CN109943310B - 一种改性MoS2纳米材料及其制备方法 - Google Patents
一种改性MoS2纳米材料及其制备方法 Download PDFInfo
- Publication number
- CN109943310B CN109943310B CN201910263296.9A CN201910263296A CN109943310B CN 109943310 B CN109943310 B CN 109943310B CN 201910263296 A CN201910263296 A CN 201910263296A CN 109943310 B CN109943310 B CN 109943310B
- Authority
- CN
- China
- Prior art keywords
- mos
- modified
- modified mos
- nanomaterial
- hydrophilic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Lubricants (AREA)
- Colloid Chemistry (AREA)
Abstract
本发明提供一种改性MoS2纳米材料及其制备方法。该改性MoS2纳米材料为烷基胺链接枝于亲水MoS2纳米片表面。该制备方法包括:将亲水MoS2纳米片加入烷基胺化合物的有机溶液中搅拌,得到的沉淀即为所述改性MoS2纳米材料;每100mL有机溶液中,亲水MoS2纳米片的量为1‑10g,烷基胺化合物的量0.1‑5g。本发明还提供了一种包含改性MoS2纳米材料的纳米流体以及用于制备改性MoS2纳米材料的亲水MoS2纳米片及其制备方法。本发明提供的改性MoS2纳米材料能以较低浓度配成纳米流体即驱油剂溶液应用于石油工业三次采油,极大的减少了三次过程中的环境污染,降低了开采成本,提高了石油采收率。
Description
技术领域
本发明涉及一种纳米材料及其制备方法,尤其涉及一种改性MoS2(二硫化钼) 纳米材料及其制备方法。
背景技术
根据国际能源机构的预测,未来全球石油需求增长依然强劲。目前的石油价格不断攀升,亟需寻找一种可行的途径来提高石油生产的可行性和经济性。
石油开采过程一般分为三个阶段,一次采油阶段主要依靠地层自身能量驱动石油在地下的流动;随着地层能量的降低,需要在地面向油层注盐的水溶液(或气体等) 将石油驱出,称为二次采油,一次采油阶段和二次采油阶段大约一共可开采40%的油。三次采油是指通过向地下注入化学物质(例如聚合物,二氧化碳和表面活性剂)驱出剩余原油的采油方法。三次采油是减缓多数油田衰老速度、维持原油产量,提高石油开采率的重要阶段,然而开采过程存在环境污染、成本高等问题一直是限制三次采油阶段发展的重要障碍。
现有技术中公开了将纳米流体或诸如CO2,N2的气体作为EOR剂(enhance oilrecovery agents)注入储层中以采收残余油的方案。纳米流体根据储层条件可采用表面活性剂,聚合物,泡沫,纳米颗粒或其组合。表面活性剂和聚合物可以通过改变润湿性,界面张力或油的粘度来采收残余油。然而为了获得高的油采收率(例如20%左右),这些试剂需要以较高的量使用,而且使用后在岩石上的吸附而可能改变储层性质,因此,现有表面活性剂和聚合物类纳米流体在石油采收过程中存在成本高,环境污染等问题。
现有技术中还公开了使用金属氧化物基纳米颗粒在三次采油阶段进行剩余油的开采的方案(Hendraningrat L,Li S,Torscter O.A coreflood investigation ofnanofluid enhanced oil recovery.J.Pet.Sci.Eng.,2013,111:128-138),然而其石油采收率低于5%。
如何在三次采油阶段中提供一种材料,减少石油开采过程的环境污染,降低开采成本,同时具有高的石油采收率成为有待解决的技术问题。
发明内容
针对现有技术的不足,本发明的目的在于提供一种适用于采油特别是三次采油的改性纳米材料。该改性纳米材料用于驱油时,石油采收率较高,且用量较小开采成本较低,开采过程对环境的污染较小。
为了实现上述目的,本发明提供了一种改性MoS2纳米材料,该改性MoS2纳米材料为烷基胺链接枝于亲水MoS2纳米片表面的纳米材料。
根据本发明的具体实施方式,优选地,烷基胺链的结构式为-CnH2n-NH2,CnH2n既可以为直链也可以包含支链。
根据本发明的具体实施方式,优选地,改性MoS2纳米材料具有两亲性。
根据本发明的具体实施方式,优选地,在上述改性MoS2纳米材料中,烷基胺链包含碳原子数为4-18的烷基胺链中的一种或两种以上的组合;更优选地,烷基胺链包含丁胺链、辛胺链、十二烷胺链中的一种或两种以上的组合。
根据本发明的具体实施方式,优选地,改性MoS2纳米材料为纳米级片材;更优选地,改性MoS2纳米材料的厚度为1nm-1.5nm,长度为50nm-100nm,宽度为 50nm-100nm。
根据本发明的具体实施方式,优选地,在上述改性MoS2纳米材料中,亲水MoS2纳米片为1T-MoS2。
根据本发明的具体实施方式,优选地,改性MoS2纳米材料通过烷基胺化合物对亲水MoS2纳米片改性得到;更优选地,烷基胺化合物包含碳原子数为4-18的烷基胺化合物中的一种或两种以上的组合;进一步优选地,烷基胺化合物包含丁胺、辛胺和十二烷胺中的一种或两种以上的组合。
上述改性MoS2纳米材料用于三次采油阶段,可降低油水界面张力,有利于将油从岩层中分离出来,从而具有非常高的石油采收率,同时减小开采成本,降低开采过程对环境的污染。
本发明还提供了一种上述改性MoS2纳米材料的制备方法,其中,该方法包括以下步骤:
将亲水MoS2纳米片加入烷基胺化合物的有机溶液中反应,得到的沉淀即为改性MoS2纳米材料;
其中,每100mL有机溶剂中,亲水MoS2纳米片的量为1-10g,烷基胺化合物的量0.1-5g;其中,有机溶剂为烷基胺化合物的有机溶液中包含的有机溶剂。
在上述改性MoS2纳米材料的制备方法中,优选地,所述反应在搅拌状态下进行;更优选地,所述搅拌的转速为50-200rpm。
在上述改性MoS2纳米材料的制备方法中,优选地,所述反应在室温下进行,更优选地,所述反应在25℃下进行。
在上述改性MoS2纳米材料的制备方法中,优选地,所述反应的时间为6-15小时。
在上述改性MoS2纳米材料的制备方法中,优选地,烷基胺化合物包含碳原子数为4-18的烷基胺化合物中的一种或两种以上的组合;更优选地,烷基胺化合物包含丁胺、辛胺和十二烷胺中的一种或两种以上的组合。
在上述改性MoS2纳米材料的制备方法中,优选地,烷基胺化合物的有机溶液为烷基胺化合物的无水乙醇或甲苯溶液。
在上述改性MoS2纳米材料的制备方法中,优选地,还包括将获得的沉淀(可选的,在该沉淀冷却到室温后,例如25℃左右),用水和乙醇(例如,各1L)洗涤,然后干燥(例如50-80℃下干燥6-12小时左右),以获得改性MoS2纳米材料。
在一个具体实施方式中,上述改性MoS2纳米材料的制备方法包括以下步骤:
1)将Mo源,S源以及还原剂加入水中获得反应混合物;
2)将上述反应混合物在压力1-5bar、温度150-250℃条件下,以100-500rpm的转速搅拌6-15小时进行反应,获得的沉淀即为亲水MoS2纳米片;
3)将步骤2)获得的上述亲水MoS2纳米片加入烷基胺化合物的有机溶液中, 25℃下以50-200rpm的转速搅拌6-15小时进行反应,收集反应获得的沉淀即为改性 MoS2纳米材料;其中,每100mL有机溶剂中,亲水MoS2纳米片的量为1-10g,烷基胺化合物的量为0.1-5g,其中,有机溶剂为烷基胺化合物的有机溶液中包含的有机溶剂;
在上述具体实施方式中,进一步地,在步骤1)中,每100mL水中,Mo源的量可为30-80mmol(此处Mo源的量是以Mo原子的量计),S源的量可为30-160mmol (此处S源的量是以S原子的量计),还原剂的量可为0.8-1mol。
在上述具体实施方式中,进一步地,步骤3)可还包括将获得的沉淀(可选的,在该沉淀冷却到室温后,例如25℃左右),用水和乙醇(例如,各1L)洗涤,然后干燥(例如50-80℃下干燥6-12小时左右),以获得改性MoS2纳米材料。
在上述具体实施方式中,进一步地,烷基胺化合物的有机溶液通常为烷基胺化合物的无水乙醇或甲苯溶液。
在上述具体实施方式中,进一步地,Mo源可包含钼酸铵、五氯化钼和氧化钼中的一种或两种以上的组合;S源可包含磺酸钠、硫氰酸钾和硫代乙酰胺中的一种或两种以上的组合;还原剂可还包含硼氢化钾、盐酸羟胺中的一种或两种以上的组合。
本发明提供的改性MoS2纳米材料优选采用上述改性MoS2纳米材料的制备方法制备得到。
本发明还提供了一种纳米流体,该纳米流体通过将上述改性MoS2纳米材料与稳定剂在盐的水溶液或去离子水中混合获得。
在上述纳米流体中,优选地,每100mL盐的水溶液或去离子水中,改性MoS2纳米材料的质量为50-1000ppm,稳定剂的质量为20-1000ppm。
在上述纳米流体中,优选地,盐的水溶液的浓度为10000-220000mg/L;更优选地,盐的水溶液可以按照本领域制备盐的水溶液的标准方法获得;进一步优选地,盐的水溶液为根据表1配置成的盐的水溶液。
表1
Na<sub>2</sub>SO<sub>4</sub> | 63mg/L |
NaHCO<sub>3</sub> | 87mg/L |
NaCl | 31479mg/L |
CaCl<sub>2</sub> | 6228mg/L |
MgCl<sub>2</sub> | 538mg/L |
在上述纳米流体中,优选地,稳定剂包含聚乙烯吡咯烷酮、烷基聚氧乙烯醚、聚苯乙烯磺酸钠中的一种或两种以上的组合。
本发明还提供了一种亲水MoS2纳米片的制备方法,其中,该方法包括以下步骤:
1)将Mo源,S源以及还原剂加入水中获得反应混合物;
2)将上述反应混合物在压力1-5bar、温度150-250℃条件下反应6-15小时,获得的沉淀即为亲水MoS2纳米片反应。
在上述亲水MoS2纳米片的制备方法中,优选地,Mo源包含钼酸铵、五氯化钼、氧化钼中的一种或两种以上的组合;更优选地,Mo源包含氧化钼。
在上述亲水MoS2纳米片的制备方法中,优选地,S源包含磺酸钠、硫氰酸钾、硫代乙酰胺中的一种或两种以上的组合;更优选地,S源包含硫氰酸钾。
在上述亲水MoS2纳米片的制备方法中,优选地,还原剂包含硼氢化钾、盐酸羟胺、酰胺基物质中的一种或两种以上的组合;更优选地,还原剂包含硼氢化钾。
在上述亲水MoS2纳米片的制备方法中,优选地,在步骤1)中,每100mL水中, Mo源的量(Mo源的量以Mo原子的量计)为30-80mmol,S源的量(S源的量以S 原子的量计)为30mmol-160mmol,还原剂的量为0.8-1mol。
在上述亲水MoS2纳米片的制备方法中,优选地,在步骤2)中,反应过程中进行搅拌;更优选地,搅拌的转速为100-500rpm。搅拌可贯穿整个反应过程也可在反应过程中的任意时间段进行,较佳可在反应的开始阶段进行。反应过程中进行搅拌更利于促进以结晶为主要形式的反应进行。
在上述亲水MoS2纳米片的制备方法中,优选地,步骤2)还包括将获得的沉淀 (可选的,在该沉淀冷却到室温后,例如25℃左右),用水和乙醇洗涤(例如,各1L),然后干燥(例如80℃下干燥6小时左右),以获得亲水MoS2纳米片。
在上述亲水MoS2纳米片的制备方法中,还原剂一方面可以将混合物的pH值控制在7-9,另一方面还可以促进Mo源,S源反应形成MoS2。
本发明还提供了一种亲水MoS2纳米片,该亲水MoS2纳米片由上述亲水MoS2纳米片的制备方法制备得到。
本发明提供的改性MoS2纳米材料中所用的亲水MoS2纳米片优选采用本发明提供的上述亲水MoS2纳米片。
本发明还提供了上述改性MoS2纳米材料在石油开发中的应用,优选地,上述改性MoS2纳米材料可在油田开发过程中应用于驱油剂的制备,其制备的驱油剂在进行驱油时可选用现场或实验室所用的任意驱油方法。
本发明还提供了上述纳米流体在石油开发中的应用,优选地,上述纳米流体可在油田开发过程中应用于驱油剂的制备,其制备的驱油剂在进行驱油时可选用现场或实验室所用的任意驱油方法。上述纳米流体可以直接作为驱油剂使用,应用于三次采油阶段以提高效采收剩余油。
二硫化钼(MoS2)是二维过渡金属二硫族化合物(TMD)的家族成员之一,天然状态下呈疏水性,具有诸如高载流子迁移率、带隙可控性和光电导性优异的特性等,在光电领域具有广泛的应用。MoS2具有两种类型的结构,一种是2H-MoS2,其是三方晶系的,具有疏水性;另一种是1T-MoS2,其是八面体结构,具有亲水性。
与现有技术相比,本发明提供的技术方案具有以下优点:
1、本发明提供的亲水二硫化钼(MoS2)片厚度均一,有助于本发明提供的改性 MoS2纳米材料的制备。
2、本发明提供的制备改性MoS2纳米材料的方法,能有效地将亲水二硫化钼 (MoS2)纳米片使用烷基胺化合物改性为改性MoS2纳米材料,获得的改性MoS2纳米材料可在三次采油阶段中降低油水界面张力,有利于将油从岩层中分离出来。
3、本发明提供的制备亲水MoS2纳米片的方法合成的亲水MoS2纳米片厚度均一,使得在使用烷基胺化合物改性后获得的改性MoS2纳米材料厚度均一,能高效的在三次采油阶段进行残余油的采收。
4、本发明提供的改性MoS2纳米材料在低渗透率岩心(例如8.5-8.7mD)和高粘度油(例如50cP)下同样具有较高的石油开采率。
5、本发明提供的改性MoS2纳米材料能以较低的浓度(50-1000ppm,即 0.005-0.1wt.%)使用在三次采油阶段中,能获得13.8%-20.5%的石油采收率,相比于昂贵的表面活性剂极大的降低了开采成本(例如使1吨表面活性剂成本约3000美元,而1吨改性MoS2纳米材料成本约150美元),同时与表面活性剂和聚合物不同,改性MoS2纳米材料本身对水无害,减少了开采过程的环境污染。
附图说明
图1为岩心驱替实验的设置图。
图2为采油的视觉模型图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供一种亲水MoS2纳米片,具体制备方法如下:
1)将钼酸铵,硫氰酸钾以及硼氢化钾加入水中获得反应混合物,其中,每100mL 水中,钼酸铵的量为70mmol,硫氰酸钾的量为140mmol,硼氢化钾的量为1mol;
2)将反应混合物放入水热反应釜中,采用油浴方式对水热反应釜进行加热,在压力3bar、温度200℃下,以450rpm的转速搅拌上述反应混合物1-3小时;
3)然后将上述反应混合物在3bar压力,180℃下继续反应12小时,将获得的沉淀冷却到室温后,用水和乙醇洗涤,然后80℃下干燥,获得亲水MoS2纳米片。
本实施例进一步提供一种改性MoS2纳米材料,具体制备方法如下:
4)将步骤3)获得的上述亲水MoS2纳米片加入十二烷胺的无水乙醇溶液中,25℃下以60rpm的转速搅拌15小时获得沉淀;其中,每100mL无水乙醇中,亲水MoS2纳米片的量为3g,十二烷胺的量为0.5g;
5)将步骤4)获得的沉淀用水和乙醇洗涤,然后在80℃下干燥6小时左右,即获得改性MoS2纳米材料。
采用本领域常规的方法对本实施例提供的亲水性MoS2纳米片和改性MoS2纳米材料进行鉴定。
实施例2
纳米流体a的制备:将获得的改性MoS2纳米材料与稳定剂聚乙烯吡咯烷酮在去离子水中混合获得;其中,每100mL去离子水中,改性MoS2纳米材料的质量为500ppm (即0.05wt.%),稳定剂的质量为1000ppm,纳米流体命名为a。
纳米流体b的制备:制备纳米流体b的步骤与制备纳米流体a的步骤相同,不同之处在于,改性MoS2纳米材料的质量为1000ppm(即0.1wt.%),稳定剂的质量为 100ppm,稳定剂为聚苯乙烯磺酸钠。
纳米流体c的制备:制备纳米流体c的步骤与制备纳米流体a的步骤相同,不同之处在于,改性MoS2纳米材料的质量为50ppm(即0.005wt.%),稳定剂的质量为 50ppm,稳定剂为烷基聚氧乙烯醚。
纳米流体c-1的制备:制备纳米流体c-1的步骤与制备纳米流体c的步骤相同,不同之处在于,改性MoS2纳米材料的质量为750ppm(即0.075wt.%)。
纳米流体c-2的制备:制备纳米流体c-2的步骤与制备纳米流体c的步骤相同,不同之处在于,改性MoS2纳米材料的质量为1000ppm(即0.1wt.%)。
纳米流体d的制备:制备纳米流体d的步骤与制备纳米流体a的步骤相同,不同之处在于,使用盐的水溶液代替去离子水,盐的水溶液的浓度为10000mg/L。
纳米流体e的制备:制备纳米流体e的步骤与制备纳米流体b的步骤相同,不同之处在于,使用盐的水溶液代替去离子水,盐的水溶液的浓度为10000mg/L。
纳米流体f的制备:制备纳米流体f的步骤与制备纳米流体c的步骤相同,不同之处在于,使用盐的水溶液代替去离子水,盐的水溶液的浓度为10000mg/L。
纳米流体f-1的制备:制备纳米流体f-1的步骤与制备纳米流体f的步骤相同,不同之处在于,改性MoS2纳米材料的质量为750ppm(即0.075wt.%)。
纳米流体f-2的制备:制备纳米流体f-2的步骤与制备纳米流体f的步骤相同,不同之处在于,改性MoS2纳米材料的质量为1000ppm(即0.1wt.%)。
对比例1
本对比例提供纳米流体g、h,具体如下:
纳米流体g的制备:制备纳米流体g的步骤与制备纳米流体d的步骤相同,不同之处在于,制备过程不使用稳定剂。
纳米流体h的制备:制备纳米流体h的步骤与制备纳米流体f的步骤相同,不同之处在于,制备过程不使用稳定剂。
纳米流体的界面张力和稳定性测定
使用张力计在30℃下测试油和实施例2、对比例1中提供的纳米流体之间的界面张力。通过使用Formulaction公司Turbiscan Lab Expert稳定性分析测试仪,通过脉冲近红外光(λ=880nm)的透射和反向散射来测量本发明的纳米流体的稳定性。稳定性动力学指数(TSI)用于评估纳米流体的稳定性。TSI值越高表明流体越不稳定。
改性MoS2纳米材料提高采收率性能测试
利用本发明合成的纳米流体c-1、纳米流体c-2和纳米流体f-1、纳米流体f-2进行了岩心驱替实验,以验证改性MoS2纳米材料在三次采油阶段的采油率。
岩心驱替实验是使用人造砂岩岩心进行的,并在驱替设备(图1所示)中进行了测试。岩心样品的物理性质示于表2中。在驱油之前,将岩心全部清洗并在水中饱和 24小时。然后将粘度为50cP(高粘度油)的油泵入岩心中,使得不再有水流出(即岩心100%被油饱和)。在油饱和度之后,以0.5mL/min的速率注入水直至不再采收油(二次驱油)。最后,将纳米流体以0.5mL/min的速率泵入岩心,直到不在采收油 (三次驱油)。
表2岩心样本的物理性质
表3岩心驱替实验结果
表3数据表明,对于高粘度油(例如50cP),本发明提供的改性MoS2纳米材料制备的纳米流体(其中改性MoS2纳米材料的使用浓度分别为0.075wt.%、0.1wt.%) 无论在低渗透率岩心(例如8.5-8.7mD)和高渗透率岩心下(例如149-157.2mD)均在三次驱油中具有较高的石油采收率12.94%-21.64%,且随着纳米流体浓度的增加,三次驱油采收率也在逐步增加;而现有技术由SiO2纳米颗粒制备的纳米流体(由SiO2纳米颗粒溶于水制成,SiO2纳米颗粒终浓度为0.01wt.%,SiO2纳米颗粒购自sigma aldrich)石油采收率仅为1.6-4.45%。
进一步的,由现有技术的SiO2纳米颗粒制备的纳米流体在高渗透率岩心(例如154mD)中获得较高的石油采收率,而本发明提供的改性MoS2纳米材料在低渗透率岩心(例如8.5-8.65mD)中具有出乎意料的更高的石油采收率。
本发明还提供了使用实施例2提供的纳米流体c进行采油的视觉模型,如图2所示,由该模型同样可以看出,本发明纳米流体对低渗透性区域中油具有非常明显的回收效果,该模型是通过激光光刻技术设计的,模型的几何形状由低渗透砂岩岩心L3 (例如8.5mD)的SEM横截面设计而来,图2中三幅图从左到右分别为水驱油之前原油分布情况,水驱油后原油分布情况,纳米流体驱油后原油分布情况。水驱油之前原油几乎分布在所有缝隙中(黑色表示原油),水驱油后黑色区域减少代表部分原油被驱出,纳米流体驱油后仅有少数位置为黑色表明在纳米流体驱油过程中大量原油被驱出。本发明纳米流体驱油后的模型图像,清楚地显示了本发明纳米流体驱油后在低渗透性区域中残余的油被高效的回收。
同样,使用由本发明的改性MoS2纳米材料获得的纳米流体a、纳米流体b、纳米流体d、纳米流体e来驱替低粘度原油,与驱替高粘度原油一样,也具有显著提高的采收率。
实施例3
本实施例提供一种改性MoS2纳米材料,具体制备方法如下:
1)将实施例1提供的亲水MoS2纳米片加入丁胺的无水乙醇溶液中,25℃下以60rpm的转速搅拌15小时获得沉淀;其中,每100mL无水乙醇中,亲水MoS2纳米片的量为5g,丁胺的量为1g;
2)将步骤1)获得的沉淀用水和乙醇洗涤,然后在80℃下干燥6小时左右,即获得改性MoS2纳米材料。
表4各种岩心渗透率和油粘度下的岩心驱替实验分析总结
测试本实施例改性MoS2纳米材料提高采收率的性能,具体过程为:在如图1所示的驱替设备中进行驱替实验。在驱油之前,将岩心全部清洗并在水中饱和24小时。然后分别将粘度为25cP、100cP的油泵入岩心中,使得不再有水流出(即岩心100%被油饱和)。在油饱和度之后,以0.5mL/min的速率注入水直至不再采收油(二次驱油)。最后,将由本实施例提供的纳米材料配成驱油剂以0.5mL/min的速率泵入岩心,直到不在采收油(三次驱油)。驱油剂为将本实施例提供的改性MoS2纳米材料溶解于水中混合获得,其中,每100mL水中,改性MoS2纳米材料的质量为0.005g(即 0.005wt.%)。实验结果参见表4。
Claims (27)
1.一种改性MoS2纳米材料,其中,所述改性MoS2纳米材料通过烷基胺化合物对亲水MoS2纳米片改性得到;所述烷基胺化合物包含碳原子数为4-18的烷基胺化合物中的一种或两种以上的组合;
所述烷基胺化合物对亲水MoS2纳米片改性通过包含以下步骤的方法实现:
将亲水MoS2纳米片加入烷基胺化合物的有机溶液中反应,得到的沉淀即为所述改性MoS2纳米材料;
其中,每100mL有机溶剂中,所述亲水MoS2纳米片的量为1-10g,所述烷基胺化合物的量0.1-5g;其中,有机溶剂为烷基胺化合物的有机溶液中包含的有机溶剂。
2.根据权利要求1所述的改性MoS2纳米材料,其中,所述烷基胺化合物包含丁胺、辛胺和十二烷胺中的一种或两种以上的组合。
3.根据权利要求1所述的改性MoS2纳米材料,其中,所述反应在搅拌状态下进行;所述搅拌的转速为50-200rpm。
4.根据权利要求1所述的改性MoS2纳米材料,其中,所述反应在室温下进行。
5.根据权利要求1所述的改性MoS2纳米材料,其中,所述反应的时间为6-15小时。
6.根据权利要求1所述的改性MoS2纳米材料,其中,所述烷基胺化合物的有机溶液为所述烷基胺化合物的无水乙醇或甲苯溶液。
7.根据权利要求1所述的改性MoS2纳米材料,其中,所述亲水MoS2纳米片通过包含以下步骤的制备方法制备得到:
1)将Mo源,S源以及还原剂加入水中获得反应混合物;
2)将所述反应混合物在压力1-5bar、温度150-250℃条件下反应6-15小时,获得的沉淀即为所述亲水MoS2纳米片;
所述还原剂包含硼氢化钾、盐酸羟胺、酰胺基物质中的一种或两种以上的组合。
8.根据权利要求7所述的改性MoS2纳米材料,其中,所述Mo源包含钼酸铵、五氯化钼、氧化钼中的一种或两种以上的组合。
9.根据权利要求8所述的改性MoS2纳米材料,其中,所述Mo源为氧化钼。
10.根据权利要求7所述的改性MoS2纳米材料,其中,所述S源包含磺酸钠、硫氰酸钾、硫代乙酰胺中的一种或两种以上的组合。
11.根据权利要求10所述的改性MoS2纳米材料,其中,所述S源为硫氰酸钾。
12.根据权利要求7所述的改性MoS2纳米材料,其中,所述还原剂为硼氢化钾。
13.根据权利要求7所述的改性MoS2纳米材料,其中,在步骤1)中,每100mL水中,以Mo原子计所述Mo源的量为30-80mmol,以S原子计所述S源的量为30mmol-160mmol,所述还原剂的量为0.8-1mol。
14.根据权利要求7所述的改性MoS2纳米材料,其中,步骤2)所述反应的过程中进行搅拌;所述搅拌的转速为100-500rpm。
15.权利要求1-14任一项所述的改性MoS2纳米材料的制备方法,其中,该方法包括以下步骤:
将亲水MoS2纳米片加入烷基胺化合物的有机溶液中反应,得到的沉淀即为所述改性MoS2纳米材料;其中,每100mL有机溶剂中,所述亲水MoS2纳米片的量为1-10g,所述烷基胺化合物的量0.1-5g;其中,有机溶剂为烷基胺化合物的有机溶液中包含的有机溶剂;
所述烷基胺化合物包含碳原子数为4-18的烷基胺化合物中的一种或两种以上的组合。
16.根据权利要求15所述的制备方法,其中,所述反应在搅拌状态下进行;所述搅拌的转速为50-200rpm。
17.根据权利要求15所述的制备方法,其中,所述反应在常温下进行。
18.根据权利要求15所述的制备方法,其中,所述反应的时间为6-15小时。
19.根据权利要求15所述的制备方法,其中,所述烷基胺化合物包含丁胺、辛胺、十二烷胺中的一种或两种以上的组合。
20.根据权利要求15所述的制备方法,其中,所述烷基胺化合物的有机溶液为所述烷基胺化合物的无水乙醇或甲苯溶液。
21.一种纳米流体,其中,所述纳米流体通过将权利要求1-14任一项所述的改性MoS2纳米材料与稳定剂在盐的水溶液或去离子水中混合获得;
所述稳定剂包含聚乙烯吡咯烷酮、烷基聚氧乙烯醚、聚苯乙烯磺酸钠中的一种或两种以上的组合。
22.根据权利要求21所述的纳米流体,其中,每100mL盐的水溶液或去离子水中,所述改性MoS2纳米材料的质量为50-1000ppm,所述稳定剂的质量为20-1000ppm。
23.根据权利要求21所述的纳米流体,其中,所述盐的水溶液的浓度为10000-220000mg/L。
24.权利要求1-14任一项所述的改性MoS2纳米材料在石油开发中的应用。
25.根据权利要求24所述的应用,其中,所述改性MoS2纳米材料在石油开发中应用于驱油剂的制备。
26.权利要求21-23任一项所述的纳米流体在石油开发中的应用。
27.根据权利要求26所述的应用,其中,所述纳米流体在石油开发中应用于驱油剂的制备。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910263296.9A CN109943310B (zh) | 2019-04-02 | 2019-04-02 | 一种改性MoS2纳米材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910263296.9A CN109943310B (zh) | 2019-04-02 | 2019-04-02 | 一种改性MoS2纳米材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109943310A CN109943310A (zh) | 2019-06-28 |
CN109943310B true CN109943310B (zh) | 2022-05-24 |
Family
ID=67012522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910263296.9A Active CN109943310B (zh) | 2019-04-02 | 2019-04-02 | 一种改性MoS2纳米材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109943310B (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR102020002064A2 (pt) * | 2020-01-30 | 2021-08-10 | Petróleo Brasileiro S.A. - Petrobras | Uso de nanofluido para remoção de petróleo e sais em amostras de rochas de sistemas petrolíferos |
CN111454707B (zh) * | 2020-04-02 | 2021-05-18 | 中国石油大学(北京) | 一种2d纳米片驱油剂的制备方法及其应用 |
CN111662762A (zh) * | 2020-05-21 | 2020-09-15 | 厦门虹鹭钨钼工业有限公司 | 一种添加纳米材料的润滑油的制备方法 |
CN115558479B (zh) * | 2021-07-01 | 2024-01-30 | 中国石油天然气股份有限公司 | 泡沫洗井液及其制备方法 |
CN114058353B (zh) * | 2021-12-02 | 2022-08-09 | 中国石油大学(北京) | 一种Janus改性二硫化钼纳米颗粒及其制备方法与驱油材料 |
CN114854387B (zh) * | 2022-05-24 | 2023-02-03 | 中国石油大学(北京) | 一种纳米花-纳米片双无机纳米调驱体系及其应用 |
CN114806533A (zh) * | 2022-05-31 | 2022-07-29 | 中国石油大学(华东) | 一种两亲Janus氧化石墨烯驱油纳米流体的制备方法 |
CN115029123B (zh) * | 2022-07-04 | 2023-03-21 | 中国石油大学(北京) | 一种粘弹性-活性纳米降粘剂及其制备方法和应用 |
CN115192606B (zh) * | 2022-09-01 | 2023-07-14 | 天津师范大学 | 单原子纳米酶Pt@MoS2及其制备方法和应用 |
CN117343719B (zh) * | 2023-09-11 | 2024-07-19 | 长江大学 | 高温高盐气藏控水压裂用两亲碳点相渗调节剂及制备方法 |
CN117343713B (zh) * | 2023-12-06 | 2024-03-22 | 成都理工大学 | 一种广谱高活性的改性剂、纳米片驱油剂及其制备方法 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0291186A (ja) * | 1988-09-29 | 1990-03-30 | Aisin Chem Co Ltd | 摩擦材 |
CN101468793A (zh) * | 2007-12-26 | 2009-07-01 | 三星电机株式会社 | 制备层状结构纳米颗粒的方法 |
CN103275355A (zh) * | 2013-05-20 | 2013-09-04 | 中国科学技术大学 | 一种有机改性二硫化钼纳米片层及其制备方法 |
CN104293328A (zh) * | 2014-09-07 | 2015-01-21 | 无棣华信石油技术服务有限公司 | 一种抗高温微泡沫钻井液 |
CN104559326A (zh) * | 2015-01-20 | 2015-04-29 | 安徽大学 | 一种聚乳酸改性二硫化钼纳米片层的制备方法 |
CN105060347A (zh) * | 2015-07-20 | 2015-11-18 | 清华大学 | 一种合成超薄二硫化钼纳米晶的方法 |
JP2015218331A (ja) * | 2014-05-21 | 2015-12-07 | 昭和シェル石油株式会社 | 内燃機関用潤滑油組成物 |
CN105646944A (zh) * | 2016-04-11 | 2016-06-08 | 中国科学技术大学 | 一种有机改性二硫化钼纳米片的制备方法 |
WO2017015120A1 (en) * | 2015-07-17 | 2017-01-26 | University Of Houston System | Surfactant for enhanced oil recovery |
CN106673063A (zh) * | 2016-10-11 | 2017-05-17 | 南京工业大学 | 制备组分及相态可调的过渡金属二硫化钼钨纳米片的方法 |
CN106745263A (zh) * | 2016-11-25 | 2017-05-31 | 中南大学 | 一种1t相二硫化钼的制备方法 |
KR20170088109A (ko) * | 2016-01-22 | 2017-08-01 | 이승준 | 친환경 금속 가공유제 |
CN107029251A (zh) * | 2015-07-15 | 2017-08-11 | 河北工程大学 | 一种单层二硫化钼-铁酸锌纳米复合材料及其制备方法和应用 |
CN107216689A (zh) * | 2017-06-23 | 2017-09-29 | 西北工业大学 | 一种多巴胺表面改性二维纳米材料及制备方法 |
CN107235511A (zh) * | 2017-06-05 | 2017-10-10 | 江苏大学 | 一种MoS2/WS2纳米层状复合材料的制备方法 |
CN107365259A (zh) * | 2016-05-11 | 2017-11-21 | 中国科学院宁波材料技术与工程研究所 | 二硫化钼分散剂、二硫化钼分散体、其制备方法及应用 |
CN107557110A (zh) * | 2017-09-30 | 2018-01-09 | 陕西科技大学 | 一种二硫化钼纳米片负载纳米铜颗粒润滑材料的制备方法 |
CN108067257A (zh) * | 2016-11-16 | 2018-05-25 | 中国科学院大连化学物理研究所 | 一种高活性位暴露的纳米二硫化钼加氢催化剂的制备方法 |
CN108097059A (zh) * | 2018-01-15 | 2018-06-01 | 哈尔滨工业大学 | 一种利用二硫化钼建立水通道增强聚酰胺反渗透膜水通量的改性方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11214728B2 (en) * | 2018-12-06 | 2022-01-04 | China University of Petroleum—Beijing | Modified MoS2 nano material, and preparation method and use thereof |
-
2019
- 2019-04-02 CN CN201910263296.9A patent/CN109943310B/zh active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0291186A (ja) * | 1988-09-29 | 1990-03-30 | Aisin Chem Co Ltd | 摩擦材 |
CN101468793A (zh) * | 2007-12-26 | 2009-07-01 | 三星电机株式会社 | 制备层状结构纳米颗粒的方法 |
CN103275355A (zh) * | 2013-05-20 | 2013-09-04 | 中国科学技术大学 | 一种有机改性二硫化钼纳米片层及其制备方法 |
JP2015218331A (ja) * | 2014-05-21 | 2015-12-07 | 昭和シェル石油株式会社 | 内燃機関用潤滑油組成物 |
CN104293328A (zh) * | 2014-09-07 | 2015-01-21 | 无棣华信石油技术服务有限公司 | 一种抗高温微泡沫钻井液 |
CN104559326A (zh) * | 2015-01-20 | 2015-04-29 | 安徽大学 | 一种聚乳酸改性二硫化钼纳米片层的制备方法 |
CN107029251A (zh) * | 2015-07-15 | 2017-08-11 | 河北工程大学 | 一种单层二硫化钼-铁酸锌纳米复合材料及其制备方法和应用 |
WO2017015120A1 (en) * | 2015-07-17 | 2017-01-26 | University Of Houston System | Surfactant for enhanced oil recovery |
CN105060347A (zh) * | 2015-07-20 | 2015-11-18 | 清华大学 | 一种合成超薄二硫化钼纳米晶的方法 |
KR20170088109A (ko) * | 2016-01-22 | 2017-08-01 | 이승준 | 친환경 금속 가공유제 |
CN105646944A (zh) * | 2016-04-11 | 2016-06-08 | 中国科学技术大学 | 一种有机改性二硫化钼纳米片的制备方法 |
CN107365259A (zh) * | 2016-05-11 | 2017-11-21 | 中国科学院宁波材料技术与工程研究所 | 二硫化钼分散剂、二硫化钼分散体、其制备方法及应用 |
CN106673063A (zh) * | 2016-10-11 | 2017-05-17 | 南京工业大学 | 制备组分及相态可调的过渡金属二硫化钼钨纳米片的方法 |
CN108067257A (zh) * | 2016-11-16 | 2018-05-25 | 中国科学院大连化学物理研究所 | 一种高活性位暴露的纳米二硫化钼加氢催化剂的制备方法 |
CN106745263A (zh) * | 2016-11-25 | 2017-05-31 | 中南大学 | 一种1t相二硫化钼的制备方法 |
CN107235511A (zh) * | 2017-06-05 | 2017-10-10 | 江苏大学 | 一种MoS2/WS2纳米层状复合材料的制备方法 |
CN107216689A (zh) * | 2017-06-23 | 2017-09-29 | 西北工业大学 | 一种多巴胺表面改性二维纳米材料及制备方法 |
CN107557110A (zh) * | 2017-09-30 | 2018-01-09 | 陕西科技大学 | 一种二硫化钼纳米片负载纳米铜颗粒润滑材料的制备方法 |
CN108097059A (zh) * | 2018-01-15 | 2018-06-01 | 哈尔滨工业大学 | 一种利用二硫化钼建立水通道增强聚酰胺反渗透膜水通量的改性方法 |
Non-Patent Citations (4)
Title |
---|
Effect of molybdenum disulfide nanofluid application as coolant in milling process of Al8Si3Cu aluminum alloy;Ghavidel, Ayub Karimzad; Seyedzavvar, Mirsadegh; Shabgard, Moham;《INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES》;20181031;第25卷(第5期);第397-405页 * |
Raj, Infant ; Qu, Ming ; Xiao, Lizhi ; 等..Ultralow concentration of molybdenum disulfide nanosheets for enhanced oil recovery.《FUEL 》.2019,第251卷第514-522页. * |
纳米MoS2在润滑脂中的分散稳定性研究;王佳; 刘欣阳; 陈学军;《石油炼制与化工》;20171012(第10期);第75-78页 * |
纳米尺寸二硫化钼的制备与应用研究进展;崔向红; 陈怀银; 杨涛;《化学学报》;20160515(第5期);第392-400页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109943310A (zh) | 2019-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109943310B (zh) | 一种改性MoS2纳米材料及其制备方法 | |
US11214728B2 (en) | Modified MoS2 nano material, and preparation method and use thereof | |
Ali et al. | Recent advances in application of nanotechnology in chemical enhanced oil recovery: Effects of nanoparticles on wettability alteration, interfacial tension reduction, and flooding | |
RU2363718C2 (ru) | Композиция и способ повышенной добычи нефти | |
CA2714406C (en) | Method and composition for enhanced hydrocarbons recovery | |
US4120358A (en) | Surfactant oil recovery method for use in high temperature formations containing water having high salinity and hardness | |
EP2173832B1 (en) | Method for recovering crude oil from a subterranean formation | |
US10538693B2 (en) | Stabilization of petroleum surfactants for enhancing oil recovery | |
US3406754A (en) | Petroleum production utilizing miscibletype and thickened slugs | |
CN111334276B (zh) | 一种适用于高温低盐油藏的驱油剂及驱油方法 | |
US4036300A (en) | Micellar flooding process | |
Ahmadi et al. | Introduction to chemical enhanced oil recovery | |
US4690217A (en) | Process for water injectivity improvement treatment of water injection wells | |
CA2890374A1 (en) | Process for treating subterranean oil-bearing formations comprising carbonate rocks | |
WO2014137974A1 (en) | Internal olefin sulfonate composition | |
WO2015161812A1 (en) | Compounds, compositions thereof and methods for hydrocarbon extraction using the same | |
US3493051A (en) | Increasing the efficiency of crude oil recovery using micellar dispersions | |
US4493371A (en) | Recovering oil by injecting aqueous alkali, cosurfactant and gas | |
CN112266776B (zh) | 一种驱油用表面活性剂及其制备方法 | |
CN113604209A (zh) | 一种在线生产的纳米复合型粘弹驱油剂 | |
BR112020000589A2 (pt) | métodos para a produção de petróleo bruto e para fabricação de uma composição tensoativa, composição tensoativa aquosa, e, uso de um intensificador de solubilidade. | |
US3698479A (en) | Solubilized oil-water solutions suitable for miscible flooding | |
CN117208964A (zh) | 一种官能化二硫化钼纳米片及其制备方法和应用 | |
Nasr-EI-Din et al. | The role of surfactants in enhanced oil recovery | |
US11359134B2 (en) | Treatment fluids and methods for recovering hydrocarbons from a subterranean formation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |