CN109913764A - 一种提高铁锰铝镍合金记忆性能稳定性的方法 - Google Patents

一种提高铁锰铝镍合金记忆性能稳定性的方法 Download PDF

Info

Publication number
CN109913764A
CN109913764A CN201910283076.2A CN201910283076A CN109913764A CN 109913764 A CN109913764 A CN 109913764A CN 201910283076 A CN201910283076 A CN 201910283076A CN 109913764 A CN109913764 A CN 109913764A
Authority
CN
China
Prior art keywords
ferrimanganic
alumel
improving
memory performance
performance stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910283076.2A
Other languages
English (en)
Other versions
CN109913764B (zh
Inventor
彭华备
雍立秋
王勇宁
文玉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201910283076.2A priority Critical patent/CN109913764B/zh
Publication of CN109913764A publication Critical patent/CN109913764A/zh
Application granted granted Critical
Publication of CN109913764B publication Critical patent/CN109913764B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种提高铁锰铝镍合金记忆性能稳定性的方法,属形状记忆合金领域。本发明所述铁锰铝镍合金的各元素的原子百分比含量为:Mn 25‑42%,Al 12‑18%,Ni 4‑10%,余为Fe和不可避免的杂质,所述方法的具体步骤如下:(1)将所述铁锰铝镍合金先在1150℃至1300℃处理10分钟至10小时,随后淬火在液态淬火介质中;(2)将步骤(1)处理后的合金在室温下拉压循环变形不低于100次;(3)最后将步骤(2)处理后的合金在50℃至200℃处理1小时至24小时。经本发明处理后,铁锰铝镍合金的形状记忆性能稳定。

Description

一种提高铁锰铝镍合金记忆性能稳定性的方法
技术领域
本发明涉及形状记忆合金领域,具体涉及一种提高铁锰铝镍合金形状记忆性能稳定性的方法。经过该方法处理后,铁锰铝镍合金不存在纳米β相室温时效析出现象,进而获得了稳定的形状记忆性能。
背景技术
2011年,日本东北大学Ishida等首次报道了通过时效析出与α母相共格的纳米β相(B2结构)将α ⇌ γ′马氏体相变从非热弹性诱发为热弹性,进而在多晶Fe-34Mn-15Al-7.5Ni(数字代表原子百分比,下同)合金中获得了大于5%的超弹性(Science, 2011, 333:68–71)。同年,他们的专利就公开了拥有形状记忆效应和超弹性的铁锰铝镍基形状记忆合金(专利号:US8815027B2),该类合金的各元素的原子百分比含量为:Mn 25-42%,Al 12-18%,Ni 5-12%,余为Fe和不可避免的杂质;Mn 25-42%,Al 12-18%,Ni 5-12%,Si 0.1-5%,Ti0.1-5%,V 0.1-5%,Cr 0.1-5%,Co 0.1-5%,Cu 0.1-5%,Mo 0.1-5%,W 0.1-5%,B 0.001-1%,C0.001-1%,其中Si、Ti、V、Cr、Co、Cu、Mo、W、B和C元素的原子百分比含量之和小于等于15%,余为Fe和不可避免的杂质。铁锰铝镍基形状记忆合金可在﹣263℃至240℃的超宽温度范围内呈现超弹性,是目前所有记忆合金体系中马氏体转变临界应力对温度依赖最小的合金,仅为0.30~0.74MPa/℃。所以,铁锰铝镍基形状记忆合金展现出在多个领域应用的潜力。
目前,研究表明铁锰铝镍形状记忆合金存在纳米β相室温时效析出的现象。Ozcan等发现固溶态Fe-34Mn-15Al-7.5Ni合金室温放置30天后,纳米β相不仅数量增加而且平均尺寸从5.6 nm增加至7.1 nm,再在室温放置30天后纳米β相的分布仍在变化;同时,甚至通过200℃×3h预先时效的方法也不能避免纳米β相室温时效析出(Scripta Mater., 2018,142: 153–157)。值得指出的是,铁锰铝镍形状记忆合金的马氏体相变和记忆性能主要由纳米β相的析出特征所决定。而纳米β相的室温时效析出会导致铁锰铝镍形状记忆合金的记忆性能随着室温放置时间的延长而变化,甚至出现记忆性能消失的极端情况。上述情况在工程实际应用中是不允许发生的。综上,目前铁锰铝镍形状记忆合金存在纳米β相室温时效析出的问题,这就导致铁锰铝镍形状记忆合金很难获得稳定的形状记忆性能。
发明内容
针对现有技术存在的问题,本发明提供一种抑制纳米β相室温时效析出进而提高铁锰铝镍合金形状记忆性能稳定性的方法。
在铁锰铝镍合金中,纳米β相与α母相共格,所以时效热处理时纳米β相以弥散的方式析出。然而,正是这种弥散析出的方式使得纳米β相的形核长大不受控制。本发明通过研究发现:首先在α母相内引入均匀分布的高密度β相形核核心;然后在后续热处理中让β相形核核心充分长大,使得α母相中β相形成元素的含量低于β相析出的临界值;同时,由于高密度β相形核核心在α母相中均匀分布,纳米β相充分长大后的尺寸仍小于形状记忆性能恶化的临界尺寸;最终,纳米β相室温时效现象被抑制,铁锰铝镍合金形状记忆性能的稳定性得到保障。
本发明适用的铁锰铝镍合金的各元素的原子百分比含量为:Mn 25-42%,Al 12-18%,Ni 4-10%,余为Fe和不可避免的杂质。方法的具体步骤如下:(1)将所述铁锰铝镍合金先在1150℃至1300℃处理10分钟至10小时,随后淬火在液态淬火介质中。该步骤的目的和效果是抑制热处理后淬火过程中纳米β相的析出和长大。(2)将步骤(1)处理后的合金在室温下拉压循环变形不低于100次。该步骤的目的和效果是通过拉压循环变形在α母相中均匀引入大量空位,从而促进室温下原子的扩散,进而形成均匀分布的高密度β相形核核心,并且保障后续热处理后纳米β相的尺寸仍小于形状记忆性能恶化的临界尺寸。(3)最后将步骤(2)处理后的合金在50℃至200℃处理1小时至24小时。该步骤的目的和效果是通过热处理让纳米β相的形核核心充分长大,使得α母相中β相形成元素的含量低于β相析出的临界值,最终抑制纳米β相室温时效析出。此外,该步骤还能消除拉压循环变形时可能引入的γ′马氏体,从而保障合金拥有优良的形状记忆性能。
步骤(1)中所述液态淬火介质为水或盐水或碱水或液态金属。上述液态淬火介质中液态金属冷却速度最快。所以,为了完全抑制纳米β相淬火过程的析出长大,液态淬火介质最好选择液态金属,并且液态金属的温度≤200℃。步骤(2)中拉压循环变形时拉伸和压缩变形量均不超过3%,最好是拉压循环变形时拉伸和压缩变形量为1%~2%。上述拉压循环变形由疲劳试验机完成。由于应力过高将导致合金中残余不能逆转变的γ′马氏体,导致形状记忆性能恶化,所以拉压循环变形时拉应力和压应力最好均不超过500MPa。
本发明有益效果是:(1)抑制了铁锰铝镍合金中纳米β相的室温时效析出;(2)提高了铁锰铝镍合金形状记忆性能的稳定性。
具体实施方式
下面结合实施例对本发明作进一步说明。值得指出的是,给出的实施例不能理解为对本发明保护范围的限制,该领域的技术熟练人员根据上述本发明的内容对本发明做出的一些非本质的改进和调整仍应属于本发明保护范围。
实施例1
本实施例选择的铁锰铝镍合金的各元素的原子百分比为:Mn 37.3%,Al 15.1%,Ni8.6%,余为Fe和不可避免的杂质。具体处理步骤如下:(1)将上述铁锰铝镍合金先在1200℃处理3小时,随后淬火在温度为50℃的液态金属中;(2)将步骤(1)处理后的合金在室温下拉压循环变形1000次,拉伸和压缩变形量均为0.5%;(3)最后将步骤(2)处理后的合金在100℃处理10小时。经上述处理的合金在室温放置180天前后应力诱发马氏体临界应力和形状记忆性能没有变化,说明不存在纳米β相室温时效析出,合金的形状记忆性能稳定。
实施例2
本实施例选择的铁锰铝镍合金的各元素的原子百分比为:Mn 36.5%,Al 14.7%,Ni7.1%,余为Fe和不可避免的杂质。具体处理步骤如下:(1)将上述铁锰铝镍合金先在1200℃处理2小时,随后淬火在温度为60℃的液态金属中;(2)将步骤(1)处理后的合金在室温下拉压循环变形800次,拉伸和压缩变形量均为1%;(3)最后将步骤(2)处理后的合金在150℃处理8小时。经上述处理的合金在室温放置180天前后应力诱发马氏体临界应力和形状记忆性能没有变化,说明不存在纳米β相室温时效析出,合金的形状记忆性能稳定。
实施例3
本实施例选择的铁锰铝镍合金的各元素的原子百分比为:Mn 34.5%,Al 13.9%,Ni6.2%,余为Fe和不可避免的杂质。具体处理步骤如下:(1)将上述铁锰铝镍合金先在1200℃处理1小时,随后淬火在温度为60℃的液态金属中;(2)将步骤(1)处理后的合金在室温下拉压循环变形600次,拉伸和压缩变形量均为1.5%;(3)最后将步骤(2)处理后的合金在180℃处理6小时。经上述处理的合金在室温放置180天前后应力诱发马氏体临界应力和形状记忆性能没有变化,说明不存在纳米β相室温时效析出,合金的形状记忆性能稳定。
实施例4
本实施例选择的铁锰铝镍合金的各元素的原子百分比为:Mn 35.3%,Al 16.7%,Ni4.9%,余为Fe和不可避免的杂质。具体处理步骤如下:(1)将上述铁锰铝镍合金先在1200℃处理1小时,随后淬火在温度为70℃的液态金属中;(2)将步骤(1)处理后的合金在室温下拉压循环变形400次,拉伸和压缩变形量均为1.5%;(3)最后将步骤(2)处理后的合金在200℃处理4小时。经上述处理的合金在室温放置180天前后应力诱发马氏体临界应力和形状记忆性能没有变化,说明不存在纳米β相室温时效析出,合金的形状记忆性能稳定。
实施例5
本实施例选择的铁锰铝镍合金的各元素的原子百分比为:Mn 35.9%,Al 15.2%,Ni3.4%,余为Fe和不可避免的杂质。具体处理步骤如下:(1)将上述铁锰铝镍合金先在1200℃处理1小时,随后淬火在温度为80℃的液态金属中;(2)将步骤(1)处理后的合金在室温下拉压循环变形100次,拉伸和压缩变形量均为3%;(3)最后将步骤(2)处理后的合金在200℃处理2小时。经上述处理的合金在室温放置180天前后应力诱发马氏体临界应力和形状记忆性能没有变化,说明不存在纳米β相室温时效析出,合金的形状记忆性能稳定。

Claims (8)

1.一种提高铁锰铝镍合金记忆性能稳定性的方法,所述铁锰铝镍合金的各元素的原子百分比含量为:Mn 25-42%,Al 12-18%,Ni 4-10%,余为Fe和不可避免的杂质,其特征在于,方法的具体步骤如下:(1)将所述铁锰铝镍合金先在1150℃至1300℃处理10分钟至10小时,随后淬火在液态淬火介质中;(2)将步骤(1)处理后的合金在室温下拉压循环变形不低于100次;(3)最后将步骤(2)处理后的合金在50℃至200℃处理1小时至24小时。
2.根据权利要求1所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,步骤(1)中所述液态淬火介质为水或盐水或碱水或液态金属。
3.根据权利要求2所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,所述液态淬火介质为液态金属。
4.根据权利要求3所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,所述液态金属的温度≤200℃。
5.根据权利要求1所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,拉压循环变形时拉伸和压缩变形量均不超过3%。
6.根据权利要求5所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,拉压循环变形时拉伸和压缩变形量为1%~2%。
7.根据权利要求1或5或6所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,拉压循环变形由疲劳试验机完成。
8.根据权利要求1所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,拉压循环变形时拉应力和压应力均不超过500MPa。
CN201910283076.2A 2019-04-10 2019-04-10 一种提高铁锰铝镍合金记忆性能稳定性的方法 Expired - Fee Related CN109913764B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910283076.2A CN109913764B (zh) 2019-04-10 2019-04-10 一种提高铁锰铝镍合金记忆性能稳定性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910283076.2A CN109913764B (zh) 2019-04-10 2019-04-10 一种提高铁锰铝镍合金记忆性能稳定性的方法

Publications (2)

Publication Number Publication Date
CN109913764A true CN109913764A (zh) 2019-06-21
CN109913764B CN109913764B (zh) 2020-12-01

Family

ID=66969239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910283076.2A Expired - Fee Related CN109913764B (zh) 2019-04-10 2019-04-10 一种提高铁锰铝镍合金记忆性能稳定性的方法

Country Status (1)

Country Link
CN (1) CN109913764B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358963A (zh) * 2019-07-15 2019-10-22 哈尔滨工程大学 一种FeMnAlNi形状记忆合金及其制备方法
CN110684918A (zh) * 2019-11-06 2020-01-14 四川大学 一种高超弹性铁锰铝镍基多主元合金
CN110684917A (zh) * 2019-11-06 2020-01-14 四川大学 相变诱导塑性的高强度铁锰铝镍基多主元合金
CN110819872A (zh) * 2019-11-09 2020-02-21 天津理工大学 一种Fe-Mn-Al-Ni-Nb形状记忆合金及其制备方法
CN111155041A (zh) * 2020-01-19 2020-05-15 北京科技大学 一种再生变形铝合金复合强韧化的方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0519311A1 (de) * 1991-06-19 1992-12-23 Krupp Industrietechnik Gmbh Eisen-Nickel-Kobalt-Titan-Formgedächtnislegierung und Verfahren zu ihrer Herstellung
CN1399002A (zh) * 2002-09-03 2003-02-26 四川大学 形变诱导时效型铁基形状记忆合金及其制备方法
CN1403611A (zh) * 2001-09-05 2003-03-19 中国科学院金属研究所 一种钛镍形状记忆合金力学训练方法
JP2003105438A (ja) * 2001-09-27 2003-04-09 National Institute For Materials Science NbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法
CN1521286A (zh) * 2003-01-29 2004-08-18 上海交通大学 稀土改性的FeMnSiCr形状记忆合金及其制备方法
US20080222853A1 (en) * 2007-03-14 2008-09-18 Gm Global Technology Operations, Inc. Shape memory alloy reinforced hoses and clamps
CN103773933A (zh) * 2014-01-21 2014-05-07 四川大学 一种提高亚稳奥氏体不锈钢形状记忆效应的方法
CN104232982A (zh) * 2013-06-17 2014-12-24 镇江忆诺唯记忆合金有限公司 一种提高机械循环下超弹性滞回耗能的铜锌铝记忆合金
CN104342538A (zh) * 2013-08-09 2015-02-11 镇江忆诺唯记忆合金有限公司 一种提高高锰铁基合金记忆性能的淬火工艺方法
JP2015200022A (ja) * 2014-03-31 2015-11-12 国立大学法人横浜国立大学 鉄基形状記憶合金の製造方法、及び鉄基形状記憶合金
US10018385B2 (en) * 2012-03-27 2018-07-10 University Of Maryland, College Park Solid-state heating or cooling systems, devices, and methods
CN108517441A (zh) * 2018-04-15 2018-09-11 烟台浩忆生物科技有限公司 低相变温度钛锆铌钽形状记忆合金、制备方法及其应用
US10214798B2 (en) * 2013-11-15 2019-02-26 Massachussetts Institute Of Technology Method for controlling the energy damping of a shape memory alloy with surface roughness
CN109457091A (zh) * 2018-10-15 2019-03-12 四川大学 一种制备粗晶铁锰硅基形状记忆合金的方法
JP6490608B2 (ja) * 2016-02-10 2019-03-27 国立大学法人東北大学 Cu−Al−Mn系合金材の製造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0519311A1 (de) * 1991-06-19 1992-12-23 Krupp Industrietechnik Gmbh Eisen-Nickel-Kobalt-Titan-Formgedächtnislegierung und Verfahren zu ihrer Herstellung
CN1403611A (zh) * 2001-09-05 2003-03-19 中国科学院金属研究所 一种钛镍形状记忆合金力学训练方法
JP2003105438A (ja) * 2001-09-27 2003-04-09 National Institute For Materials Science NbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法
CN1399002A (zh) * 2002-09-03 2003-02-26 四川大学 形变诱导时效型铁基形状记忆合金及其制备方法
CN1521286A (zh) * 2003-01-29 2004-08-18 上海交通大学 稀土改性的FeMnSiCr形状记忆合金及其制备方法
US20080222853A1 (en) * 2007-03-14 2008-09-18 Gm Global Technology Operations, Inc. Shape memory alloy reinforced hoses and clamps
US10018385B2 (en) * 2012-03-27 2018-07-10 University Of Maryland, College Park Solid-state heating or cooling systems, devices, and methods
CN104232982A (zh) * 2013-06-17 2014-12-24 镇江忆诺唯记忆合金有限公司 一种提高机械循环下超弹性滞回耗能的铜锌铝记忆合金
CN104342538A (zh) * 2013-08-09 2015-02-11 镇江忆诺唯记忆合金有限公司 一种提高高锰铁基合金记忆性能的淬火工艺方法
US10214798B2 (en) * 2013-11-15 2019-02-26 Massachussetts Institute Of Technology Method for controlling the energy damping of a shape memory alloy with surface roughness
CN103773933A (zh) * 2014-01-21 2014-05-07 四川大学 一种提高亚稳奥氏体不锈钢形状记忆效应的方法
JP2015200022A (ja) * 2014-03-31 2015-11-12 国立大学法人横浜国立大学 鉄基形状記憶合金の製造方法、及び鉄基形状記憶合金
JP6490608B2 (ja) * 2016-02-10 2019-03-27 国立大学法人東北大学 Cu−Al−Mn系合金材の製造方法
CN108517441A (zh) * 2018-04-15 2018-09-11 烟台浩忆生物科技有限公司 低相变温度钛锆铌钽形状记忆合金、制备方法及其应用
CN109457091A (zh) * 2018-10-15 2019-03-12 四川大学 一种制备粗晶铁锰硅基形状记忆合金的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. OZCAN等: "Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires", 《SCRIPTA MATERIALIA》 *
PAN HUANG等: "Relationship between martensitic reversibility and different nano-phases in a FeMnAlNi shape memory alloy", 《MATERIALS CHARACTERIZATION》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358963A (zh) * 2019-07-15 2019-10-22 哈尔滨工程大学 一种FeMnAlNi形状记忆合金及其制备方法
CN110684918A (zh) * 2019-11-06 2020-01-14 四川大学 一种高超弹性铁锰铝镍基多主元合金
CN110684917A (zh) * 2019-11-06 2020-01-14 四川大学 相变诱导塑性的高强度铁锰铝镍基多主元合金
CN110684917B (zh) * 2019-11-06 2021-03-23 四川大学 相变诱导塑性的高强度铁锰铝镍基多主元合金
CN110684918B (zh) * 2019-11-06 2021-03-23 四川大学 一种高超弹性铁锰铝镍基多主元合金
CN110819872A (zh) * 2019-11-09 2020-02-21 天津理工大学 一种Fe-Mn-Al-Ni-Nb形状记忆合金及其制备方法
CN110819872B (zh) * 2019-11-09 2021-08-27 天津理工大学 一种Fe-Mn-Al-Ni-Nb形状记忆合金及其制备方法
CN111155041A (zh) * 2020-01-19 2020-05-15 北京科技大学 一种再生变形铝合金复合强韧化的方法

Also Published As

Publication number Publication date
CN109913764B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN109913764A (zh) 一种提高铁锰铝镍合金记忆性能稳定性的方法
CN106795606B (zh) 奥氏体不锈钢及其制造方法
CN110157970A (zh) 一种高强塑积CoCrNi中熵合金及其制备方法
US20170268076A1 (en) High Strength Austenitic Stainless Steel and Production Method Thereof
CN105408509A (zh) 抗应力腐蚀性优异的由Cu-Al-Mn系合金材料构成的伸展材及其用途
CN107090555B (zh) 用于热锻的Ni基超合金
Cai et al. Investigation of annealing temperature on microstructure and texture of Fe-19Cr-2Mo-Nb-Ti ferritic stainless steel
US10920305B2 (en) Fe-based shape memory alloy material and method of producing the same
TW202144596A (zh) 鋼絲、製作鋼絲的方法以及製作彈簧或醫用線材製品的方法
CN112639144A (zh) 铜系合金材料及其制造方法以及由铜系合金材料构成的构件或部件
CN115011858A (zh) 高强度高塑性CoCrNiAlTi多主元合金及其制备方法
Zhang et al. Stress-induced α ″phase in a beta Ti–19Nb–1.5 Mo–4Zr–8Sn alloy
Lee et al. Isothermal decomposition of ferrite in a high-nitrogen, nickel-free duplex stainless steel
Li et al. Thermal–Mechanical Processing and Strengthen in Al x CoCrFeNi High-Entropy Alloys
Ahmed et al. Magnetic properties of maraging steel in relation to deformation and structural phase transformations
Stanford et al. Re-examination of the effect of NbC precipitation on shape memory in Fe–Mn–Si-based alloys
CN111575534B (zh) 一种高Ni纳米晶NiTi形状记忆合金型材及其制备方法
CN109971925A (zh) 改善奥氏体不锈钢抗晶间腐蚀性能的形变热处理工艺方法
CN109182662B (zh) 一种提高铁锰硅基形状记忆合金可恢复应变的方法
Abreu et al. Influence of reverted austenite on the texture and magnetic properties of 350 maraging steel
El-Bagoury et al. Gamma prime and TCP phases and mechanical properties of thermally exposed nickel-base superalloy
Meng et al. Effect of thermo-mechanical treatment on mechanical and elastic properties of Ti–36Nb–5Zr alloy
CN110819872B (zh) 一种Fe-Mn-Al-Ni-Nb形状记忆合金及其制备方法
CN109457091B (zh) 一种制备粗晶铁锰硅基形状记忆合金的方法
CN108359875A (zh) 低镍型FeMnAlNi基形状记忆合金及其处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201201

Termination date: 20210410

CF01 Termination of patent right due to non-payment of annual fee