CN109970897A - 一种无机/高分子复合材料及其制备方法 - Google Patents

一种无机/高分子复合材料及其制备方法 Download PDF

Info

Publication number
CN109970897A
CN109970897A CN201910239560.5A CN201910239560A CN109970897A CN 109970897 A CN109970897 A CN 109970897A CN 201910239560 A CN201910239560 A CN 201910239560A CN 109970897 A CN109970897 A CN 109970897A
Authority
CN
China
Prior art keywords
inorganic
polymer composite
preparation
nano
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910239560.5A
Other languages
English (en)
Other versions
CN109970897B (zh
Inventor
杨建文
刘冯茂
曾兆华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201910239560.5A priority Critical patent/CN109970897B/zh
Publication of CN109970897A publication Critical patent/CN109970897A/zh
Application granted granted Critical
Publication of CN109970897B publication Critical patent/CN109970897B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F120/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/36Amides or imides
    • C08F122/38Amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种无机/高分子复合材料的制备方法,包括以下步骤,将聚合单体和无机半导体混合,密封,在紫外光源的照射下进行本体聚合,所述聚合物单体与无机半导体的质量之比为7:3~999:1。所述聚合单体为丙烯酰胺、N,N‑二甲基丙烯酰胺、N,N‑亚甲基双丙烯酰胺、甲基丙烯酰胺、N‑异丙基丙烯酰胺、丙烯酰吗啉或1,3,5‑三丙烯酰基六氢均三嗪中的一种或几种;所述无机半导体为纳米TiO2、纳米ZnO、纳米Fe3O4、纳米Fe2O3、纳米CdS中的一种或几种;所述紫外光源的光强为30~50mW/cm2。本发明还提供由该制备方法制备得到的无机/高分子复合材料,本发明所制备的无机/高分子复合材料中的无机半导体粒子分布均匀。

Description

一种无机/高分子复合材料及其制备方法
技术领域
本发明涉及高分子复合材料制备领域,具体地,涉及一种无机/高分子复合材料的制备方法,更涉及一种无机/高分子复合材料。
背景技术
传统的无机/高分子复合材料是由半导体光催化聚合制得的,这反应需要采用溶剂,反应原料在溶剂中进行分散聚合和溶液聚合。(Scientific Reports,2016,6:20981;Nano letters,2017,17(7):4497-4501;Progress in Organic Coatings,2018,115:1-8.)1918-1922.)。
在反应过程中,受激发的无机半导体容易与溶剂形成无机半导体复合物,而该无机半导体复合物不溶于溶剂,造成反应体系形成两相溶液,因而造成制备得到的无机/高分子复合材料的无机半导体颗粒分布不均匀。再者,由于使用了溶剂,反应得到的无机/高分子复合材料需要复杂的分离、提纯操作。
发明内容
本发明为克服上述现有技术所述的至少一种缺陷,提供一种无机/高分子复合材料的制备方法。所述制备方法制备得到无机/高分子复合材料,所述无机/高分子复合材料中的无机粒子分布均匀,且该方法操作简单,不需要复杂的分离、提纯操作。
本发明的另一个目的在于提供所述制备方法制备得到的无机/高分子复合材料。所制备的无机/高分子复合材料中的无机粒子分布均匀。
本发明的一种无机/高分子复合材料的制备方法,将聚合单体和无机半导体混合,密封,在紫外光源的照射下进行本体聚合,所述聚合物单体与无机半导体的质量之比为7:3~999:1;所述聚合单体为丙烯酰胺、N,N-二甲基丙烯酰胺、N,N-亚甲基双丙烯酰胺、甲基丙烯酰胺、N-异丙基丙烯酰胺、丙烯酰吗啉或1,3,5-三丙烯酰基六氢均三嗪中的一种或几种;所述无机半导体为纳米TiO2、纳米ZnO、纳米Fe3O4、纳米Fe2O3、纳米CdS中的一种或几种,所述紫外光源的光强为30~50mW/cm2
本发明的原理是将具有丙烯酰胺结构的聚合单体、无机半导体作为光敏剂,混合形成感光液。紫外光激发感光液,感光液中的无机半导体吸收光子产生空穴-电子对,空穴-电子对向丙烯酰胺结构的单体转移引发单体聚合,得到无机/高分子复合材料,由于感光液不会分散形成两相溶液,无机半导体不会聚集,使得制得的无机/高分子复合材料颗粒分布均匀。
进一步地,所述无机半导体的粒径为10~50nm。使用10~50nm粒径的无机半导体,反应速率快,反应时间不超过2h,而反应时间过长,会使形成的分子链在氧化环境中氧化降解,影响体系的转化率。
进一步地,所述聚合单体为N,N-二甲基丙烯酰胺、N,N-亚甲基双丙烯酰胺的组合,其中所述N,N-二甲基丙烯酰胺与N,N-亚甲基双丙烯酰胺的质量之比为18.9:1。这种组合的选择,使得无机/高分子复合材料表面较粗糙。
进一步地,所述无机半导体为锐钛型TiO2。利用锐钛型TiO2制备得到的无机/高分子复合材料,其表面更为连续,表面应力分散,这种无机/高分子复合材料不容易生成裂纹。
进一步地,所述锐钛型TiO2的粒径为25nm。
进一步地,所述紫外光源的光强为30mW/cm2
进一步地,所述聚合物单体与无机半导体的质量之比为19:1~199:1。
本发明还提供一种由所述制备方法制备得到无机/高分子复合材料。
与现有技术相比,本发明的有益效果是:
1.本发明公开的制备方法制备得到无机/高分子复合材料,所述无机/高分子复合材料中的无机半导体粒子分布均匀。该方法优化了用于高分子聚合的无机半导体材料的制备工艺条件,操作简单,不需要复杂的分离、提纯操作。
2.本发明制得的无机/高分子复合材料,表面有一定粗糙度,并且无机/高分子复合材料中的无机半导体粒子分布均匀。
附图说明
图1为紫外引发机理图;
图2是本发明对比例1制备得到的无机纳米粒子复合物的扫描电子显微镜图;
图3是本发明实例2制备得到的无机/高分子复合材料扫描电子显微镜图;
图4是本发明实例9制备得到的无机/高分子复合材料扫描电子显微镜图;
图5是本发明实例14制备得到的无机/高分子复合材料扫描电子显微镜图;
图6是本发明实例17制备得到的无机/高分子复合材料扫描电子显微镜图;
图7是N,N-二甲基丙烯酰胺单体的核磁共振氢谱图;
图8是本发明实例2制备得到的无机/高分子复合材料核磁共振氢谱图;
图9是本发明实例9制备得到的无机/高分子复合材料核磁共振氢谱图;
图10是本发明实例14制备得到的无机/高分子复合材料核磁共振氢谱图;
图11是本发明实例17制备得到的无机/高分子复合材料核磁共振氢谱图。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
以下实施例是在紫外光源的辐射波长为250~400nm的中压汞灯点光源下制备的,在中压汞灯点光源的光照40min,反应温度为30℃。
实施例1
在25mL配有磁力搅拌器圆底烧瓶中,加入丙烯酰胺和纳米25nm锐钛型TiO2光敏剂,丙烯酰胺和纳米25nm锐钛型TiO2光敏剂的质量比为199:1,在搅拌下,通氮气20min后用石英玻璃塞密封,振荡10min,然后超声分散20min,将团聚的纳米颗粒打散。然后用光强为30mW/cm2的中压汞灯点光源,从反应器的顶端光照40min,反应温度为30℃。在紫外光照下进行本体聚合,紫外光激发感光液,感光液中的无机半导体吸收光子产生空穴-电子对,空穴-电子对向丙烯酰胺转移引发单体聚合,得到无机/高分子复合材料。引发机理如图1所示。
实施例2~19
实施例2-实施例19的制备方法基本与实施例1相同,主要区别在于如以下表1所示。
表1
对比例1
在25mL配有磁力搅拌器圆底烧瓶中,将0.01g德固赛P-25纳米颗粒溶于加入蒸馏水中,搅拌,通氮气20min后用石英玻璃塞密封,然后用光强为30mW/cm2的中压汞灯点光源,从反应器的顶端光照40min,反应温度为30℃。光照结束后,得到的无机纳米粒子复合物。所得凝胶状产物,冷冻干燥后的扫描电子显微镜照片如图2所示。表面粗糙度较小,且无机纳米粒子分布不均匀。
表征
选择部分实施例的实验结果进行扫描电子显微镜和核磁共振,得到图3-图6的扫描电子显微镜图,以及图8-图11的核磁共振氢谱图。图2是对比例1制备的无机纳米粒子复合物扫描电子显微镜图;图7是N,N-二甲基丙烯酰胺单体的核磁共振氢谱图。
结合图2和图3-图6,经过冷冻干燥除去未反应的聚合单体和无机半导体,所得的凝胶状无机/高分子复合材料表面有一定粗糙度,无机半导体粒子分布均匀。
结合图7和图8-图11分析,除N,N-二甲基丙烯酰胺单体特征氢的化学位移外,聚合物化学位移1.42对应的次甲基-CH-上的氢,1.83对应于亚甲基-CH2-上的氢,7.19为溶剂峰,说明了N,N-二甲基丙烯酰胺单体聚合形成了无机/高分子复合材料。
结合图2和图5,从扫面电镜图像可以看出,用ZnO光敏剂制备得到的无机/高分子复合材料,比用溶液聚合制备得到的粒子,分布更均匀,且比用溶液聚合得到的无机纳米粒子复合物表面粗糙。结合图3和图5,从扫面电镜图像可以看出,光敏剂为锐钛型TiO2的无机/高分子复合材料的表面更为连续,而用ZnO光敏剂制得的无机/高分子复合材料,则更多的分布在表面,聚合物连续性下降,会造成表面应力集中,使材料更容易生成裂纹。
结合图3和图4,从后扫面电镜图像可以看出,N,N-二甲基丙烯酰胺制备得到的无机/高分子复合材料,其表面比丙烯酰吗啉制得的无机/高分子复合材料粗糙。
结合图3和图6,从整体上看只使用N,N-二甲基丙烯酰胺单体的表面更为平整,而N,N-二甲基丙烯酰胺和N,N-亚甲基双丙烯酰胺共混单体的表面较粗糙。
评价分散度
本申请所称的分散度,是评价无机粒子分布的分散均匀程度,通过观察扫描电镜图中粒子的分布,以1-10为评价范围。
数值越高,说明无机离子越分散;数值越低,说明无机离子越聚合。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (8)

1.一种无机/高分子复合材料的制备方法,其特征在于,将聚合单体和无机半导体混合,密封,在紫外光源的照射下进行本体聚合,所述聚合物单体与无机半导体的质量之比为7:3~999:1;
所述聚合单体为丙烯酰胺、N,N-二甲基丙烯酰胺、N,N-亚甲基双丙烯酰胺、甲基丙烯酰胺、N-异丙基丙烯酰胺、丙烯酰吗啉或1,3,5-三丙烯酰基六氢均三嗪中的一种或几种;
所述无机半导体为纳米TiO2、纳米ZnO、纳米Fe3O4、纳米Fe2O3、纳米CdS中的一种或几种;
所述紫外光源的光强为30~50mW/cm2
2.根据权利要求1所述无机/高分子复合材料的制备方法,其特征在于,所述无机半导体的粒径为10~50nm。
3.根据权利要求1所述无机/高分子复合材料的制备方法,其特征在于,所述聚合单体为N,N-二甲基丙烯酰胺与N,N-亚甲基双丙烯酰胺的组合,其中所述N,N-二甲基丙烯酰胺与N,N-亚甲基双丙烯酰胺的质量之比为18.9:1。
4.根据权利要求1所述无机/高分子复合材料的制备方法,其特征在于,所述无机半导体为锐钛型TiO2
5.根据权利要求4所述无机/高分子复合材料的制备方法,其特征在于,所述无机半导体的粒径为25nm。
6.根据权利要求1所述无机/高分子复合材料的制备方法,其特征在于,所述紫外光源的光强为30mW/cm2
7.根据权利要求1所述无机/高分子复合材料的制备方法,其特征在于,所述聚合物单体与无机半导体的质量之比为19:1~199:1。
8.权利要求1~7任一所述制备方法制备得到的无机/高分子复合材料。
CN201910239560.5A 2019-03-27 2019-03-27 一种无机/高分子复合材料及其制备方法 Active CN109970897B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910239560.5A CN109970897B (zh) 2019-03-27 2019-03-27 一种无机/高分子复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910239560.5A CN109970897B (zh) 2019-03-27 2019-03-27 一种无机/高分子复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109970897A true CN109970897A (zh) 2019-07-05
CN109970897B CN109970897B (zh) 2021-12-03

Family

ID=67081046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910239560.5A Active CN109970897B (zh) 2019-03-27 2019-03-27 一种无机/高分子复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109970897B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521530A (zh) * 2020-11-24 2021-03-19 华南理工大学 一种利用全光谱的复合无机光引发剂及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631907A (zh) * 2004-11-25 2005-06-29 复旦大学 纳米半导体引发制备聚合物/无机纳米复合材料粉体的方法
CN103641941A (zh) * 2013-11-30 2014-03-19 孙永平 纳米Fe2O3光引发聚合聚丙烯酰胺的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631907A (zh) * 2004-11-25 2005-06-29 复旦大学 纳米半导体引发制备聚合物/无机纳米复合材料粉体的方法
CN103641941A (zh) * 2013-11-30 2014-03-19 孙永平 纳米Fe2O3光引发聚合聚丙烯酰胺的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OJAH, RAJU等: "Solar radiation-induced polymerization of methyl methacrylate in the presence of semiconductor-based photocatalyst", 《SOLAR ENERGY MATERIALS AND SOLAR CELLS》 *
STRANDWITZ, NICHOLAS C等: "One- and two-photon induced polymerization of methylmethacrylate using colloidal CdS semiconductor quantum dots", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521530A (zh) * 2020-11-24 2021-03-19 华南理工大学 一种利用全光谱的复合无机光引发剂及其制备方法与应用
CN112521530B (zh) * 2020-11-24 2021-09-21 华南理工大学 一种利用全光谱的复合无机光引发剂及其制备方法与应用

Also Published As

Publication number Publication date
CN109970897B (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
Xia et al. Nanoparticle-reinforced resin-based dental composites
Amalvy et al. Synthesis and characterization of novel film-forming vinyl polymer/silica colloidal nanocomposites
Wu et al. Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres
Kim et al. Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate
Aymonier et al. Poly (methyl methacrylate)/palladium nanocomposites: synthesis and characterization of the morphological, thermomechanical, and thermal properties
Zhang et al. Photopolymerization of zeolite/polymer-based composites: Toward 3D and 4D printing applications
CN1662590A (zh) 碳纳米管填充复合材料
Sangermano et al. Preparation and characterization of nanostructured TiO2/epoxy polymeric films
KR20040077696A (ko) 초음파를 이용하여 무기/유기 혼성 나노복합재료를제조하는 방법
de Freitas Guimarães et al. Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites
Luo et al. Preparation and characterization of TiO2/polystyrene core–shell nanospheres via microwave-assisted emulsion polymerization
Enomoto et al. Unique hydrophobization and hybridization via direct phase transfer of ZrO2 nanoparticles from water to toluene producing highly transparent polystyrene and poly (methyl methacrylate) hybrid bulk materials
Zhang et al. Chemical bonding of multiwalled carbon nanotubes to SU-8 via ultrasonic irradiation
CN109970897A (zh) 一种无机/高分子复合材料及其制备方法
KR100913272B1 (ko) 초임계 이산화탄소를 이용한 중심-껍질 구조의나노컴포지트 입자 제조방법
Sawada et al. UV-induced switching behavior of novel fluoroalkyl end-capped vinyltrimethoxysilane oligomer/titanium oxide nanocomposite between superhydrophobicity and superhydrophilicity with good oleophobicity
Zeljko et al. Environmentally friendly UV-protective polyacrylate/TiO2 nanocoatings
Sangermano et al. UV-cured functional coatings
Batista et al. Laponite RD/polystyrenesulfonate nanocomposites obtained by photopolymerization
KR20060102619A (ko) 씨드 중합을 이용한 무기 나노 입자/고분자 코어-셀나노복합체의 제조 방법
Truffier-Boutry et al. Chemical degradation of fluorinated antisticking treatments in UV nanoimprint lithography
WO2019059183A1 (ja) 樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
WO2019059184A1 (ja) 樹脂組成物、およびこれを用いた立体造形物の製造方法、立体造形物、ならびに対象物把持用アタッチメントおよびこれを用いた産業用ロボット
Song et al. Aging of UV curable PDMS developed for large-scale, high viscosity stereolithography
JP7163956B2 (ja) 樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant