CN109988997A - 热敏薄膜及其制备方法和应用 - Google Patents

热敏薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN109988997A
CN109988997A CN201910217356.3A CN201910217356A CN109988997A CN 109988997 A CN109988997 A CN 109988997A CN 201910217356 A CN201910217356 A CN 201910217356A CN 109988997 A CN109988997 A CN 109988997A
Authority
CN
China
Prior art keywords
thermosensitive film
sputtering
film
thermosensitive
film according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910217356.3A
Other languages
English (en)
Other versions
CN109988997B (zh
Inventor
居勇峰
杨潇
蒋青松
于银山
付成芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201910217356.3A priority Critical patent/CN109988997B/zh
Publication of CN109988997A publication Critical patent/CN109988997A/zh
Application granted granted Critical
Publication of CN109988997B publication Critical patent/CN109988997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/006Thin film resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/041Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient formed as one or more layers or coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及非制冷红外探测技术领域,公开了一种热敏薄膜及其制备方法和应用,该热敏薄膜由ZnOx材料制成,其中x的取值范围是0.7~0.95;厚度为50 nm~300 nm,方阻在25℃时为5 KΩ/□~500 KΩ/□,电阻温度系数为‑1.5%/K~‑3.5%/K。该热敏薄膜具有长期稳定的电性能,电阻与电阻温度系数与氧化钒比拟,该材料的发明为研究非制冷红外器件用热敏材料开辟了一条新的路径。

Description

热敏薄膜及其制备方法和应用
技术领域
本发明涉及非制冷红外探测技术领域,特别涉及一种热敏薄膜及其制备方法和应用。
背景技术
红外成像技术是一种利用检测物体自然辐射红外线进行热成像,探测和识别目标的技术。红外成像技术的关键部件是红外探测器,而红外探测器分为光子探测器和热探测器两大类,虽然光子探测器如镝镉汞(HgCdTe)探测器(工作在8 ~ 14 µm波段)和锑化铟(InSb)探测器(工作在3~5 µm波段)的灵敏度、响应速度、探测距离等性能都比较高,但都必须使用液氮进行冷却(约80K),而且红外成像几乎都要使用机械扫描装置,因而整个红外成像系统显得结构复杂并且成本很高,无法实现大规模推广应用。在大规模、超大规模集成电路工艺技术推动下,红外探测器已经由单元型迅速向焦平面阵列(Focal Plane Array-FPA)方向发展。而其中的非致冷红外焦平面阵列技术已经成为红外探测技术最主流的方向,同致冷型红外探测器相比,非致冷红外探测器的主要优势是成本低、体积小、重量轻、功耗小、响应波段宽且可大规模批量生产,已经在夜视、精确制导、红外跟踪等军事领域以及消防、公安、医疗、工业控制等民用领域有着广泛的应用。
目前非制冷热成像技术最主要的产品是微测辐射热计阵列,微测辐射热计是将敏感膜电阻随温度的变化作为电压或电流信号变化检出并成像。具体的过程是:目标在一定温度下向外辐射出一定量的红外线,微测辐射热计吸收了红外辐射后产生热量,引起自身温度变化,热敏薄膜将这种变化转变为电阻变化,并通过微桥中的电学通道传递给读出电路,检测出该电阻值的变化,完成对目标的探测。在这个过程中,作为微测辐射热计关键部件之一的热敏薄膜需要满足三条最重要的要求:(1)电阻合适,能与读出电路兼容;(2)电阻温度系数高,最好大于2%/K(绝对值);(3)工艺重复性好,电性能长期稳定。
目前可用的热敏材料有很多种,如金属钛、金属铂、氧化钒、硅锗合金、非晶硅、超导氧化物、巨磁阻材料等。其中,因为氧化钒和非晶硅的电阻合适、电阻温度系数高而应用的最多。但是,这两种材料仍然存在缺陷,如钒氧化合物中由于二氧化钒在68 ℃附近有金属-绝缘体相变,该相变会导致热滞回线,从而影响器件的稳定性;此外,由于钒元素价态较多,因此要制备出符合微测辐射热计热敏要求的氧化钒工艺相对复杂。对于非晶硅材料,应用中由于其电阻较大导致器件的1/f噪声较大,从而影响器件的探测率。因此在非制冷红外探测领域,热敏薄膜的探索和工艺改进仍然是目前研究的热点和难点。研究者们仍然还在持之以恒的探索新的热敏材料,与此同时,人们也在一直研究新的工艺来提高已有热敏材料的性能。
发明内容
发明目的:针对现有技术中存在的问题,本发明提供一种热敏薄膜及其制备方法和应用,该热敏薄膜的电性能的长期稳定性好,电阻与电阻温度系数与氧化钒比拟,制备工艺简单易行,适宜规模化生产。
技术方案:本发明提供了一种热敏薄膜,由ZnOx材料制成,其中x的取值范围是0.7~0.95。
优选地,所述热敏薄膜的厚度为50 ~300 nm。
优选地,在25 ℃时,所述热敏薄膜的方阻为5 ~500 KΩ/□。本热敏薄膜的电阻合适,能较好地与读出电路兼容。
优选地,在25 ℃时,所述热敏薄膜的电阻温度系数为-1.5% ~-3.5%/K。热敏薄膜的电阻温度系数较高,可提高器件的电压响应率,从而提高器件的探测率。
进一步地,在所述热敏薄膜上还覆盖有绝缘材料制成的钝化膜。因为ZnOx薄膜材料活性很强,极易被空气氧化,导致材料的电阻和电阻温度系数稳定性不高。为了隔绝ZnOx薄膜材料与空气相互反应,本发明还在ZnOx薄膜材料上沉积一层钝化膜。因为该钝化膜与位于其下面的ZnOx薄膜相对于读出电路来说是并联关系,因此要求该钝化膜的绝缘性要好,以免产生附加电阻。
优选地,所述钝化膜的厚度为20 ~50 nm。厚度在这个范围内的钝化膜才能有效隔绝空气与热敏层的相互作用,防止热敏层被氧化。
优选地,所述绝缘材料为SiC、Si3N4、SiO2、TiN或TiO2。根据钝化膜的作用,为了防止该钝化膜与ZnOx薄膜材料相互作用,要求该钝化膜氧化能力要弱,所以,钝化膜的材料优选使用氧化能力弱的绝缘材料SiC、Si3N4、SiO2、TiN或TiO2
本发明还提供了一种热敏薄膜的制备方法,包括以下步骤:S1:将干燥清洁的基片放入直流反应磁控溅射炉中,抽本底真空至1×10-3 Pa,期间,将基片升温至100 ~ 350 ℃;S2:使用挡板挡住基片,对金属锌靶材进行预溅射;S3:移开挡板,在基片上通过反应溅射沉积厚度为50 ~300 nm的ZnOx薄膜;S4:同时关闭氧气流量、氩气流量以及溅射电流;S5:待直流反应磁控溅射炉内稳定,本底真空至1.0×10-3 ~1.5×10-3 Pa后,对所述ZnOx薄膜进行退火处理;S6:经过退火处理得到ZnOx薄膜在高真空或氧气氛围下降至室温即得热敏薄膜,取出备用。
优选地,在所述S2中,预溅射时,氩气流量为60 ~140 sccm,溅射电流为0.2 ~0.5A,预溅射时间为10 ~20 min。
优选地,在所述S3中,溅射时的工作压强为0.5 ~2.0 Pa、氧氩气流量比例为5 ~15%、溅射温度为100 ~350 ℃、溅射电流为0.2 ~0.5 A、溅射时间为10 ~50 min。
优选地,在所述S5中,退火处理时的退火氛围为真空下1.0×10-3 ~1.5×10-3 Pa或氧氛围下0.1 ~1 Pa,退火温度为200 ~400 ℃,保温时间为30 ~120 min。
优选地,在所述S6中,所述高真空为1.0×10-3 ~1.5×10-3 Pa,所述氧气氛围为0.1 ~1 Pa。
进一步地,在所述S6之后,还在所述热敏薄膜上沉积绝缘材质的、厚度为20 ~50nm的钝化膜。
本发明还提供了一种热敏薄膜在非制冷红外微测辐射热计中的应用。
有益效果:本发明中,热敏薄膜采用ZnOx薄膜材料,由于锌的价态较少,且ZnOx在该器件应用范围内没有相变,电阻大小容易控制,因此能克服现有技术中的缺陷,电性能的长期稳定性好,并且制备工艺简单易行,适宜规模化生产。ZnOx薄膜材料的制备方法是直流磁控反应溅射与原位退火的结合,通过调整溅射过程中的溅射压强、氧氩比例、溅射温度、溅射电流、溅射时间以及退火过程的退火气氛、退火压强、退火温度、退火时间等参数来控制氧化锌薄膜材料中的氧空位浓度,从而达有效控制ZnOx薄膜材料的电阻和电阻温度系数的目的。该薄膜具有长期稳定的电性能,方阻与电阻温度系数与氧化钒比拟,该材料的发明为研究非制冷红外器件用热敏材料开辟了一条新的路径。
附图说明
图1是本发明中的热敏薄膜的侧视图;
图2是实施方式2中得到的热敏薄膜的方阻-温度曲线。
具体实施方式
下面结合附图对本发明进行详细的介绍。
实施方式1:
将K9玻璃基片依次放入丙酮、酒精、去离子水溶液中超声波清洗,氮气吹干后,将基片放入直流反应磁控溅射炉中,抽本底真空至1×10-3 Pa。期间,将基片升温至200 ℃。使用挡板挡住基片,用100 sccm的氩气流量,0.4 A的溅射电流对金属锌靶进行10 min的预溅射。预溅射后,保持氩气流量100 sccm、溅射电流不变,加氧气流量5 sccm,工作压强为1.0 Pa,移开挡板,在基片上溅射30 min,溅射过程中,保持基片架匀速旋转。溅射完成后,同时关闭氧气流量、氩气流量以及溅射电流。待溅射炉内稳定,本底真空达到1.5×10-3 Pa后,将基片升温至300 ℃,加氧气保持腔室气压为1 Pa,对薄膜氧气退火30 min后自然冷却,待温度降至常室温可取出样品。得到厚度为150 nm、方阻在25℃为5 KΩ/□、电阻温度系数为-1.5%/K的ZnO0.7薄膜。最后,再在制备好的薄膜上沉积厚度为20nm的SiO2材质的钝化层即可。
如图1为本发明中覆盖有钝化膜的热敏薄膜的侧视图。
如图2为本实施方式中得到的热敏薄膜的电阻-温度曲线(图中样品R1,升温和降温时的曲线重叠)。可见,电阻随温度成指数关系变化,且在升温和降温过程中都没有发现热滞回线。
实施方式2:
将K9玻璃基片依次放入丙酮、酒精、去离子水溶液中超声波清洗,氮气吹干后,将基片放入直流反应磁控溅射炉中,抽本底真空至1×10-3 Pa。期间,将基片升温至200 ℃。使用挡板挡住基片,用100 sccm的氩气流量,0.4 A的溅射电流对金属锌靶进行10 min的预溅射。预溅射后,保持氩气流量100 sccm、溅射电流不变,加氧气流量5 sccm,工作压强为1.0 Pa,移开挡板,在基片上溅射20 min,溅射过程中,保持基片架匀速旋转。溅射完成后,同时关闭氧气流量、氩气流量以及溅射电流。待溅射炉内稳定,本底真空达到1.5×10-3 Pa后,将基片升温至300 ℃,加氧气保持腔室气压为1 Pa,对薄膜氧气退火30 min后自然冷却,待温度降至常室温可取出样品。得到厚度为100 nm、方阻在25℃为100 KΩ/□、电阻温度系数为-2.1%/K的ZnO0.85薄膜。最后,再在制备好的薄膜上沉积厚度为20 nm的SiO2材质的钝化层即可。
如图2为本实施方式中得到的热敏薄膜的方阻-温度曲线(图中样品R2,升温和降温时的曲线重叠)。可见,电阻随温度成指数关系变化,且在升温和降温过程中都没有发现热滞回线。
实施方式3:
将K9玻璃基片依次放入丙酮、酒精、去离子水溶液中超声波清洗,氮气吹干后,将基片放入直流反应磁控溅射炉中,抽本底真空至1×10-3 Pa。期间,将基片升温至200 ℃。使用挡板挡住基片,用120 sccm的氩气流量,0.3 A的溅射电流对金属锌靶进行10 min的预溅射。预溅射后,保持氩气流量120 sccm、溅射电流不变,加氧气流量15 sccm,工作压强为1.3Pa,移开挡板,在基片上溅射40 min,溅射过程中,保持基片架匀速旋转。溅射完成后,同时关闭氧气流量、氩气流量以及溅射电流。待溅射炉内稳定,本底真空达到1.5×10-3 Pa后,将基片升温至350 ℃,加氧气保持腔室气压为1 Pa,对薄膜氧气退火30 min后自然冷却,待温度降至常室温可取出样品。得到厚度为180 nm、方阻在25℃为500 KΩ/□、电阻温度系数为-3.5%/K的ZnO0.95薄膜。最后,再在制备好的薄膜上沉积厚度为20 nm的SiO2材质的钝化层即可。
如图2为本实施方式中得到的热敏薄膜的方阻-温度曲线(图中样品R3,升温和降温时的曲线重叠)。可见,电阻随温度成指数关系变化,且在升温和降温过程中都没有发现热滞回线。
上述实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (14)

1.一种热敏薄膜,其特征在于,由ZnOx材料制成,其中x的取值范围是0.7~0.95。
2.根据权利要求1所述的热敏薄膜,其特征在于,所述热敏薄膜的厚度为50 ~300 nm。
3.根据权利要求1所述的热敏薄膜,其特征在于,在25 ℃时,所述热敏薄膜的方阻为5~500 KΩ/□。
4.根据权利要求1所述的热敏薄膜,其特征在于,在25 ℃时,所述热敏薄膜的电阻温度系数为-1.5 ~-3.5%/K。
5.根据权利要求1至4中任一项所述的热敏薄膜,其特征在于,在所述热敏薄膜上还覆盖有绝缘材料制成的钝化膜。
6.根据权利要求5所述的热敏薄膜,其特征在于,所述钝化膜的厚度为20 ~50 nm。
7.根据权利要求5所述的热敏薄膜,其特征在于,所述绝缘材料为SiC、Si3N4、SiO2、TiN或TiO2
8.一种如权利要求1至7中任一项所述的热敏薄膜的制备方法,其特征在于,包括以下步骤:
S1:将干燥清洁的基片放入直流反应磁控溅射炉中,抽本底真空至1×10-3 Pa,期间,将基片升温至100 ~ 350 ℃;
S2:使用挡板挡住基片,对金属锌靶材进行预溅射;
S3:移开挡板,在基片上通过反应溅射沉积厚度为50 ~300 nm的ZnOx薄膜;
S4:同时关闭氧气流量、氩气流量以及溅射电流;
S5:待直流反应磁控溅射炉内稳定,本底真空至1.0×10-3 ~1.5×10-3 Pa后,对所述ZnOx薄膜进行退火处理;
S6:经过退火处理得到ZnOx薄膜在高真空或氧气氛围下降至室温即得热敏薄膜,取出备用。
9.根据权利要求8所述的热敏薄膜的制备方法,其特征在于,在所述S2中,预溅射时,氩气流量为60 ~140 sccm,溅射电流为0.2~0.5 A,预溅射时间为10 ~20 min。
10.根据权利要求8所述的热敏薄膜的制备方法,其特征在于,在所述S3中,溅射时的工作压强为0.5~2.0 Pa、氧氩气流量比例为5~15%、溅射温度为100 ~350 ℃、溅射电流为0.2~0.5 A、溅射时间为10 ~50 min。
11.根据权利要求8所述的热敏薄膜的制备方法,其特征在于,在所述S5中,退火处理时的退火氛围为真空下1.0×10-3 ~1.5×10-3 Pa或氧氛围下0.1 ~1 Pa,退火温度为200 ~400 ℃,保温时间为30 ~120 min。
12.根据权利要求8所述的热敏薄膜的制备方法,其特征在于,在所述S6中,所述高真空为1.0×10-3 ~1.5×10-3 Pa,所述氧气氛围为0.1 ~1 Pa。
13.根据权利要求8至12中任一项所述的热敏薄膜的制备方法,其特征在于,在所述S6之后,还在所述热敏薄膜上沉积绝缘材质的、厚度为20 ~50 nm的钝化膜。
14.一种如权利要求1至7中任一项所述的热敏薄膜在非制冷红外微测辐射热计中的应用。
CN201910217356.3A 2019-03-21 2019-03-21 热敏薄膜及其制备方法和应用 Active CN109988997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910217356.3A CN109988997B (zh) 2019-03-21 2019-03-21 热敏薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910217356.3A CN109988997B (zh) 2019-03-21 2019-03-21 热敏薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109988997A true CN109988997A (zh) 2019-07-09
CN109988997B CN109988997B (zh) 2020-12-08

Family

ID=67129879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910217356.3A Active CN109988997B (zh) 2019-03-21 2019-03-21 热敏薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109988997B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590889A (ja) * 1991-09-27 1993-04-09 Murata Mfg Co Ltd 弾性表面波基板
CN1148902A (zh) * 1995-03-28 1997-04-30 松下电器产业株式会社 金属氧化物薄膜电阻器
CN1594200A (zh) * 2004-07-07 2005-03-16 清华大学 一种Ni-Zn-O基热敏陶瓷材料及其制备方法
CN101805892A (zh) * 2010-04-02 2010-08-18 上海工程技术大学 一种氧化锌薄膜的制备方法
CN102260073A (zh) * 2011-04-28 2011-11-30 江苏大学 氧化锌基低压压敏陶瓷薄膜材料及制备方法
US20120057265A1 (en) * 2010-09-03 2012-03-08 Sfi Electronics Technology Inc. Zinc-oxide surge arrester for high-temperature operation
KR20150009772A (ko) * 2013-07-17 2015-01-27 한국광기술원 마이크로 볼로미터용 고특성 산화물 박막 제조방법
CN104602375A (zh) * 2014-12-17 2015-05-06 内蒙古坤瑞玻璃工贸有限公司 热敏陶瓷电加热玻璃及其制备方法
CN105294096A (zh) * 2015-10-16 2016-02-03 中国科学院上海硅酸盐研究所 一种低电阻氧化锌陶瓷材料及其制备方法
CN106866130A (zh) * 2015-12-11 2017-06-20 青岛祥智电子技术有限公司 一种负温度系数陶瓷热敏电阻的制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590889A (ja) * 1991-09-27 1993-04-09 Murata Mfg Co Ltd 弾性表面波基板
CN1148902A (zh) * 1995-03-28 1997-04-30 松下电器产业株式会社 金属氧化物薄膜电阻器
CN1594200A (zh) * 2004-07-07 2005-03-16 清华大学 一种Ni-Zn-O基热敏陶瓷材料及其制备方法
CN101805892A (zh) * 2010-04-02 2010-08-18 上海工程技术大学 一种氧化锌薄膜的制备方法
US20120057265A1 (en) * 2010-09-03 2012-03-08 Sfi Electronics Technology Inc. Zinc-oxide surge arrester for high-temperature operation
CN102260073A (zh) * 2011-04-28 2011-11-30 江苏大学 氧化锌基低压压敏陶瓷薄膜材料及制备方法
KR20150009772A (ko) * 2013-07-17 2015-01-27 한국광기술원 마이크로 볼로미터용 고특성 산화물 박막 제조방법
CN104602375A (zh) * 2014-12-17 2015-05-06 内蒙古坤瑞玻璃工贸有限公司 热敏陶瓷电加热玻璃及其制备方法
CN105294096A (zh) * 2015-10-16 2016-02-03 中国科学院上海硅酸盐研究所 一种低电阻氧化锌陶瓷材料及其制备方法
CN106866130A (zh) * 2015-12-11 2017-06-20 青岛祥智电子技术有限公司 一种负温度系数陶瓷热敏电阻的制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
叶玉堂等: "《红外与微光技术》", 31 May 2010, 国防工业出版社 *
周小芳等: "氧压对ZnO薄膜电阻温度系数的影响", 《压电与声光》 *
宋国利: "《纳米ZnO和稀土离子掺杂ZnO发光材料制备与发光机制》", 31 May 2018, 科学普及出版社 *

Also Published As

Publication number Publication date
CN109988997B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
Kumar et al. Pulsed laser deposited vanadium oxide thin films for uncooled infrared detectors
Wang et al. Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer
KR100983818B1 (ko) 볼로미터용 저항재료, 이를 이용한 적외선 검출기용 볼로미터, 및 이의 제조방법
Lang et al. Absorbing layers for thermal infrared detectors
CN104878358B (zh) 一种高电阻温度系数氧化钒热敏薄膜材料及其制备方法
CN107686973B (zh) 一种钛钌共掺二氧化钒热敏薄膜材料及其制备方法
US8502639B1 (en) Nanocomposite semiconducting material with reduced resistivity
CN104611670B (zh) 一种高电阻温度系数氧化钒薄膜的制备方法
Karunagaran et al. Study of a pulsed laser deposited vanadium oxide based microbolometer array
Dai et al. Low temperature fabrication of VOx thin films for uncooled IR detectors by direct current reactive magnetron sputtering method
US7250604B2 (en) Oxide thin film for bolometer and infrared detector using the oxide thin film
CN104178738A (zh) 一种无相变高电阻温度系数的掺钛氧化钒薄膜的制备方法
Zhai et al. Study on the resistance characteristic of Pt thin film
Nam et al. Electrical properties of vanadium tungsten oxide thin films
CN109988997A (zh) 热敏薄膜及其制备方法和应用
CN114107924B (zh) 一种非制冷红外微测辐射热计用热敏薄膜
Selim Room temperature sensitivity of (SnO2–ZrO2) sol–gel thin films
Wang et al. Modification of electrical properties of amorphous vanadium oxide (a-VOx) thin film thermistor for microbolometer
CN105112870B (zh) 一种铁电氧化钒复合薄膜及其制备方法
KR100906152B1 (ko) 마이크로 볼로미터용 저항재료, 이의 제조방법 및 이를포함한 마이크로 볼로미터
WO1996031640A1 (fr) Couches minces d'alliages quasi-cristallins, leur preparation et leurs utilisations
CN106987814A (zh) 一种微测辐射热计的氧化钛热敏薄膜的制备方法
Reddy et al. Bolometric properties of oxygen atmosphere annealed Nb: TiO2− x films for infrared detectors
Lee et al. Thermally oxidized tin black films for gas sensing
CN1766534A (zh) 基于聚合物绝热层的室温红外探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 223400 Eighth Floor, Andong Building, No. 10 Haian Road, Lianshui County, Huaian City, Jiangsu Province

Applicant after: HUAIYIN INSTITUTE OF TECHNOLOGY

Address before: 223005 No. 2 Meicheng East Road, Huaian Higher Education Park, Jiangsu Province

Applicant before: HUAIYIN INSTITUTE OF TECHNOLOGY

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant