CN109967148B - Integrated temperature control system suitable for surface acoustic wave micro-channel - Google Patents
Integrated temperature control system suitable for surface acoustic wave micro-channel Download PDFInfo
- Publication number
- CN109967148B CN109967148B CN201910332292.1A CN201910332292A CN109967148B CN 109967148 B CN109967148 B CN 109967148B CN 201910332292 A CN201910332292 A CN 201910332292A CN 109967148 B CN109967148 B CN 109967148B
- Authority
- CN
- China
- Prior art keywords
- micro
- lithium niobate
- integrated temperature
- channel
- temperature control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010897 surface acoustic wave method Methods 0.000 title claims abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 35
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract description 31
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims abstract description 31
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims abstract description 31
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims abstract description 31
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract description 31
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 17
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 17
- 238000005057 refrigeration Methods 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000012986 modification Methods 0.000 claims abstract description 4
- 230000004048 modification Effects 0.000 claims abstract description 4
- 239000001301 oxygen Substances 0.000 claims abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 21
- 239000012530 fluid Substances 0.000 abstract description 15
- 238000002156 mixing Methods 0.000 abstract description 9
- 230000010354 integration Effects 0.000 abstract description 6
- 239000012295 chemical reaction liquid Substances 0.000 abstract description 3
- 230000002255 enzymatic effect Effects 0.000 abstract description 2
- 238000005842 biochemical reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000006911 enzymatic reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于微纳制造技术领域,具体涉及一种适用于声表面波微流道的集成式温控系统。The invention belongs to the technical field of micro-nano manufacturing, and in particular relates to an integrated temperature control system suitable for surface acoustic wave micro flow channels.
背景技术Background technique
随着微纳制造技术的不断发展,人们对于各种生化反应的微型化、快速化、集成化、经济化的要求越来越高。微纳制造技术中的声表面波微流控系统能够集成检测电路,同时完成生化反应中混合、反应、检测等环节并实现智能化控制。现有的声表面波微流控系统主要通过改变输入电压来控制反应流体微混合的效率进而控制生化反应的进程。但是提高输入电压的同时,由于声表面波的热效应,使得反应流体的温度逐渐升高,温度的升高则会引起酶的活性降低(甚至失活),细胞裂解和蛋白质变性等问题,从而导致微尺度下生化反应的进程失去控制。因此,如何实现精准温控下的微尺度流体混合是一个极其重要的问题,现有技术可以实现对微尺度流体混合的控制,但是鲜有对微尺度反应流体的温度进行闭环控制。With the continuous development of micro-nano manufacturing technology, people's requirements for the miniaturization, rapidity, integration and economy of various biochemical reactions are getting higher and higher. The surface acoustic wave microfluidic system in the micro-nano manufacturing technology can integrate the detection circuit, and at the same time complete the mixing, reaction, detection and other links in the biochemical reaction and realize intelligent control. The existing surface acoustic wave microfluidic system mainly controls the efficiency of the micro-mixing of the reaction fluid by changing the input voltage and then controls the process of the biochemical reaction. However, while increasing the input voltage, due to the thermal effect of the surface acoustic wave, the temperature of the reaction fluid gradually increases, and the increase in temperature will cause the enzyme activity to decrease (or even inactivation), cell lysis and protein denaturation and other problems, resulting in The progression of biochemical reactions at the microscale is out of control. Therefore, how to realize micro-scale fluid mixing under precise temperature control is an extremely important issue. Existing technologies can realize the control of micro-scale fluid mixing, but there are few closed-loop control of the temperature of micro-scale reactive fluids.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的缺点,本发明的目的在于提供一种适用于声表面波微流道的集成式温控系统,可以实现精准温控下的微尺度流体混合,完成多种温度敏感的生化酶促微反应,集成度高、便携性好、样本需求少,温度控制精准快速。In order to overcome the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide an integrated temperature control system suitable for surface acoustic wave micro-channels, which can realize micro-scale fluid mixing under precise temperature control, and complete various temperature-sensitive Biochemical enzymatic microreaction, high integration, good portability, less sample requirements, accurate and fast temperature control.
为达到上述目的,本发明采用如下技术方案予以实现:To achieve the above object, the present invention adopts the following technical solutions to be realized:
一种适用于声表面波微流道的集成式温控系统,包括矩形铌酸锂基底1,矩形铌酸锂基底1的下方贴合有帕尔贴制冷元件6,矩形铌酸锂基底1的上方一侧蒸镀有聚焦型叉指换能器2,聚焦型叉指换能器2焦点处的矩形铌酸锂基底1上蒸镀有集成式测温热电阻3,集成式测温热电阻3一侧的矩形铌酸锂基底1的上方局部沉积有二氧化硅薄膜4,二氧化硅薄膜4上通过氧等离子体表面改性键合有Y型PDMS微流道5;An integrated temperature control system suitable for surface acoustic wave microchannels, comprising a rectangular
所述的集成式测温热电阻3是包括一条细长的金属线结构9,金属线结构9的两端和测温电极10连接,金属线结构9位于二氧化硅薄膜4底部。The integrated
所述的矩形铌酸锂基底1材质为128°Y切铌酸锂压电单晶体。The material of the rectangular
所述的聚焦型叉指换能器2由一个圆弧形叉指换能器7和圆弧形布拉格反射栅8组成,其中圆弧形叉指换能器7共由10对指条组成,圆弧形布拉格反射栅8共由5条指条组成,圆弧形叉指换能器7的孔径为10毫米,圆心角度为90度。The focusing
所述的二氧化硅薄膜4是由PECVD的工艺沉积在矩形铌酸锂基底1的上面。The
所述的Y型PDMS微流道5为一块固化翻模的PDMS聚合物构成的Y型微流道,长为30毫米,宽为10毫米,高度为5毫米,两侧各有3毫米深的凹槽,Y型微流道的整体高度为200微米,两个次流道的宽度为100微米,长度为5毫米;主流道的宽度为200微米,长度为16微米。The Y-shaped PDMS micro-channel 5 is a Y-shaped micro-channel composed of a piece of PDMS polymer that has been cured and turned over. The length is 30 mm, the width is 10 mm, and the height is 5 mm. For the groove, the overall height of the Y-shaped microchannel is 200 micrometers, the width of the two secondary channels is 100 micrometers, and the length is 5 mm; the width of the main channel is 200 micrometers and the length is 16 micrometers.
所述的Y型PDMS微流道5为哑铃型,使用刀具模型切割固化后的PDMS,键合于矩形铌酸锂基底1中心位置处。The Y-shaped PDMS micro-channel 5 is a dumbbell shape, and the cured PDMS is cut by a cutter model and bonded to the center of the rectangular
所述的矩形铌酸锂基底1高度为500微米,聚焦型叉指换能器2和集成式测温热电阻3高度为100纳米,二氧化硅薄膜4的高度为300纳米,Y型PDMS微流道5的高度为5毫米;帕尔贴制冷元件6的高度为4毫米。The height of the rectangular
所述的金属线结构9是一个宽20微米,长15毫米的双弯折结构。The
相对于现有技术,本发明的有益效果是:反应时,将两种反应液分别通过注射泵通入Y型PDMS微流道5,对聚焦型叉指换能器2施加以经功率放大器放大后的正弦交变电压,聚焦型叉指换能器2激发的声表面行波沿径向传播汇聚于焦点处,最终聚集的声表面波辐射入Y型PDMS微流道5引起声流,从而促进了两种反应液的混合,进而通过改变输入电压来控制生化反应的进程。Compared with the prior art, the beneficial effect of the present invention is: during the reaction, the two reaction solutions are respectively passed into the Y-
本发明的集成式测温热电阻3的金属线结构9集成在Y型PDMS微流道5的下方,可以实时检测微流道中的反应液的温度并及时反馈给温控系统,最终通过贴合在矩形铌酸锂基底1下方的帕尔贴制冷元件6对反应流体的温度进行调节,对微尺度反应流体的温度进行闭环控制;同时二氧化硅薄膜4有效的阻隔了反应液与集成式测温热电阻3,有良好导热性能的同时,有效地防止集成式测温热电阻3被反应液腐蚀。The
本发明系统集成度高、便携性好、样本需求少,温度控制精准快速,Y型PDMS微流道5可以实现连续流体反应,能够促进多种温度敏感的生物酶促反应。The system of the invention has high integration, good portability, less sample requirements, accurate and fast temperature control, and the Y-
附图说明Description of drawings
图1是本发明的三维结构视图。FIG. 1 is a three-dimensional structural view of the present invention.
图2是本发明的俯视图。Figure 2 is a plan view of the present invention.
图3是本发明的剖视图。FIG. 3 is a cross-sectional view of the present invention.
图4是本发明的测温热电阻俯视图。FIG. 4 is a top view of the temperature measuring thermal resistance of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明做进一步的详细说明:Below in conjunction with accompanying drawing, the present invention is described in further detail:
参照图1、图2和图3,一种适用于声表面波微流道的集成式温控系统,包括矩形铌酸锂基底1,矩形铌酸锂基底1的下方贴合有帕尔贴制冷元件6,矩形铌酸锂基底1的上方一侧蒸镀有聚焦型叉指换能器2,聚焦型叉指换能器2焦点处的矩形铌酸锂基底1上蒸镀有集成式测温热电阻3,集成式测温热电阻3一侧的矩形铌酸锂基底1的上方局部沉积有二氧化硅薄膜4,二氧化硅薄膜4上通过氧等离子体表面改性键合有Y型PDMS微流道5;Referring to Figure 1, Figure 2 and Figure 3, an integrated temperature control system suitable for surface acoustic wave microchannels includes a rectangular
参照图3和图4,所述的集成式测温热电阻3是包括一条细长的金属线结构9,金属线结构9的两端和测温电极10连接,金属线结构9位于二氧化硅薄膜4底部。3 and 4, the integrated temperature measuring
所述的矩形铌酸锂基底1材质为128°Y切铌酸锂压电单晶体。The material of the rectangular
参照图2,所述的聚焦型叉指换能器2由一个圆弧形叉指换能器7和圆弧形布拉格反射栅8组成,其中圆弧形叉指换能器7共由10对指条组成,圆弧形布拉格反射栅8共由5条指条组成,圆弧形叉指换能器7的孔径为10毫米,圆心角度为90度。Referring to FIG. 2 , the focusing
所述的二氧化硅薄膜4是由PECVD的工艺沉积在矩形铌酸锂基底1的上面。The
所述的Y型PDMS微流道5为一块固化翻模的PDMS聚合物构成的Y型微流道,长为30毫米,宽为10毫米,高度为5毫米,两侧各有3毫米深的凹槽,Y型微流道的整体高度为200微米,两个次流道的宽度为100微米,长度为5毫米;主流道的宽度为200微米,长度为16微米。The Y-shaped PDMS micro-channel 5 is a Y-shaped micro-channel composed of a piece of PDMS polymer that has been cured and turned over. The length is 30 mm, the width is 10 mm, and the height is 5 mm. For the groove, the overall height of the Y-shaped microchannel is 200 micrometers, the width of the two secondary channels is 100 micrometers, and the length is 5 mm; the width of the main channel is 200 micrometers and the length is 16 micrometers.
所述的Y型PDMS微流道5为哑铃型,使用刀具模型切割固化后的PDMS(PDMS预聚物和固化剂的质量比为10∶1),键合于矩形铌酸锂基底1中心位置处。The Y-
所述的矩形铌酸锂基底1高度为500微米,聚焦型叉指换能器2和集成式测温热电阻3高度为100纳米,二氧化硅薄膜4的高度为300纳米,PDMS微流道5的高度为5毫米;帕尔贴制冷元件6的高度为4毫米。The height of the rectangular
所述的金属线结构9是一个宽20微米,长15毫米的双弯折结构。The
本发明的工作原理为:通过注射泵将两种反应液分别通入Y型PDMS微流道5,对聚焦型叉指换能器2施加以经功率放大器放大后的正弦交变电压,聚焦型叉指换能器2激发的声表面行波沿径向传播汇聚于焦点处,最终聚集的声表面波辐射入Y型PDMS微流道5引起声流,从而促进了两种反应液的混合,进而通过改变输入电压来控制生化反应的进程;随着输入电压的提高,由于声表面波的热效应,使得反应流体的温度逐渐升高,测温热电阻3集成在Y型PDMS微流道5的下方,金属线结构9和测温电极10构成的测温热电阻3可以实时检测Y型PDMS微流道5中的反应液的温度并及时反馈给温控系统,最终通过贴合在矩形铌酸锂基底1下方的帕尔贴制冷元件6对反应流体的温度进行调节。该发明系统集成度高、便携性好、样本需求少,温度控制精准快速,Y型PDMS微流道5可以实现连续流体反应,能够促进多种温度敏感的生物酶促反应。The working principle of the present invention is as follows: the two reaction solutions are respectively introduced into the Y-
本发明利用聚焦型声表面行波的声致微流效应,通过聚焦型叉指换能器2,集成了测温热电阻3和Y型PDMS微流道5,能够控制多种连续流体反应的进程,温控系统可以实时监测并调整反应液温度,保证反应在适宜的温度下进行,该系统可促进多种温度敏感的生物酶促反应。本发明采用微纳制造工艺,大大减小了设备体积,与现有传统设备相比集成度高、便携性好、节约能耗、加工成本低、样本需求少,器件采取外部全固定设备完成混合、反应和信号输出,避免了传统设备因为部件运动造成的设备可靠性降低的缺陷。The present invention utilizes the acoustically induced microfluidic effect of the focused surface acoustic traveling wave, integrates the temperature measuring
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910332292.1A CN109967148B (en) | 2019-04-24 | 2019-04-24 | Integrated temperature control system suitable for surface acoustic wave micro-channel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910332292.1A CN109967148B (en) | 2019-04-24 | 2019-04-24 | Integrated temperature control system suitable for surface acoustic wave micro-channel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109967148A CN109967148A (en) | 2019-07-05 |
CN109967148B true CN109967148B (en) | 2020-08-04 |
Family
ID=67085912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910332292.1A Active CN109967148B (en) | 2019-04-24 | 2019-04-24 | Integrated temperature control system suitable for surface acoustic wave micro-channel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109967148B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113996362B (en) * | 2021-12-03 | 2023-02-03 | 郑州轻工业大学 | A microfluidic device and method for droplet fusion based on focused surface acoustic wave regulation |
CN114859579A (en) * | 2022-05-07 | 2022-08-05 | 暨南大学 | Novel push-pull type efficient broadband acousto-optic modulator and preparation method thereof |
CN117305102B (en) * | 2023-11-10 | 2024-05-14 | 中南大学 | An acoustic fluidic device for sorting extracellular vesicles in plasma samples and a method of using the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4689704B2 (en) * | 2008-07-23 | 2011-05-25 | 日本電波工業株式会社 | Piezoelectric component and manufacturing method thereof |
US20110236269A1 (en) * | 2008-09-20 | 2011-09-29 | National University Corporation Nagaoka University Of Technology | Microreactor |
US20170275155A1 (en) * | 2014-08-22 | 2017-09-28 | Rmit University | A chemical biochemical or bilogical analysis system utilizing luminescent detection |
JP6705243B2 (en) * | 2016-03-25 | 2020-06-03 | セイコーエプソン株式会社 | Oscillator, electronic device and mobile unit |
CN106076219B (en) * | 2016-06-12 | 2017-12-15 | 西安交通大学 | It is a kind of to be applied to mixing, particle rich and the microfabricated chemical reactor device separated |
GB201617188D0 (en) * | 2016-10-10 | 2016-11-23 | University Court Of The University Of Glasgow The | Fragmentation using surface acoustic waves |
CN207423635U (en) * | 2017-11-22 | 2018-05-29 | 苏州慧闻纳米科技有限公司 | A kind of micro-heater and gas sensor |
CN109569392A (en) * | 2018-12-21 | 2019-04-05 | 北京工业大学 | A kind of active micro-mixer of Y type based on surface acoustic wave |
-
2019
- 2019-04-24 CN CN201910332292.1A patent/CN109967148B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109967148A (en) | 2019-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109967148B (en) | Integrated temperature control system suitable for surface acoustic wave micro-channel | |
CN109012769B (en) | Micro-fluidic liquid drop generation device and method based on surface acoustic wave | |
Lenshof et al. | Acoustofluidics 5: Building microfluidic acoustic resonators | |
ES2776524T3 (en) | Fluid apparatus for manipulation of surface acoustic waves of fluid samples, use of fluid apparatus and process for the manufacture of fluid apparatus | |
Destgeer et al. | Particle separation inside a sessile droplet with variable contact angle using surface acoustic waves | |
Destgeer et al. | Lamb wave-based acoustic radiation force-driven particle ring formation inside a sessile droplet | |
CN102896007B (en) | Microfluidic control element and preparation method thereof | |
CN103585943A (en) | Micro-reactor suitable for micro-liquid mixing and biochemical reaction and manufacturing method thereof | |
CN116656489B (en) | A standing wave acoustic fluidic device for sorting exosomes in body fluids and its use method | |
CN104726331A (en) | Acoustic surface wave based microfluidic plasma separating chip and method | |
WO2010123453A1 (en) | Device and method for manipulating particles utilizing surface acoustic waves | |
CN103386332A (en) | Method of transporting liquid drops by micro-fluidic chip | |
CN110237873A (en) | A sheath-free microfluidic chip for particle separation based on surface acoustic waves | |
CN105435869B (en) | Device and method for splitting microdroplets in a microchannel | |
Bai et al. | A surface acoustic wave-assisted micromixer with active temperature control | |
CN106914288A (en) | A kind of micro-fluidic high frequency sound focusing chip and preparation method thereof | |
CN106093382B (en) | A kind of comb-tooth-type microfluid delayer | |
CN110605147A (en) | A liquid crystal-based temperature-controlled microvalve and its single and multi-stage control system | |
CN102120153B (en) | A multimode micromixer chip and high-throughput mixing and flexible mixing methods | |
CN105628660B (en) | A kind of passive micro-valve POCT chips | |
CN205462171U (en) | Piezoelectricity drive microfluid reaction chip based on focus surface acoustic wave | |
CN109781805B (en) | A Surface Acoustic Wave Micro-Reaction System for Improving the Electrochemical Reaction Efficiency of Trace Liquids | |
CN110841731B (en) | Acoustic surface wave micro-fluidic device for particle separation | |
CN201997269U (en) | Chip of multi-mode micro-mixer | |
CN104928173B (en) | Three-dimensional integrated microchemical reaction device applicable to mixing and disruption of cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |