正负压电荷泵稳压电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711472067.5A CN109994135B (zh) 2017-12-29 2017-12-29 一种正负压电荷泵稳压电路

Publications (2)

Publication Number Publication Date
CN109994135A CN109994135A (zh) 2019-07-09
CN109994135B true CN109994135B (zh) 2023-03-24

Family

ID=67108435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711472067.5A Active CN109994135B (zh) 2017-12-29 2017-12-29 一种正负压电荷泵稳压电路

Country Status (1)

Country Link
CN (1) CN109994135B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336371A (zh) * 2015-11-26 2016-02-17 成都芯源系统有限公司 非易失性存储器的电压控制电路及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309048A (zh) * 2007-05-17 2008-11-19 比亚迪股份有限公司 一种电荷泵装置及电源电路
CN103904870B (zh) * 2012-12-28 2016-12-28 北京兆易创新科技股份有限公司 一种电荷泵电路系统
US9553567B2 (en) * 2013-06-03 2017-01-24 Qorvo Us, Inc. Fast settling charge pump with frequency hopping
US9250271B2 (en) * 2013-08-26 2016-02-02 Globalfoundries Inc. Charge pump generator with direct voltage sensor
CN106328205B (zh) * 2016-08-22 2019-08-20 上海华力微电子有限公司 一种嵌入式闪存的电荷泵控制电路结构
CN107171548B (zh) * 2017-05-27 2019-06-11 上海华虹宏力半导体制造有限公司 非易失性存储器的电荷泵电路
CN107493013B (zh) * 2017-07-31 2019-09-17 上海华力微电子有限公司 一种降低存储器擦写功耗的电荷泵电路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336371A (zh) * 2015-11-26 2016-02-17 成都芯源系统有限公司 非易失性存储器的电压控制电路及其控制方法

Also Published As

Publication number Publication date
CN109994135A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
CN105280233B (zh) 负基准电压产生电路及负基准电压产生系统
CN101430572B (zh) 电压调节器
CN105468076A (zh) 全cmos基准电流源
CN103440009B (zh) 一种启动电路及带该启动电路的稳压电路
CN107704005B (zh) 负电压线性稳压源
CN205540381U (zh) 一种电流反馈式精确过温保护电路
US9360877B2 (en) Negative voltage regulation circuit and voltage generation circuit including the same
CN108549455B (zh) 一种具有宽输入范围的降压电路
CN104102266A (zh) 基准电压产生电路
CN109994135B (zh) 一种正负压电荷泵稳压电路
CN107453599B (zh) 多电压输出的正压电荷泵
CN101963821A (zh) 启动电路及具有启动电路的带隙电压基准电路
CN102354246A (zh) 一种有源箝位电路
CN111488025B (zh) 一种适用于高压的电源稳压电路
CN208188714U (zh) 一种低压基准电路
CN102447466B (zh) 可下拉精准电流的io电路
CN102647082A (zh) 负电压产生电路
CN101763138B (zh) 一种高精度电压基准电路
CN104267774A (zh) 一种简单的线性电源
CN109213246B (zh) 供电电路、生成方法和控制方法
CN101581948B (zh) 基准电压发生电路
CN104750152A (zh) 一种电压调整器
CN106505851B (zh) 一种电压档位控制电路
CN203675094U (zh) 有源rc滤波器校准电路
CN103869873A (zh) 带隙基准源电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 100083 18 floor, West Tower, block D, Tongfang science and Technology Plaza, 1 Wang Zhuang Road, Wudaokou, Haidian District, Beijing.

Applicant after: ZIGUANG TONGXIN MICROELECTRONICS CO.,LTD.

Address before: 100083 18 floor, West Tower, block D, Tongfang science and Technology Plaza, 1 Wang Zhuang Road, Wudaokou, Haidian District, Beijing.

Applicant before: BEIJING TONGFANG MICROELECTRONICS Co.,Ltd.

GR01 Patent grant
GR01 Patent grant