CN109904383A - 一种微波加热的极片辊压方法 - Google Patents

一种微波加热的极片辊压方法 Download PDF

Info

Publication number
CN109904383A
CN109904383A CN201910047079.6A CN201910047079A CN109904383A CN 109904383 A CN109904383 A CN 109904383A CN 201910047079 A CN201910047079 A CN 201910047079A CN 109904383 A CN109904383 A CN 109904383A
Authority
CN
China
Prior art keywords
pole piece
microwave
microwave heating
rolling methods
applicator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910047079.6A
Other languages
English (en)
Other versions
CN109904383B (zh
Inventor
谭少希
刘关心
陈杰
王文健
王威
李载波
陈劲松
杨山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huizhou Li Wei Amperex Technology Ltd
Original Assignee
Huizhou Li Wei Amperex Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Li Wei Amperex Technology Ltd filed Critical Huizhou Li Wei Amperex Technology Ltd
Priority to CN201910047079.6A priority Critical patent/CN109904383B/zh
Publication of CN109904383A publication Critical patent/CN109904383A/zh
Application granted granted Critical
Publication of CN109904383B publication Critical patent/CN109904383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于锂离子电池生产技术领域,尤其涉及一种微波加热的极片辊压方法,包括以下步骤:S1,在金属箔材的两面涂覆活性材料制成极片;S2,步骤S1制得的极片从密闭的微波加热器的中间穿过,对金属箔材两面的活性材料进行微波加热;S3,步骤S2中从微波加热器出来的极片直接通过辊压机构进行辊压,得到压实密度和厚度都均匀的极片。相比于现有技术,本发明提升极片的压实密度和极片厚度的一致性,避免了金属箔材出现断带的现象。

Description

一种微波加热的极片辊压方法
技术领域
本发明属于锂离子电池生产技术领域,尤其涉及一种微波加热的极片辊压方法。
背景技术
在锂离子电池的制造过程中,需要将涂布后的极片进行辊压,从而提升电池的能量密度。目前,通常有两种辊压极片的方式:冷辊压和热辊压。
冷辊压是直接对涂布后的极片进行辊压,该种方法需要较大的辊压压力,辊压出的极片压实密度低、厚度一致性差、极片料区延伸率大且不均一,极片经常出现“弧形”。热辊压是先将涂布后的极片经过烤箱或者热辊,通过热转递使极片受热,然后再将受热的极片进行辊压。热辊压的效果相比冷辊压要好一些(压实高、厚度一致性好)。但是传统的热辊压方式也存在许多缺陷: 1)极片延伸率大,极片加热过程中,箔材也受到加热,在辊压压力和张力作用下,极片/箔材极易被拉伸,限制压实密度的提升;2)铝箔受热后易被拉伸,在辊压张力作用下,容易出现极片“断带”现象;3)极片通过热传递受热,极片材料内部可能未受热或受热不充分,辊压厚度一致欠佳。
发明内容
本发明的目的在于:针对现有技术的不足,而提供一种微波加热的极片辊压方法,提升极片的压实密度和极片厚度的一致性。
为了实现上述目的,本发明采用以下技术方案:
一种微波加热的极片辊压方法,包括以下步骤:
S1,在金属箔材的两面涂覆活性材料制成极片;
S2,步骤S1制得的极片从密闭的微波加热器的中间穿过,对金属箔材两面的活性材料进行微波加热;
S3,步骤S2中从微波加热器出来的极片直接通过辊压机构进行辊压,得到压实密度和厚度都均匀的极片。
本发明在辊压机构对极片进行压辊前,安装微波加热装置,极片通过微波加热装置,极片上的活性材料吸收微波,热源产生于活性材料内部,活性材料被均匀地加热;而金属箔材不吸收微波,无加热效果,箔材延伸率小,当被微波均匀加热的极片经过辊压时,较小的辊压压力就可以实现极片高压实密度,并且厚度一致性高。
作为本发明所述的微波加热的极片辊压方法的一种改进,在步骤S2中,极片通过微波加热器的速度为5~150m/min。优选为30~100m/min。通过控制极片通过微波加热器的速度,确保当活性材料内部热量传递到铝箔热量较少或没有传递热量时,极片已经通过微波加热区域。
作为本发明所述的微波加热的极片辊压方法的一种改进,在步骤S2中,微波加热的功率为100W~10kW。通过控制极片通过微波加热器的功率,确保当活性材料内部热量传递到铝箔热量较少或没有传递热量时,极片已经通过微波加热区域。
作为本发明所述的微波加热的极片辊压方法的一种改进,在步骤S2中,微波加热的温度为25~120℃。优选为45~100℃。微波加热的温度过低起不到改善极片压实密度和厚度一致性的作用,微波加热的温度过高则会影响极片的性能,而且会耗费大量的能量。
作为本发明所述的微波加热的极片辊压方法的一种改进,所述微波加热器与所述辊压机构之间的距离为0.2~5m。优选为1m。微波加热器与辊压机构之间的距离尽可能的小,确保经过微波加热后的极片迅速进行辊压,确保对极片的辊压起到改善作用。
相比于现有技术,本发明至少具有以下有益效果:
1)本发明采用微波加热,微波加热具有均匀、速度快的特点。微波热是在被加热物内部产生的,热源来自物体内部,加热均匀,不会造成“外焦里不熟”的夹生现象,受热均匀的极片容易辊压,提高压实密度,厚度一致性。同时由于“里外同时加热”大大缩短了加热时间,加热效率高,进而提高辊压速度,提高生产效率;
2)本发明采用微波加热,微波照射到金属箔材表面会全部反射,对金属箔材无直接加热效果,活性材料在吸收微波后,热量是从活性材料内部产生的,热量由活性材料内部往外传递,当活性材料内部热量传递到铝箔热量较少或没有传递热量时,极片已经通过微波加热器并完成辊压,因此,金属箔材基本无加热效果,金属箔材延伸率较小,有助于提高极片压实密度,并改善辊压“断带”现象。
附图说明
图1是本发明的流程示意图。
其中:1-金属箔材,2-活性材料,3-微波加热器,4-辊压机构。
具体实施方式
下面结合具体实施方式和说明书附图,对本发明作进一步详细的描述,但本发明的实施方式并不限于此。
实施例1
如图1所示,一种微波加热的极片辊压方法,包括以下步骤:
S1,在金属箔材1的两面涂覆活性材料2制成极片;
S2,步骤S1制得的极片从密闭的微波加热器3的中间穿过,对金属箔材1两面的活性材料2进行微波加热;
S3,步骤S2中从微波加热器3出来的极片直接通过辊压机构4进行辊压,得到压实密度和厚度都均匀的极片。
其中,极片通过微波加热器3的速度为5m/min。微波加热的功率为100W。微波加热的温度为25℃。微波加热器3与辊压机构4之间的距离为0.2m。
实施例2
与实施例1不同的是:在本实施例中,极片通过微波加热器3的速度为20m/min。微波加热的功率为500W。微波加热的温度为30℃。微波加热器3与辊压机构4之间的距离为0.5m。
其余同实施例1,这里不再赘述。
实施例3
与实施例1不同的是:在本实施例中,极片通过微波加热器3的速度为30m/min。微波加热的功率为1kW。微波加热的温度为45℃。微波加热器3与辊压机构4之间的距离为1m。
其余同实施例1,这里不再赘述。
实施例4
与实施例1不同的是:在本实施例中,极片通过微波加热器3的速度为50m/min。微波加热的功率为2kW。微波加热的温度为50℃。微波加热器3与辊压机构4之间的距离为1.5m。
其余同实施例1,这里不再赘述。
实施例5
与实施例1不同的是:在本实施例中,极片通过微波加热器3的速度为60m/min。微波加热的功率为3kW。微波加热的温度为60℃。微波加热器3与辊压机构4之间的距离为2m。
其余同实施例1,这里不再赘述。
实施例6
与实施例1不同的是:在本实施例中,极片通过微波加热器3的速度为80m/min。微波加热的功率为5kW。微波加热的温度为70℃。微波加热器3与辊压机构4之间的距离为2.5m。
其余同实施例1,这里不再赘述。
实施例7
与实施例1不同的是:在本实施例中,极片通过微波加热器3的速度为90m/min。微波加热的功率为6kW。微波加热的温度为80℃。微波加热器3与辊压机构4之间的距离为3m。
其余同实施例1,这里不再赘述。
实施例8
与实施例1不同的是:在本实施例中,极片通过微波加热器3的速度为100m/min。微波加热的功率为8kW。微波加热的温度为90℃。微波加热器3与辊压机构4之间的距离为3.5m。
其余同实施例1,这里不再赘述。
实施例9
与实施例1不同的是:在本实施例中,极片通过微波加热器3的速度为120m/min。微波加热的功率为9kW。微波加热的温度为100℃。微波加热器3与辊压机构4之间的距离为4m。
其余同实施例1,这里不再赘述。
实施例10
与实施例1不同的是:在本实施例中,极片通过微波加热器3的速度为150m/min。微波加热的功率为10kW。微波加热的温度为120℃。微波加热器3与辊压机构4之间的距离为5m。
其余同实施例1,这里不再赘述。
对实施例1~10制得的极片的压实密度和厚度测量,发现实施例1~10制得的极片压实密度高,厚度一致性高且金属箔材不发生“断带”现象。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还能够对上述实施方式进行变更和修改。因此,本发明并不局限于上述的具体实施方式,凡是本领域技术人员在本发明的基础上所作出的任何显而易见的改进、替换或变型均属于本发明的保护范围。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (8)

1.一种微波加热的极片辊压方法,其特征在于,包括以下步骤:
S1,在金属箔材的两面涂覆活性材料制成极片;
S2,步骤S1制得的极片从密闭的微波加热器的中间穿过,对金属箔材两面的活性材料进行微波加热;
S3,步骤S2中从微波加热器出来的极片直接通过辊压机构进行辊压,得到压实密度和厚度都均匀的极片。
2.根据权利要求1所述的微波加热的极片辊压方法,其特征在于:在步骤S2中,极片通过微波加热器的速度为5~150m/min。
3.根据权利要求2所述的微波加热的极片辊压方法,其特征在于:在步骤S2中,极片通过微波加热器的速度为30~100m/min。
4.根据权利要求1所述的微波加热的极片辊压方法,其特征在于:在步骤S2中,微波加热的功率为100W~10kW。
5.根据权利要求1所述的微波加热的极片辊压方法,其特征在于:在步骤S2中,微波加热的温度为25~120℃。
6.根据权利要求5所述的微波加热的极片辊压方法,其特征在于:在步骤S2中,微波加热的温度为45~100℃。
7.根据权利要求1所述的微波加热的极片辊压方法,其特征在于:所述微波加热器与所述辊压机构之间的距离为0.2~5m。
8.根据权利要求7所述的微波加热的极片辊压方法,其特征在于:所述微波加热器与所述辊压机构之间的距离为1m。
CN201910047079.6A 2019-01-18 2019-01-18 一种微波加热的极片辊压方法 Active CN109904383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910047079.6A CN109904383B (zh) 2019-01-18 2019-01-18 一种微波加热的极片辊压方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910047079.6A CN109904383B (zh) 2019-01-18 2019-01-18 一种微波加热的极片辊压方法

Publications (2)

Publication Number Publication Date
CN109904383A true CN109904383A (zh) 2019-06-18
CN109904383B CN109904383B (zh) 2022-04-15

Family

ID=66943800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910047079.6A Active CN109904383B (zh) 2019-01-18 2019-01-18 一种微波加热的极片辊压方法

Country Status (1)

Country Link
CN (1) CN109904383B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497455A (zh) * 2020-10-27 2022-05-13 荣盛盟固利新能源科技有限公司 一种射线辐照提高锂离子电池极片粘结性的方法及锂离子电池极片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317037A (zh) * 2017-06-28 2017-11-03 惠州博磊达新能源科技有限公司 一种锂离子电池正极复合极片及制备方法和锂离子电池
CN108172767A (zh) * 2017-12-26 2018-06-15 北京乐华锂能科技有限公司 一种锂离子电池电极极片及其制备方法
CN108550794A (zh) * 2018-05-15 2018-09-18 中航锂电(江苏)有限公司 一种加速锂离子电池极片反弹的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317037A (zh) * 2017-06-28 2017-11-03 惠州博磊达新能源科技有限公司 一种锂离子电池正极复合极片及制备方法和锂离子电池
CN108172767A (zh) * 2017-12-26 2018-06-15 北京乐华锂能科技有限公司 一种锂离子电池电极极片及其制备方法
CN108550794A (zh) * 2018-05-15 2018-09-18 中航锂电(江苏)有限公司 一种加速锂离子电池极片反弹的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497455A (zh) * 2020-10-27 2022-05-13 荣盛盟固利新能源科技有限公司 一种射线辐照提高锂离子电池极片粘结性的方法及锂离子电池极片

Also Published As

Publication number Publication date
CN109904383B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN105406129B (zh) 一种锂离子电池的化成方法
CN103208617B (zh) 一种高容量锂离子电池阳极材料及其制备方法
CN107317037B (zh) 一种锂离子电池正极复合极片及制备方法和锂离子电池
CN108328910B (zh) 微波热弯窑及利用微波加热制备热弯微晶玻璃的方法
CN111613770B (zh) 一种锂离子电池极片
CN109904383A (zh) 一种微波加热的极片辊压方法
CN103464355B (zh) 锂电池极片涂履机的烘箱风嘴
CN107282382A (zh) 一种锂电池涂布机的烘干装置
CN109290155A (zh) 一种石墨烯锂电池极片的涂布方法
CN203565307U (zh) 锂电池极片涂履机的烘箱风嘴
US20120237821A1 (en) Electrode and method for producing the same
CN106813464A (zh) 一种锂电池烘烤箱
CN202090010U (zh) 高炉送风管
CN110379997B (zh) 一种用于锂离子电池正负极片的涂布工艺
CN201547859U (zh) 一种微波炉用烤盘
CN112414013A (zh) 低能耗锂电池电芯干燥方法
CN102909166B (zh) 一种亲水性铜管的制作方法及装置
CN201868156U (zh) 一种热风循环加热的节能漆包线烘干炉
JP4975909B2 (ja) リチウムイオン二次電池用負極の製造方法
CN212759494U (zh) 一种绝缘胶带生产专用烘干装置
CN204259188U (zh) 一种电池箔材预加热装置
CN218013879U (zh) 一种用于喷涂粉末固化的恒温固化炉
CN110911641B (zh) 一种长链缔合包裹石墨型立体网络状电极及其制备方法
CN107628753B (zh) 一种利用环保吸尘粉和熔融炉渣生产矿渣棉的方法
CN206810616U (zh) 一种制备锂电池的涂布机烘箱

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant