CN109956754A - 石墨烯纳米片增韧TiB2基陶瓷刀具材料及其制备工艺 - Google Patents
石墨烯纳米片增韧TiB2基陶瓷刀具材料及其制备工艺 Download PDFInfo
- Publication number
- CN109956754A CN109956754A CN201711420900.1A CN201711420900A CN109956754A CN 109956754 A CN109956754 A CN 109956754A CN 201711420900 A CN201711420900 A CN 201711420900A CN 109956754 A CN109956754 A CN 109956754A
- Authority
- CN
- China
- Prior art keywords
- tib
- nanometer sheet
- graphene nanometer
- cutting tool
- ceramic cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
- C04B35/58071—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
-
- C04B35/806—
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种石墨烯纳米片增韧TiB2基陶瓷刀具材料及其制备工艺。该材料组分质量配比为:硼化钛(TiB2):64.5‑74.9%,碳化钛(TiC):25‑35%,石墨烯纳米片(GnS):0.1‑0.5%。利用放电等离子烧结技术,在低温快速烧结条件下制备TiB2基陶瓷刀具材料。本发明制得的TiB2基陶瓷刀具材料不含金属粘结相、完全致密、且具有较高的断裂韧度和硬度,性能满足切削刀具的使用要求;同时本发明制备工艺先进,生产效率高,成本低,易于工业化生产,具有推广价值。
Description
技术领域
本发明涉及放电等离子烧结材料技术领域,尤其涉及到一种石墨烯纳米片增韧TiB2基陶瓷刀具材料及其制备工艺。
背景技术
作为一种超高温陶瓷,TiB2具有高硬度、高弹性模量、耐磨损和良好的化学稳定性等优异的性能。TiB2基陶瓷特别适宜于制造在恶劣环境中工作的耐磨损部件,其中TiB2基陶瓷刀具在高速切削刀具中具有很强的应用潜力。然而,TiB2陶瓷难烧结、脆性大又限制了其作为刀具在高速切削加工中的应用。
TiB2熔点高达2980℃,自扩散系数小,且为共价键连接,这使得TiB2陶瓷很难达到完全致密。为了获得高的致密度,现阶段TiB2陶瓷刀具材料的制备多采用热压烧结。Zou(B.Zou et al. Mechanical properties and microstructure of TiB2-TiC compositeceramic cutting tool material. International Journal of Refractory Metals andHard Materials 35 (2012) 1-9.)和Song(J. Song et al. 2014. Effects of TiCcontent and melt phase on microstructure and mechanical properties of ternaryTiB2-based ceramic cutting tool materials. Materials Science and Engineering:A 605 (2014) 137-143.)分别采用热压烧结制备了TiB2-TiC-Ni和TiB2-TiC-WC-Ni-Mo陶瓷刀具材料,材料的相对密度分别达到99.4%和99.3%。
但是,为了获得高致密度,热压烧结通常需要高的烧结温度(1650-2100℃)、长的保温时间(0.5-2h)和低的升温速率(≤50℃/min),高温和长时间保温导致晶粒异常长大,不利于力学性能提高,同时长的烧结周期浪费能源,生产效率低。
现阶段为提高TiB2陶瓷的致密度和力学性能,通常加入各种金属相(Ni, Mo, Co,Fe, Ti, Ta)。实验证明加入金属相后TiB2陶瓷的烧结温度降低,相对密度可达99%以上,强度和断裂韧度也得到大幅度提高(Chlup et al. Effect of metallic dopants on themicrostructure and mechanical properties of TiB2. Journal of the EuropeanCeramic Society 35 (2015) 2745-2754.)。一般来说,金属含量越多,TiB2陶瓷的断裂韧度越大。然而,在高温环境下,由于金属软化,界面结合强度降低,晶界易产生滑移,造成TiB2陶瓷的强度、断裂韧度、硬度急剧下降,刀具耐磨损和破损能力降低。因此,含金属相的TiB2陶瓷并不是理想的高速切削刀具。
发明内容
本发明的目的在于克服采用传统热压烧结技术制备TiB2基陶瓷刀具材料效率低、耗能高,TiB2陶瓷脆性大,以及添加金属相容易削弱高温力学性能的弊端,提供一种石墨烯纳米片增韧TiB2基陶瓷刀具材料及其放电等离子制备工艺。
本发明的基本构思是通过建立复合陶瓷刀具材料理论抗弯强度与增强颗粒含量的关系模型,以及石墨烯纳米片的增韧补强机理,通过理论计算确定材料组分最优配比。采用放电等离子烧结方法,并通过优化粉末处理工艺、烧结温度、保温时间等工艺参数,制备出全致密高韧性的TiB2基陶瓷刀具材料。
实现本发明目的的技术解决方案是:本发明所述的全致密高韧性TiB2基陶瓷刀具材料,其组分质量配比(wt.%)为:硼化钛(TiB2):64.5-74.9%,碳化钛(TiC):25-35%,石墨烯纳米片(GnS):0.1-0.5%。
更优选的,本发明所述的全致密高韧性TiB2基陶瓷刀具材料,其组分质量配比(wt.%)为:硼化钛(TiB2):67.8-71.9%,碳化钛(TiC):28-32%,石墨烯纳米片(GnS):0.1-0.2%。
上述石墨烯纳米片增韧TiB2基陶瓷刀具材料的制备工艺为:
(1)按比例称取TiB2和TiC粉末,同时加入分散后的石墨烯纳米片悬浮液中,以硬质合金球湿混球磨;
(2)将球磨后的粉料在真空干燥,真空冷却至室温后过筛;
(3)将过筛的粉料装入石墨模具,放入放电等离子烧结炉中,并施压至25-40MPa,在真空环境中,以80-150℃/min的升温速率将温度升至1750-1900℃,并在此温度保温1-10min,然后随炉冷却,制得石墨烯纳米片增韧的TiB2基陶瓷刀具材料。
进一步的,步骤(1)中,石墨烯纳米片悬浮液通过将石墨烯纳米片在酒精介质中超声分散加机械搅拌60min以上得到。
进一步的,步骤(1)中,以硬质合金球湿混球磨12小时以上。
进一步的,步骤(2)中,将球磨后的粉料在120℃以下真空干燥;真空冷却至室温后过100目以上的筛。
本发明与现有技术相比,具有以下显著优点:
(1)本发明利用放电等离子制备TiB2基陶瓷刀具材料,与传统热压烧结相比,升温速率提高了2倍,保温时间缩短了83.3-91.7%。该先进的制备工艺极大地降低了能源消耗,提高了生产效率,有利于降低陶瓷刀具的价格,具有推广价值。
(2)本发明引入石墨烯纳米片作为增韧相,利用其高强度、高弹性模量及独特的二维结构,在添加极少量的情况下获得韧度大幅度提高;且本发明TiB2基陶瓷刀具材料在不添加金属相的情况下得到了完全致密,更适用于高速切削。
附图说明
图1为实施例7制备的石墨烯纳米片增韧TiB2基陶瓷刀具材料断口SEM形貌。
图2为实施例7为制备的石墨烯纳米片增韧TiB2基陶瓷刀具材料裂纹扩展路径。
具体实施方式
本发明为一种石墨烯纳米片增韧TiB2基陶瓷刀具材料及其制备工艺。
石墨烯具有二维结构,弹性模量高,抗拉强度大,只需少量的石墨烯就可以使材料的断裂韧度得到大幅度提高,是一种理想的增韧补强材料。本发明利用放电活化和等离子加速致密的独特优势,通过添加二维增强相——石墨烯纳米片,在低温快速条件下制备全致密的TiB2基陶瓷刀具材料。
实施例1
按TiB2 5.6g、TiC 2.4g、GnS 0g进行配料;将称取的石墨烯纳米片在酒精介质中超声分散加机械搅拌60min;将TiB2和TiC粉末连同分散后的石墨烯纳米片悬浮液装入行星球磨机中,以无水乙醇为介质用硬质合金球磨24小时;将球磨后的粉料在真空120℃下干燥,冷却至室温后过100目筛;将过筛的粉料装入石墨模具,放入放电等离子烧结炉中,并施压至30MPa,在真空环境中,以100℃/min的升温速率将温度升至1750℃,并在此温度保温5min,然后随炉冷却。
实施例2
按TiB2 5.592g、TiC 2.4g、GnS 0.008g进行配料;将称取的石墨烯纳米片在酒精介质中超声分散加机械搅拌60min;将TiB2和TiC粉末连同分散后的石墨烯纳米片悬浮液装入行星球磨机中,以无水乙醇为介质用硬质合金球磨24小时;将球磨后的粉料在真空120℃下干燥,冷却至室温后过100目筛;将过筛的粉料装入石墨模具,放入放电等离子烧结炉中,并施压至30MPa,在真空环境中,以100℃/min的升温速率将温度升至1750℃,并在此温度保温5min,然后随炉冷却。
实施例3
按TiB2 5.584g、TiC 2.4g、GnS 0.016g进行配料;将称取的石墨烯纳米片在酒精介质中超声分散加机械搅拌60min;将TiB2和TiC粉末连同分散后的石墨烯纳米片悬浮液装入行星球磨机中,以无水乙醇为介质用硬质合金球磨24小时;将球磨后的粉料在真空120℃下干燥,冷却至室温后过100目筛;将过筛的粉料装入石墨模具,放入放电等离子烧结炉中,并施压至30MPa,在真空环境中,以100℃/min的升温速率将温度升至1750℃,并在此温度保温5min,然后随炉冷却。
实施例4
按TiB2 5.576g、TiC 2.4g、GnS 0.024g进行配料;将称取的石墨烯纳米片在酒精介质中超声分散加机械搅拌60min;将TiB2和TiC粉末连同分散后的石墨烯纳米片悬浮液装入行星球磨机中,以无水乙醇为介质用硬质合金球磨24小时;将球磨后的粉料在真空120℃下干燥,冷却至室温后过100目筛;将过筛的粉料装入石墨模具,放入放电等离子烧结炉中,并施压至30MPa,在真空环境中,以100℃/min的升温速率将温度升至1750℃,并在此温度保温5min,然后随炉冷却。
实施例5
按TiB2 5.568g、TiC 2.4g、GnS 0.032g进行配料;将称取的石墨烯纳米片在酒精介质中超声分散加机械搅拌60min;将TiB2和TiC粉末连同分散后的石墨烯纳米片悬浮液装入行星球磨机中,以无水乙醇为介质用硬质合金球磨24小时;将球磨后的粉料在真空120℃下干燥,冷却至室温后过100目筛;将过筛的粉料装入石墨模具,放入放电等离子烧结炉中,并施压至30MPa,在真空环境中,以100℃/min的升温速率将温度升至1750℃,并在此温度保温5min,然后随炉冷却。
实施例6
按TiB2 5.56g、TiC 2.4g、GnS 0.04g进行配料;将称取的石墨烯纳米片在酒精介质中超声分散加机械搅拌60min;将TiB2和TiC粉末连同分散后的石墨烯纳米片悬浮液装入行星球磨机中,以无水乙醇为介质用硬质合金球磨24小时;将球磨后的粉料在真空120℃下干燥,冷却至室温后过100目筛;将过筛的粉料装入石墨模具,放入放电等离子烧结炉中,并施压至30MPa,在真空环境中,以100℃/min的升温速率将温度升至1750℃,并在此温度保温5min,然后随炉冷却。
实施例7
按TiB2 5.592g、TiC 2.4g、GnS 0.008g进行配料;将称取的石墨烯纳米片在酒精介质中超声分散加机械搅拌60min;将TiB2和TiC粉末连同分散后的石墨烯纳米片悬浮液装入行星球磨机中,以无水乙醇为介质用硬质合金球磨24小时;将球磨后的粉料在真空120℃下干燥,冷却至室温后过100目筛;将过筛的粉料装入石墨模具,放入放电等离子烧结炉中,并施压至30MPa,在真空环境中,以100℃/min的升温速率将温度升至1800℃,并在此温度保温5min,然后随炉冷却。
实施例8
按TiB2 5.592g、TiC 2.4g、GnS 0.008g进行配料;将称取的石墨烯纳米片在酒精介质中超声分散加机械搅拌60min;将TiB2和TiC粉末连同分散后的石墨烯纳米片悬浮液装入行星球磨机中,以无水乙醇为介质用硬质合金球磨24小时;将球磨后的粉料在真空120℃下干燥,冷却至室温后过100目筛;将过筛的粉料装入石墨模具,放入放电等离子烧结炉中,并施压至25MPa,在真空环境中,以120℃/min的升温速率将温度升至1850℃,并在此温度保温5min,然后随炉冷却。
实施例9
按TiB2 5.592g、TiC 2.4g、GnS 0.008g进行配料;将称取的石墨烯纳米片在酒精介质中超声分散加机械搅拌60min;将TiB2和TiC粉末连同分散后的石墨烯纳米片悬浮液装入行星球磨机中,以无水乙醇为介质用硬质合金球磨24小时;将球磨后的粉料在真空120℃下干燥,冷却至室温后过100目筛;将过筛的粉料装入石墨模具,放入放电等离子烧结炉中,并施压至40MPa,在真空环境中,以100℃/min的升温速率将温度升至1900℃,并在此温度保温3min,然后随炉冷却。
与传统的热压烧结相比,实施例7中的TiB2基陶瓷刀具材料达到完全致密的烧结周期降低了64.6%-75.8%,这极大地降低了能源消耗,提高了生产效率,有利于降低陶瓷刀具的价格,使陶瓷刀具得以推广应用。
实施例1-9的力学性能如表1所示,加入质量分数0.1%石墨烯纳米片的TiB2基陶瓷刀具材料断裂韧度最高,比不加石墨烯纳米片的断裂韧度提高31.7%。实施例7的断口形貌如图1所示,石墨烯纳米片均匀嵌在晶界处,抑制了晶粒长大,晶粒细小,材料微观组织均匀。实施例7的裂纹扩展路径如图2所示,石墨烯纳米片引起的裂纹桥接是主要的增韧机制,相比于传统的颗粒桥接(矩形虚线框),石墨烯的“锚”效应使得桥接区域更大(圆形虚线框),消耗的断裂能更多,这更有利于断裂韧度的提高。
表1为实施例1-9的力学性能参数。
表1 实施例性能参数
Claims (6)
1.增韧TiB2基陶瓷刀具材料,其特征在于,其组分质量配比为:硼化钛TiB2:64.5-74.9%,碳化钛TiC:25-35%,石墨烯纳米片GnS:0.1-0.5%。
2.增韧TiB2基陶瓷刀具材料,其特征在于,其组分质量配比为:硼化钛TiB2:67.8-71.9%,碳化钛TiC:28-32%,石墨烯纳米片GnS:0.1-0.2%。
3.如权利要求1或2所述的增韧TiB2基陶瓷刀具材料的制备工艺,其特征在于,包括如下步骤:
(1)按比例称取TiB2和TiC粉末,同时加入分散后的石墨烯纳米片悬浮液中,以硬质合金球湿混球磨;
(2)将球磨后的粉料在真空干燥,真空冷却至室温后过筛;
(3)将过筛的粉料装入石墨模具,放入放电等离子烧结炉中,并施压至25-40MPa,在真空环境中,以80-150℃/min的升温速率将温度升至1750-1900℃,并在此温度保温1-10min,然后随炉冷却,制得石墨烯纳米片增韧的TiB2基陶瓷刀具材料。
4.如权利要求3所述的制备工艺,其特征在于,步骤(1)中,石墨烯纳米片悬浮液通过将石墨烯纳米片在酒精介质中超声分散加机械搅拌60min以上得到。
5.如权利要求3所述的制备工艺,其特征在于,步骤(1)中,以硬质合金球湿混球磨12小时以上。
6.如权利要求3所述的制备工艺,其特征在于,步骤(2)中,将球磨后的粉料在120℃以下真空干燥;真空冷却至室温后过100目以上的筛。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711420900.1A CN109956754B (zh) | 2017-12-25 | 2017-12-25 | 石墨烯纳米片增韧TiB2基陶瓷刀具材料及其制备工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711420900.1A CN109956754B (zh) | 2017-12-25 | 2017-12-25 | 石墨烯纳米片增韧TiB2基陶瓷刀具材料及其制备工艺 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109956754A true CN109956754A (zh) | 2019-07-02 |
CN109956754B CN109956754B (zh) | 2022-02-01 |
Family
ID=67021022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711420900.1A Active CN109956754B (zh) | 2017-12-25 | 2017-12-25 | 石墨烯纳米片增韧TiB2基陶瓷刀具材料及其制备工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109956754B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110436933A (zh) * | 2019-08-26 | 2019-11-12 | 中南大学 | 一种铝电解用TiB2-石墨烯复合阴极材料及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101704678A (zh) * | 2009-11-11 | 2010-05-12 | 昆明理工大学 | 二硼化钛-碳化钛复相陶瓷微粉的自蔓延高温合成制备方法 |
KR20130014327A (ko) * | 2011-07-29 | 2013-02-07 | 한국과학기술원 | 그래핀/세라믹 나노복합분말 및 그의 제조방법 |
CN103613388A (zh) * | 2013-12-05 | 2014-03-05 | 东北大学 | 一种低温合成TiB2-TiC陶瓷复合材料的方法 |
US20140378294A1 (en) * | 2011-07-29 | 2014-12-25 | The Arizona Board Of Regents, On Behalf Of The University Of Arizona | Graphene-Reinforced Ceramic Composites and Uses Therefor |
CN106007680A (zh) * | 2016-05-23 | 2016-10-12 | 齐鲁工业大学 | 石墨烯增韧A12O3/Ti(C,N)纳米复合陶瓷刀具材料及其制备方法 |
CN106187259A (zh) * | 2016-07-18 | 2016-12-07 | 南京理工大学 | 一种石墨烯纳米片增韧的复合陶瓷刀具及其微波制备工艺 |
CN107098703A (zh) * | 2017-04-20 | 2017-08-29 | 哈尔滨工业大学 | 一种TiB2‑TiC陶瓷复合材料及其制备方法 |
CN107311665A (zh) * | 2017-07-04 | 2017-11-03 | 黑龙江科技大学 | 石墨烯掺杂ZrB2‑SiC复合陶瓷及其制备方法 |
-
2017
- 2017-12-25 CN CN201711420900.1A patent/CN109956754B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101704678A (zh) * | 2009-11-11 | 2010-05-12 | 昆明理工大学 | 二硼化钛-碳化钛复相陶瓷微粉的自蔓延高温合成制备方法 |
KR20130014327A (ko) * | 2011-07-29 | 2013-02-07 | 한국과학기술원 | 그래핀/세라믹 나노복합분말 및 그의 제조방법 |
US20140378294A1 (en) * | 2011-07-29 | 2014-12-25 | The Arizona Board Of Regents, On Behalf Of The University Of Arizona | Graphene-Reinforced Ceramic Composites and Uses Therefor |
CN103613388A (zh) * | 2013-12-05 | 2014-03-05 | 东北大学 | 一种低温合成TiB2-TiC陶瓷复合材料的方法 |
CN106007680A (zh) * | 2016-05-23 | 2016-10-12 | 齐鲁工业大学 | 石墨烯增韧A12O3/Ti(C,N)纳米复合陶瓷刀具材料及其制备方法 |
CN106187259A (zh) * | 2016-07-18 | 2016-12-07 | 南京理工大学 | 一种石墨烯纳米片增韧的复合陶瓷刀具及其微波制备工艺 |
CN107098703A (zh) * | 2017-04-20 | 2017-08-29 | 哈尔滨工业大学 | 一种TiB2‑TiC陶瓷复合材料及其制备方法 |
CN107311665A (zh) * | 2017-07-04 | 2017-11-03 | 黑龙江科技大学 | 石墨烯掺杂ZrB2‑SiC复合陶瓷及其制备方法 |
Non-Patent Citations (7)
Title |
---|
GOVINDARAAJAN B. YADHUKULAKRISHNAN ET AL.: "Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites", 《CERAMICS INTERNATIONAL》 * |
MEHDI SHAHEDIASL ET AL.: "Characterizationofhot-pressedgraphenereinforced ZrB2–SiC composite", 《MATERIALSSCIENCE&ENGINEERINGA》 * |
YU CHENG ET AL.: "Mechanical properties and toughening mechanisms of graphene platelets reinforced Al2O3/TiC composite ceramic tool materials by microwave sintering", 《<MATERIALS SCIENCE & ENGINEERING A》 * |
何志伟: ""功能化石墨烯纳米片的制备、表征及应用"", 《中国优秀硕士学位论文全文数据库工程 科技I辑》 * |
周文英等: "《导热高分子材料》", 30 April 2014, 北京:国防工业出版社 * |
周文英等: "《聚合物基导热复合材料》", 30 September 2017, 北京:国防工业出版社 * |
李云凯等: "《陶瓷及其复合材料》", 31 August 2007, 北京:北京理工大学出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110436933A (zh) * | 2019-08-26 | 2019-11-12 | 中南大学 | 一种铝电解用TiB2-石墨烯复合阴极材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109956754B (zh) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101892411B (zh) | 一种新型wc基硬质合金材料及其制备方法 | |
CN109338172A (zh) | 一种高熵合金增强的2024铝基复合材料及其制备方法 | |
JPS5924751B2 (ja) | 焼結成形体 | |
CN108220642A (zh) | 一种CoCrCuFeMoNi高熵合金颗粒增强铜基复合材料的制备方法 | |
CN110273092A (zh) | 一种CoCrNi颗粒增强镁基复合材料及其制备方法 | |
CN110396632A (zh) | 一种具有均质环芯结构的Ti(C,N)基金属陶瓷及其制备方法 | |
CN101798216B (zh) | 添加硼化钛的氧化锆基纳米陶瓷工模具材料及其制备方法 | |
CN107523710A (zh) | 一种抗高温氧化的晶须改性Ti(C,N)基复合金属陶瓷制备方法 | |
CN106187259A (zh) | 一种石墨烯纳米片增韧的复合陶瓷刀具及其微波制备工艺 | |
CN108947495A (zh) | 一种氧化铝高性能复合陶瓷刀具材料及其制备方法 | |
CN110655404A (zh) | 一种钛碳化硅基复合陶瓷材料及其制备工艺 | |
CN104030686B (zh) | 一种高韧性碳化硅陶瓷及其制备方法 | |
CN110358960A (zh) | 一种高强高韧Ti(C,N)基金属陶瓷的制备方法 | |
CN107500769A (zh) | 一种C/TiB2复合材料的表面处理方法 | |
CN114318038A (zh) | 一种硼化物改性Mo2FeB2基金属陶瓷及其制备方法 | |
CN103820691A (zh) | 一种FeAl/TiC复合材料的常压烧结制备方法 | |
CN101701305B (zh) | 一种TiAl金属间化合物复合材料及其制备方法 | |
CN107190165A (zh) | 一种制备高强度WC‑Ni硬质合金的方法 | |
CN109053191B (zh) | 一种无粘结相碳氮化钛基金属陶瓷及其制备方法 | |
CN101555140B (zh) | 一种二硼化钛致密复合材料的无压烧结制备方法 | |
CN105018818A (zh) | 一种采用Ni3Al为粘结剂的TiC基金属陶瓷及其制备方法 | |
CN102050626A (zh) | 一种陶瓷喷砂嘴制造方法 | |
CN101376931A (zh) | 含大块板状碳化钨晶粒的硬质合金的制备方法 | |
CN109956754A (zh) | 石墨烯纳米片增韧TiB2基陶瓷刀具材料及其制备工艺 | |
CN1179919C (zh) | 一种陶瓷喷砂嘴制备工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |