CN109935801A - 锂二次电池用阳极活性物质 - Google Patents
锂二次电池用阳极活性物质 Download PDFInfo
- Publication number
- CN109935801A CN109935801A CN201811397643.9A CN201811397643A CN109935801A CN 109935801 A CN109935801 A CN 109935801A CN 201811397643 A CN201811397643 A CN 201811397643A CN 109935801 A CN109935801 A CN 109935801A
- Authority
- CN
- China
- Prior art keywords
- active material
- anode active
- lithium batteries
- shell portion
- secondary lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
- H01M4/1315—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
- C01P2004/86—Thin layer coatings, i.e. the coating thickness being less than 0.1 time the particle radius
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
- C01P2004/88—Thick layer coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明涉及锂二次电池用阳极活性物质,尤其涉及包括芯部,及围绕上述芯部的壳部,在上述芯部及壳部的钴总含量为5~12摩尔%,在芯部及壳部的钴含量调节成一定范围内的锂二次电池用阳极活性物质。本发明的阳极活性物质前体,及利用该前体制造的锂二次电池用阳极活性物质,通过将粒子中的钴含量调节成一定范围,不仅增加锂二次电池的最佳容量,而且改善稳定性,从而可提高寿命特性。
Description
技术领域
本发明涉及锂二次电池用阳极活性物质,尤其涉及包括芯部,及围绕上述芯部的壳部,将上述芯部及壳部的钴含量调节成一定范围之内,将芯部及壳部的钴总含量可调节成5~12摩尔%的锂二次电池用阳极活性物质。
背景技术
随着智能手机、MP3播放器、平板电脑等便携式移动电子设备的发展,对可存储电能的二次电池的需求爆发式增长。尤其是,随着电动汽车、中大型能量储存系统及需要高能量密度的便携式设备的出现,对锂二次电池的需求逐渐增加。
锂二次电池用阳极活性物质主要使用层状结构的LiCoO2。LiCoO2因其寿命特性及充放电效率好而广泛被使用,但因其结构稳定性差,在应用于电池的高能量化技术方面存在限制。
作为可替代的阳极活性物质,开发出LiNiO2、LiMnO2、LiMn2O4、LiFePO4、Li(NixCoyMnz)O2等各种锂复合金属氧化物。其中,在LiNiO2的情况下,虽然具有表现出高放电容量的电池特性的优点,但难以通过简单的固态反应进行合成,存在热稳定性及循环特性低的问题。另外,LiMnO2或LiMn2O4等锂锰类氧化物虽然具有热稳定性好,价格低廉的优点,但存在容量小,高温特性差等问题。尤其是,在LiMn2O4的情况下,虽然在部分低价产品中实现商品化,但因由Mn3+导致的结构变形(Jahn-Teller distortion),寿命特性差。另外,LiFePO4因低廉的价格和优秀的稳定性,在混合动力汽车(hybrid electric vehicle,HEV)用途方面的研究进行得比较多,但因低的导电率,难以应用于其他领域。
因此,作为LiCoO2的替代阳极活性物质近来比较受关注的是锂镍锰钴氧化物Li(NixCoyMnz)O2(此时,上述x、y、z为各独立氧化物组合元素的原子分率,0<x≤1,0<y≤1,0<z≤1,0<x+y+z≤1)。该材料较之LiCoO2低廉,具有可在高容量及高电压使用的优点,但具有在倍率性能(rate capability)及高温的寿命特性差的缺点。
为解决上述问题,研究开发出由镍含量高的芯(core)部和镍含量低的壳(shell)部构成的,金属组合表现出浓度梯度的锂镍锰钴氧化物。上述方法是首先合成一定组合的内部物质之后,在外部涂布其他组合的物质制造成双层,接着与锂盐混合进行热处理的方法。上述内部物质可使用市售的锂过渡金属氧化物。
但是,在通过上述方法生成的内部物质和外部物质组合之间,阳极活性物质的金属组合不连续变化,而非连续渐进变化,从而存在内部结构不稳定的问题。另外,通过本发明的合成的粉末,因不使用作为螯合剂的氨,振实密度低,从而不适合用作锂二次电池用阳极活性物质。
发明内容
所要解决的课题
本发明的目的在于增加作为现有技术中存在的问题的具有芯壳结构的阳极活性物质的稳定性及效率,提供在芯部及壳部的钴总含量调节成一定浓度的阳极活性物质前体及利用该前体制造的阳极活性物质。
课题解决方案
根据本发明的一个方面,本发明提供一种包括芯部,及围绕上述芯部的壳部,在上述芯部及壳部的钴总含量维持在5~12摩尔%的一定范围内的锂二次电池用阳极活性物质。
在现有技术的具有芯壳结构的阳极活性物质的情况下,存在金属组合的不连续变化导致的内部结构不稳定的问题及由此降低锂二次电池的效率的问题。为解决上述问题,本发明在具有芯壳结构的锂二次电池用阳极活性物质中,确认将在芯部及壳部的钴总含量调节成一定范围,尤其是将含量调节成5~12摩尔%时,稳定性及效率好。
根据本发明的另一方面,本发明提供一种在上述芯部及壳部的钴总含量调节成一定范围(5~12摩尔%)的,以如下化学式1表示的锂二次电池用阳极活性物质。
[化学式1]LiaNixCoyMnzM1-x-y-zO2
(在上述化学式1中,0.9≤a≤1.3,0.7≤x<1.0,0.05≤y≤0.12,0.0≤z≤0.3,0.0≤1-x-y-z≤0.3;
M为选自B、Ba、Ce、Cr、F、Mg、Al、Cr、V、Ti、Fe、Zr、Zn、Si、Y、Nb、Ga、Sn、Mo、W、P、Sr、Ge、Cu的一种以上的元素)
在本发明的锂二次电池用阳极活性物质中,若假设上述阳极活性物质的全部粒子中的钴的含量为W,则在壳部的钴的含量为0.2W~1.0W。
根据本发明的一个方面,若假设本发明的上述阳极活性物质全部粒子直径为D,则D为1~25μm,壳部的厚度为0.01D~0.3D。即在本发明中,在将全部粒子中的Co含量及在壳的Co含量调节成一定范围的同时,随之改变壳部的厚度。
根据本发明的另一方面,本发明提供包含上述本发明的阳极活性物质的锂二次电池。
上述锂二次电池包括包含上述构成的阳极活性物质的阳极、包含阴极活性物质的阴极及介于阳极和阴极之间的隔膜。另外,包括浸存在阳极、阴极、隔膜之间的电解质。上述阴极活性物质为可吸收/释放锂离子的物质为宜,例如可使用包含人造石墨、天然石墨、石墨化碳纤维、非晶碳等的物质,而金属锂也可作为阴极活性物质。上述电解质可以是包含锂盐和非水性有机溶剂的液态的电解质,也可以是聚合物凝胶电解质。
发明效果
如上所述,本发明的阳极活性物质前体,及利用该前体制造的锂二次电池用阳极活性物质,通过将粒子中的钴含量调节成一定范围,不仅增加锂二次电池的最佳容量,而且改善稳定性,从而可提高寿命特性。
附图说明
图1及图2为测量在本发明的一实施例制造的阳极活性物质的大小及内部金属浓度的结果示意图;
图3至图6表示测量包含本发明一实施例及比较例的阳极活性物质的电池的特性的结果示意图。
具体实施方式
下面,通过实施例对本发明进行详细说明。下述实施例只是示例性地表示本发明,本发明的范围不受这些实施例的限制。
实施例:制造前体
为制造阳极活性物质,准备硫酸镍、硫酸钴及硫酸锰,首先通过共沉淀反应制造由芯部及壳部构成的前体1至3。此时,芯部及壳部全部的钴组合各为5摩尔%、9摩尔%及12摩尔%(实施例1至3)。
作为锂化合物添加LiOH,在存在N2、O2/(1~100LPM)的条件下,以1℃/min~20℃/min的升温速度进行4~20小时(以维持区间为准)一次热处理之后,混合包含Al的化合物0~10mol%进行二次热处理,制造锂二次电池用阳极活性物质。
之后,准备蒸馏水,将温度固定在5~40℃之后,将上述制得的锂二次电池用阳极活性物质投入蒸馏水中,并在维持温度的同时进行水洗0.1~10小时。
经过水洗的活性物质通过压滤机(filter press)过滤之后,以50-300℃,在氧气氛围下干燥3-24小时。
比较例:制造前体
除将芯部及壳部全部的钴含量调节为3摩尔%之外,以与上述实施例相同的方法制造阳极活性物质。
实验例:测量粒子大小
测量实施例1的粒子的大小并将其结果表示于图1。如图1所示,通过本发明的实施例制造的粒子的大小为10~25μm。
实验例:测量壳部的厚度
对在实施例1制造的粒子,根据从表面到粒子内部的金属浓度测量壳厚度并将其结果表示于图2。
如图2所示,通过本发明的实施例制造的粒子的壳的厚度为1.6um。
制造例:制造半电池
以在上述实施例1~3及比较例制造的阳极活性物质94重量%、导电材料(super-P)3重量%、Binder(PVDF)3重量%的比率各混合4.7g:0.15g:0.15g,用搅拌器以1900rpm/10min进行混合之后,利用微型制膜器涂布于铝箔上,接着135℃的烘干箱中干燥4小时,制造阳极板。
另外,使用锂金属箔作为阴极板,使用W-Scope-20um聚丙烯作为隔膜,使用具有EC/EMC=7/3的组合的1.15M的LiPF作为电解液,制造纽扣电池(coin cell)。
实验例:测量充放电特性
测量实施例1~3的粒子及比较例的粒子的充放电特性并将其结构表示于图3及表1。
如图3及表1所示,可确认在芯部及壳部全部的Co摩尔分率为9%时,充放电特性较之比较例得到大幅改善。
[表1]
实验例2:测量输出特性
测量实施例1~3的粒子及比较例的粒子的输出特性并将其结构表示于图4及表1。
如图4及表1所示,可确认在全部芯部及壳部中的Co摩尔分率为9%时,输出特性较之比较例得到大幅改善。
另外,可从图4及表1可确认在包含本发明的阳极活性物质的二次电池的情况下,高效率特性尤其特到了改善。
实验例3:测量电化学阻抗(EIS,Electrochemical Impedance Spectroscopy)特
性
测量实施例1~3的粒子及比较例的粒子的EIS电阻特性并将其结构表示于图5及表1。
如图5及表1所示,可确认在全部芯部及壳部中的Co摩尔分率为9%时,EIS电阻特性较之比较例得到大幅改善。
实验例4:测量寿命特性
测量实施例1~3的粒子及比较例的粒子的寿命特性并将其结构表示于图6及表1。
如图6及表1所示,可确认在全部芯部及壳部中的Co摩尔分率为12%时,寿命特性较之比较例得到大幅改善。
Claims (4)
1.一种锂二次电池用阳极活性物质,其特征在于:
包括芯部,及围绕上述芯部的壳部;
在上述芯部及壳部的钴总含量为5~12摩尔%;
若假设上述阳极活性物质的全部粒子中的钴的含量为W,则在壳部的钴的含量为0.2W~1.0W。
2.根据权利要求1所述的锂二次电池用阳极活性物质,其特征在于:
以如下化学式1表示的锂二次电池用阳极活性物质:
化学式1:LiaNixCoyMnzM1-x-y-zO2,
在上述化学式1中,0.9≤a≤1.3,0.7≤x<1.0,0.05≤y≤0.12,0.0≤z≤0.3,0.0≤1-x-y-z≤0.3;
M为B、Ba、Ce、Cr、F、Mg、Al、Cr、V、Ti、Fe、Zr、Zn、Si、Y、Nb、Ga、Sn、Mo、W、P、Sr、Ge、Cu,及由此选择的一种以上的元素。
3.根据权利要求2所述的锂二次电池用阳极活性物质,其特征在于:若假设本发明的上述阳极活性物质全部粒子直径为D,则D为1~25μm,壳部的厚度为0.01D~0.3D。
4.根据权利要求2所述的锂二次电池用阳极活性物质,其特征在于:在上述芯部的钴浓度和壳部的钴的浓度不相同。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211182624.0A CN115579468A (zh) | 2017-11-22 | 2018-11-22 | 锂二次电池用阳极活性物质 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170156847 | 2017-11-22 | ||
KR10-2017-0156847 | 2017-11-22 | ||
KR1020180095750A KR102159243B1 (ko) | 2017-11-22 | 2018-08-16 | 리튬 이차 전지용 양극활물질 |
KR10-2018-0095750 | 2018-08-16 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211182624.0A Division CN115579468A (zh) | 2017-11-22 | 2018-11-22 | 锂二次电池用阳极活性物质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109935801A true CN109935801A (zh) | 2019-06-25 |
CN109935801B CN109935801B (zh) | 2022-10-28 |
Family
ID=66675655
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811397643.9A Active CN109935801B (zh) | 2017-11-22 | 2018-11-22 | 锂二次电池用阳极活性物质 |
CN202211182624.0A Pending CN115579468A (zh) | 2017-11-22 | 2018-11-22 | 锂二次电池用阳极活性物质 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211182624.0A Pending CN115579468A (zh) | 2017-11-22 | 2018-11-22 | 锂二次电池用阳极活性物质 |
Country Status (4)
Country | Link |
---|---|
US (2) | US11258055B2 (zh) |
JP (3) | JP2019096612A (zh) |
KR (1) | KR102159243B1 (zh) |
CN (2) | CN109935801B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6855752B2 (ja) * | 2016-10-31 | 2021-04-07 | 住友金属鉱山株式会社 | ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
KR102159243B1 (ko) * | 2017-11-22 | 2020-09-23 | 주식회사 에코프로비엠 | 리튬 이차 전지용 양극활물질 |
KR20210111950A (ko) * | 2020-03-03 | 2021-09-14 | 삼성에스디아이 주식회사 | 전고체 이차전지용 양극 및 이를 포함하는 전고체이차전지 |
KR20210111951A (ko) | 2020-03-03 | 2021-09-14 | 삼성에스디아이 주식회사 | 전고체이차전지용 양극 및 이를 포함하는 전고체이차전지 |
KR102339704B1 (ko) * | 2020-06-18 | 2021-12-15 | 주식회사 에코프로비엠 | 양극 활물질 및 이를 포함하는 리튬 이차전지 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1992420A (zh) * | 2005-12-30 | 2007-07-04 | 三星Sdi株式会社 | 可再充电锂电池 |
CN103151520A (zh) * | 2013-03-20 | 2013-06-12 | 东莞市力嘉电池有限公司 | 一种锂离子电池正极材料及其制备方法 |
JP2015069958A (ja) * | 2013-10-01 | 2015-04-13 | 日立マクセル株式会社 | 非水二次電池用正極材料及びその製造方法、並びに該非水二次電池用正極材料を用いた非水二次電池用正極合剤層、非水二次電池用正極及び非水二次電池 |
CN105453311A (zh) * | 2014-08-07 | 2016-03-30 | 艾可普罗有限公司 | 锂二次电池用正极活性材料及包含其的锂二次电池 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4161382B2 (ja) * | 1997-02-25 | 2008-10-08 | 堺化学工業株式会社 | 2層構造粒子状組成物の製造方法 |
JPH1167209A (ja) * | 1997-08-27 | 1999-03-09 | Sanyo Electric Co Ltd | リチウム二次電池 |
US10930922B2 (en) * | 2011-01-05 | 2021-02-23 | Industry-University Cooperation Foundation Hanyang University | Positive electrode active material and secondary battery comprising the same |
KR101292757B1 (ko) * | 2011-01-05 | 2013-08-02 | 한양대학교 산학협력단 | 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
KR20130138073A (ko) * | 2012-06-08 | 2013-12-18 | 한양대학교 산학협력단 | 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지 |
US10224541B2 (en) | 2012-06-08 | 2019-03-05 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Positive electrode active material precursor for lithium secondary battery, positive electrode active material manufactured by using thereof, and lithium secondary battery including the same |
WO2014133370A1 (ko) * | 2013-02-28 | 2014-09-04 | 한양대학교 산학협력단 | 리튬이차전지용 양극활물질 |
US10217991B2 (en) * | 2014-06-02 | 2019-02-26 | Sk Innovation Co., Ltd. | Lithium secondary battery |
WO2016038983A1 (ja) | 2014-09-10 | 2016-03-17 | 日立金属株式会社 | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
KR101555594B1 (ko) * | 2014-10-02 | 2015-10-06 | 주식회사 에코프로 | 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지 |
KR102460961B1 (ko) * | 2015-11-06 | 2022-10-31 | 삼성에스디아이 주식회사 | 리튬이차전지용 양극 활물질, 그 제조방법 및 이를 포함한 양극을 구비한 리튬이차전지 |
US20180183046A1 (en) * | 2016-12-28 | 2018-06-28 | Lg Chem, Ltd. | Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same |
KR102159243B1 (ko) * | 2017-11-22 | 2020-09-23 | 주식회사 에코프로비엠 | 리튬 이차 전지용 양극활물질 |
-
2018
- 2018-08-16 KR KR1020180095750A patent/KR102159243B1/ko active IP Right Grant
- 2018-11-21 JP JP2018217946A patent/JP2019096612A/ja not_active Withdrawn
- 2018-11-21 US US16/198,457 patent/US11258055B2/en active Active
- 2018-11-22 CN CN201811397643.9A patent/CN109935801B/zh active Active
- 2018-11-22 CN CN202211182624.0A patent/CN115579468A/zh active Pending
-
2020
- 2020-12-04 JP JP2020201942A patent/JP7414702B2/ja active Active
-
2022
- 2022-01-11 US US17/647,705 patent/US11677065B2/en active Active
-
2023
- 2023-12-28 JP JP2023223236A patent/JP2024026613A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1992420A (zh) * | 2005-12-30 | 2007-07-04 | 三星Sdi株式会社 | 可再充电锂电池 |
CN103151520A (zh) * | 2013-03-20 | 2013-06-12 | 东莞市力嘉电池有限公司 | 一种锂离子电池正极材料及其制备方法 |
JP2015069958A (ja) * | 2013-10-01 | 2015-04-13 | 日立マクセル株式会社 | 非水二次電池用正極材料及びその製造方法、並びに該非水二次電池用正極材料を用いた非水二次電池用正極合剤層、非水二次電池用正極及び非水二次電池 |
CN105453311A (zh) * | 2014-08-07 | 2016-03-30 | 艾可普罗有限公司 | 锂二次电池用正极活性材料及包含其的锂二次电池 |
Also Published As
Publication number | Publication date |
---|---|
KR20190059198A (ko) | 2019-05-30 |
US20220140315A1 (en) | 2022-05-05 |
US11677065B2 (en) | 2023-06-13 |
JP2021048137A (ja) | 2021-03-25 |
CN115579468A (zh) | 2023-01-06 |
JP2024026613A (ja) | 2024-02-28 |
JP7414702B2 (ja) | 2024-01-16 |
CN109935801B (zh) | 2022-10-28 |
KR102159243B1 (ko) | 2020-09-23 |
JP2019096612A (ja) | 2019-06-20 |
US20190157660A1 (en) | 2019-05-23 |
US11258055B2 (en) | 2022-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021057428A1 (zh) | 二次电池及含有该二次电池的电池模块、电池包、装置 | |
Liu et al. | Improved cycling stability of Na-doped cathode materials Li1. 2Ni0. 2Mn0. 6O2 via a facile synthesis | |
Venkateswara Rao et al. | Investigations on electrochemical behavior and structural stability of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 lithium-ion cathodes via in-situ and ex-situ Raman spectroscopy | |
Song et al. | Research progress on the surface of high-nickel nickel–cobalt–manganese ternary cathode materials: a mini review | |
KR101577180B1 (ko) | 고에너지 밀도의 혼합 양극활물질 | |
Xiao et al. | Effect of MgO and TiO2 coating on the electrochemical performance of Li‐rich cathode materials for lithium‐ion batteries | |
Liu et al. | Enhanced electrochemical performance of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode with an ionic conductive LiVO3 coating layer | |
CN109935801A (zh) | 锂二次电池用阳极活性物质 | |
WO2014040410A1 (zh) | 一种富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池 | |
CN108807928B (zh) | 一种金属氧化物及锂离子电池的合成 | |
JP5516463B2 (ja) | リチウムイオン二次電池用正極活物質の製造方法 | |
Zeng et al. | Influence of europium doping on the electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode materials for lithium ion batteries | |
Banerjee et al. | Materials for electrodes of Li-ion batteries: issues related to stress development | |
Song et al. | Interfacial film Li1. 3Al0. 3Ti1. 7PO4-coated LiNi0. 6Co0. 2Mn0. 2O2 for the long cycle stability of lithium-ion batteries | |
Zhang et al. | Ce-doped LiNi 1/3 Co (1/3− x/3) Mn 1/3 Ce x/3 O 2 cathode materials for use in lithium ion batteries | |
CN106486657A (zh) | 一种表面原位包覆的富锂材料及其制备方法 | |
Ye et al. | Fabrication and performance of high energy Li-ion battery based on the spherical Li [Li0. 2Ni0. 16Co0. 1Mn0. 54] O2 cathode and Si anode | |
Cao et al. | Stable Li2TiO3 Shell–Li1. 17Mn0. 50Ni0. 16Co0. 17O2 Core Architecture Based on an In-Site Synchronous Lithiation Method as a High Rate Performance and Long Cycling Life Lithium-Ion Battery Cathode | |
Lu et al. | Effects of Various Elements Doping on LiNi0. 6Co0. 2Mn0. 2O2 Layered Materials for Lithium‐Ion Batteries | |
Dai et al. | Ultrathin 3 V Spinel Clothed Layered Lithium‐Rich Oxides as Heterostructured Cathode for High‐Energy and High‐Power Li‐ion Batteries | |
Pillai et al. | Lithium-rich Li1. 17Ni0. 17Co0. 17Mn0. 5O2 cathode material for lithium-ion cells: effect of calcination temperature on electrochemical performance | |
Chen et al. | Bifunctional effects of carbon coating on high-capacity Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 cathode for lithium-ion batteries | |
Chen et al. | Improved electrochemical performance of surface coated LiNi0. 80Co0. 15Al0. 05O2 with polypyrrole | |
Rajammal et al. | Enhanced electrochemical properties of ZnO-coated LiMnPO 4 cathode materials for lithium ion batteries | |
Shivamurthy et al. | Formation of the Secondary Phase Domain by Multi-Cation Substitution for the Superior Electrochemical Performance of Spinel Cathodes for High-Voltage Li-Ion Batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |