CN109971096A - 一种高韧性pvc复合材料膜的制备方法 - Google Patents

一种高韧性pvc复合材料膜的制备方法 Download PDF

Info

Publication number
CN109971096A
CN109971096A CN201910280891.3A CN201910280891A CN109971096A CN 109971096 A CN109971096 A CN 109971096A CN 201910280891 A CN201910280891 A CN 201910280891A CN 109971096 A CN109971096 A CN 109971096A
Authority
CN
China
Prior art keywords
pvc
anfs
composite material
solution
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910280891.3A
Other languages
English (en)
Other versions
CN109971096B (zh
Inventor
孙昌梅
董聪聪
曲荣君
张盈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ludong University
Original Assignee
Ludong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ludong University filed Critical Ludong University
Priority to CN201910280891.3A priority Critical patent/CN109971096B/zh
Publication of CN109971096A publication Critical patent/CN109971096A/zh
Application granted granted Critical
Publication of CN109971096B publication Critical patent/CN109971096B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/08Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • D06M2101/36Aromatic polyamides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种高韧性PVC复合材料膜的制备方法,包括制备芳纶纳米纤维ANFs、乙基化改性ANFs和制备PVC复合材料膜等步骤。本发明将芳纶纳米纤维通过烷基化改性后,作为增强材料添加到PVC基体中,线性的芳纶纳米纤维对PVC基体增韧的同时会和PVC大分子相互缠结,增强体系的强度,与纯PVC膜力学性能相比,本发明所得PVC复合材料的杨氏模量、屈服强度和断裂韧性均得到大幅提高,与颗粒状的无机纳米粒子相比,芳纶纳米纤维呈线性,与PVC基体相容性好,不存在界面力学性能下降的情况。

Description

一种高韧性PVC复合材料膜的制备方法
技术领域
本发明涉及复合材料领域,尤其涉及一种高韧性PVC复合材料膜的制备方法。
背景技术
聚氯乙烯(PVC)是一种综合性能优良的通用塑料,其产量和用量仅次于聚乙烯,位居世界树脂产量的第二位。PVC具有良好的耐化学腐蚀性和阻燃性,价格低廉,原料来源广泛,在工业制品、日用品、管材、包装膜等方面均有广泛应用。但PVC也存在一定的缺点,如冲击强度低、热稳定性差、抗蠕变性差以及低温脆性等,这些缺点降低了PVC的使用范围和使用价值。
国内外自20世纪70年代起开始大规模开展PVC增韧改性的研究,采用弹性体共混、纳米粒子填充、纤维增强、弹性体/纳米粒子复合材料增韧等方法对其进行改性,进一步拓宽了其应用领域。目前共混改性PVC是改性与提高PVC冲击强度等性能的常用方法。人们在研究PVC/热塑性聚氨酯弹性体(TPU)共混材料力学性能时发现,TPU可显著提高PVC的韧性和冲击强度。但TPU改性PVC虽然能够显著提高共混体系的韧性,却会使材料的刚度和强度有一定程度的损失。相比之下,刚性粒子尤其是纳米颗粒增韧改性PVC具有一定优势,例如有研究通过基于碾磨的固态剪切复合技术(S3C)制备了PVC/高岭土纳米复合材料。研究发现,无机纳米粒子的加入能同时实现PVC的增强和增韧,但同时也发现了纳米粒子与PVC间界面相容性较差的问题。
发明内容
本发明针对现有PVC增韧改性方法会降低PVC强度以及改性物质与PVC界面相容性差的问题,提供一种高韧性PVC复合材料膜的制备方法。
本发明解决上述技术问题的技术方案如下:一种高韧性PVC复合材料膜的制备方法,其特征在于,包括以下步骤:
1)制备芳纶纳米纤维ANFs:将KOH加入DMSO中,70℃机械搅拌2h后降至室温,加入对位芳纶纤维,室温下保持搅拌反应一周,制得ANFs溶液;
2)乙基化改性ANFs:向步骤1)所得ANFs溶液中加入溴乙烷,30℃下反应17h后过滤,干燥后制得乙基化改性ANFs;
3)制备PVC复合材料膜:将步骤2)所得乙基化改性ANFs溶解到DMSO中,超声1.5h后制得乙基化改性ANFs溶液,将PVC粉末置入DMF中,400r/min搅拌1h后制得PVC溶液,将所得PVC溶液与乙基化改性ANFs溶液混合,70℃下400r/min搅拌15min,再超声震荡15min,制得混合溶液,将混合溶液导入聚四氟乙烯浅平板中,放入真空干燥箱60℃干燥48h,制得PVC复合材料膜。
其中,步骤1)中所述KOH与所述对位芳纶的质量比为(1-1.5):1;所述ANFs溶液的浓度为2-2.5mg/mL。步骤2)中所述ANFs溶液与所述溴乙烷的用量为1L:(1-1.5)mL。步骤3)中,所述混合溶液中乙基化改性ANFs与PVC的重量比为(0.5-1.5):1000。
本发明的有益效果是:本发明将芳纶纳米纤维通过烷基化改性后,作为增强材料添加到PVC基体中,线性的芳纶纳米纤维对PVC基体增韧的同时会和PVC大分子相互缠结,增强体系的强度,与纯PVC膜力学性能相比,本发明所得PVC复合材料的杨氏模量、屈服强度和断裂韧性均得到大幅提高;与颗粒状的无机纳米粒子相比,芳纶纳米纤维呈线性,与PVC基体相容性好,不存在界面力学性能下降的情况。本发明工艺简单,反应条件温和,时间短,易控制,合成效率高。
附图说明
图1为本发明所得乙基化改性ANFs的透射电镜图;图2是本发明所得PVC复合材料膜的透射电镜图。
具体实施方式
以下结合实例对本发明进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
一种高韧性PVC复合材料膜的制备方法,包括以下步骤:
1)制备芳纶纳米纤维ANFs:将干燥的500mL三口瓶用氮气吹扫5min向其内部加入0.9g KOH和300mLDMSO,70℃机械搅拌2h后降至室温,加入0.6g对位芳纶纤维,室温下保持搅拌反应一周,制得ANFs溶液;
2)乙基化改性ANFs:在氮气保护下,量取步骤1)所得ANFs溶液50mL于三口烧瓶中,加入溴乙烷0.06mL,在30℃下机械搅拌17h后过滤,干燥后制得乙基化改性ANFs;
3)制备PVC复合材料膜:将0.001g步骤2)所得乙基化改性ANFs溶解到5mL DMSO中,超声1.5h后制得乙基化改性ANFs溶液,将2g PVC粉末置入15mL DMF中,400r/min搅拌1h后制得PVC溶液,将所得PVC溶液与乙基化改性ANFs溶液混合,70℃下400r/min搅拌15min,再超声震荡15min,制得混合溶液,将混合溶液导入聚四氟乙烯浅平板中,放入真空干燥箱60℃干燥48h,制得PVC复合材料膜。
实施例2
一种高韧性PVC复合材料膜的制备方法,包括以下步骤:
1)制备芳纶纳米纤维ANFs:将干燥的500mL三口瓶用氮气吹扫5min向其内部加入0.75g KOH和240mL DMSO,70℃机械搅拌2h后降至室温,加入0.6g对位芳纶纤维,室温下保持搅拌反应一周,制得ANFs溶液;
2)乙基化改性ANFs:在氮气保护下,量取步骤1)所得ANFs溶液50mL于三口烧瓶中,加入溴乙烷0.05mL,在30℃下机械搅拌17h后过滤,干燥后制得乙基化改性ANFs;
3)制备PVC复合材料膜:将0.002g步骤2)所得乙基化改性ANFs溶解到5mL DMSO中,超声1.5h后制得乙基化改性ANFs溶液,将2g PVC粉末置入15mL DMF中,400r/min搅拌1h后制得PVC溶液,将所得PVC溶液与乙基化改性ANFs溶液混合,70℃下400r/min搅拌15min,再超声震荡15min,制得混合溶液,将混合溶液导入聚四氟乙烯浅平板中,放入真空干燥箱60℃干燥48h,制得PVC复合材料膜。
实施例3
一种高韧性PVC复合材料膜的制备方法,包括以下步骤:
1)制备芳纶纳米纤维ANFs:将干燥的500mL三口瓶用氮气吹扫5min向其内部加入0.6g KOH和270mL DMSO,70℃机械搅拌2h后降至室温,加入0.6g对位芳纶纤维,室温下保持搅拌反应一周,制得ANFs溶液;
2)乙基化改性ANFs:在氮气保护下,量取步骤1)所得ANFs溶液50mL于三口烧瓶中,加入溴乙烷0.075mL,在30℃下机械搅拌17h后过滤,干燥后制得乙基化改性ANFs;
3)制备PVC复合材料膜:将0.003g步骤2)所得乙基化改性ANFs溶解到5mL DMSO中,超声1.5h后制得乙基化改性ANFs溶液,将2g PVC粉末置入15mL DMF中,400r/min搅拌1h后制得PVC溶液,将所得PVC溶液与乙基化改性ANFs溶液混合,70℃下400r/min搅拌15min,再超声震荡15min,制得混合溶液,将混合溶液导入聚四氟乙烯浅平板中,放入真空干燥箱60℃干燥48h,制得PVC复合材料膜。
将实施例1-3所得PVC复合材料膜和纯PVC膜进行相关力学性能分析,如表1和表2所示,PVC复合材料膜的杨氏模量、拉伸强度及韧性与纯PVC膜相比都得到了很大提高,拉伸强度增率为51.02%,杨氏模量增率为28.29%,其中韧性增强效果最为显著,增率可达到86.40%。
表1.纯PVC膜与实施例1-3所得PVC复合材料膜力学性能对比
表2.实施例1-3所得PVC复合材料膜相较纯PVC膜力学性能增率
图1为本发明所得乙基化改性ANFs的透射电镜图,改性后的对位芳纶仍保持了原有的线性结构;图2是本发明所得PVC复合材料膜的透射电镜图,从图中可以看出制得的PVC复合材料膜表面光滑、密度均匀,乙基化改性ANFs在PVC基体中分布均匀,没有明显的界面痕迹。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种高韧性PVC复合材料膜的制备方法,其特征在于,包括以下步骤:
1)制备芳纶纳米纤维ANFs:将KOH加入DMSO中,70℃机械搅拌2h后降至室温,加入对位芳纶纤维,室温下保持搅拌反应一周,制得ANFs溶液;
2)乙基化改性ANFs:向步骤1)所得ANFs溶液中加入溴乙烷,30℃下反应17h后过滤,干燥后制得乙基化改性ANFs;
3)制备PVC复合材料膜:将步骤2)所得乙基化改性ANFs溶解到DMSO中,超声1.5h后制得乙基化改性ANFs溶液,将PVC粉末置入DMF中,400r/min搅拌1h后制得PVC溶液,将所得PVC溶液与乙基化改性ANFs溶液混合,70℃下400r/min搅拌15min,再超声震荡15min,制得混合溶液,将混合溶液导入聚四氟乙烯浅平板中,放入真空干燥箱60℃干燥48h,制得PVC复合材料膜。
2.根据权利要求1所述的高韧性PVC复合材料膜的制备方法,其特征在于,步骤1)中所述KOH与所述对位芳纶的质量比为(1-1.5):1。
3.根据权利要求1所述的高韧性PVC复合材料膜的制备方法,其特征在于,步骤1)中所述ANFs溶液的浓度为2-2.5mg/mL。
4.根据权利要求1所述的高韧性PVC复合材料膜的制备方法,其特征在于,步骤2)中所述ANFs溶液与所述溴乙烷的用量为1L:(1-1.5)mL。
5.根据权利要求1所述的高韧性PVC复合材料膜的制备方法,其特征在于,步骤3)中,所述混合溶液中乙基化改性ANFs与PVC的重量比为(0.5-1.5):1000。
CN201910280891.3A 2019-04-09 2019-04-09 一种高韧性pvc复合材料膜的制备方法 Expired - Fee Related CN109971096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910280891.3A CN109971096B (zh) 2019-04-09 2019-04-09 一种高韧性pvc复合材料膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910280891.3A CN109971096B (zh) 2019-04-09 2019-04-09 一种高韧性pvc复合材料膜的制备方法

Publications (2)

Publication Number Publication Date
CN109971096A true CN109971096A (zh) 2019-07-05
CN109971096B CN109971096B (zh) 2022-01-28

Family

ID=67083656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910280891.3A Expired - Fee Related CN109971096B (zh) 2019-04-09 2019-04-09 一种高韧性pvc复合材料膜的制备方法

Country Status (1)

Country Link
CN (1) CN109971096B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112999893A (zh) * 2021-03-17 2021-06-22 鲁东大学 一种基于芳纶纳米微球的高效pvc复合超滤膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489170A (zh) * 2011-12-23 2012-06-13 重庆绿色智能技术研究院 中空纤维超滤膜及其制备方法
WO2012121759A2 (en) * 2011-03-10 2012-09-13 Mmi-Ipco, Llc Flame resistant composite fabrics
CN109457469A (zh) * 2018-10-12 2019-03-12 江苏扬农化工集团有限公司 一种傅-克烷基化反应对芳纶纤维表面改性的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121759A2 (en) * 2011-03-10 2012-09-13 Mmi-Ipco, Llc Flame resistant composite fabrics
CN102489170A (zh) * 2011-12-23 2012-06-13 重庆绿色智能技术研究院 中空纤维超滤膜及其制备方法
CN109457469A (zh) * 2018-10-12 2019-03-12 江苏扬农化工集团有限公司 一种傅-克烷基化反应对芳纶纤维表面改性的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VERKHOVETS, A.P. ET AL.: "Comparison of mean molecular orientation factors determined by an acoustic method and by infrared spectroscopy", 《MECHANICS OF COMPOSITE MATERIALS》 *
周俊等: "傅-克烷基化反应改性芳纶纤维对EPDM绝热层力学性能的影响", 《化学与黏合》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112999893A (zh) * 2021-03-17 2021-06-22 鲁东大学 一种基于芳纶纳米微球的高效pvc复合超滤膜的制备方法
CN112999893B (zh) * 2021-03-17 2022-06-14 鲁东大学 一种基于芳纶纳米微球的高效pvc复合超滤膜的制备方法

Also Published As

Publication number Publication date
CN109971096B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
Awad et al. Improvement of the chemical, thermal, mechanical and morphological properties of polyethylene terephthalate–graphene particle composites
CN106118039B (zh) 一种石墨烯改性pa6复合材料及其制备方法
CN107011657B (zh) 一种高韧双马来酰亚胺树脂及其制备方法和应用
Yuan et al. A novel surface modification for calcium sulfate whisker used for reinforcement of poly (vinyl chloride)
CN102337021A (zh) 一种用于选择性激光烧结的尼龙复合粉末材料
CN106046589B (zh) 一种用于吹塑成型的高刚性、高熔体强度和耐低温冲击性的热塑性abs树脂组合物
CN107556699B (zh) 一种高强度高韧性环氧树脂复合材料及其制备方法
Jiang et al. The effects of surface modification of ground calcium carbonate powdery fillers on the properties of PVC
CN109971096A (zh) 一种高韧性pvc复合材料膜的制备方法
JP2010202727A (ja) 繊維強化複合材料用エポキシ樹脂組成物およびそれを用いた繊維強化複合材料
JP2012149237A (ja) 熱硬化性樹脂組成物、プリプレグ、および繊維強化複合材料
Anidha et al. Effect of polyaramid reinforced with sisal epoxy composites: Tensile, impact, flexural and morphological properties
Arslan et al. Effect of fiber amount on mechanical and thermal properties of (3-aminopropyl) triethoxysilane treated basalt fiber reinforced ABS composites
Afolabi et al. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application
Aktas et al. Effect of nanoclay content on properties of glass–waterborne epoxy laminates at low clay loading
CN101457019B (zh) 碳纳米管/聚砜酰胺纳米复合材料及其制备方法
KR102024138B1 (ko) 충격보강제, 이의 제조 방법 및 이를 포함하는 폴리유산/폴리카보네이트 수지 조성물
CN106700089B (zh) 一种有机-无机杂化核壳粒子及其制备方法与应用
JP2010174073A (ja) 繊維強化複合材料用エポキシ樹脂組成物およびそれを用いた繊維強化複合材料
CN107573583A (zh) 一种高分子工程塑料及其制备方法和应用
Basturk et al. Mechanical and thermo-mechanical properties of nanoclay/epoxy composites: synergistic effects of silanization and surfactant application
US20130030117A1 (en) Method of manufacturing polyamide and carbon nanotube composite using high shearing process
CN107189122B (zh) 一种碳纤维基抗穿刺橡胶复合材料及其制备方法
CN107099070B (zh) 抗穿刺丁腈橡胶/树脂化芳纶纤维复合材料及其制备方法
Wang et al. Preparation and characterization of phenolic composites reinforced by the attapulgite nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220128

CF01 Termination of patent right due to non-payment of annual fee