CN109879945A - The function and application of cabbage type rape cracking resistance angle gene BnIND - Google Patents

The function and application of cabbage type rape cracking resistance angle gene BnIND Download PDF

Info

Publication number
CN109879945A
CN109879945A CN201910218648.9A CN201910218648A CN109879945A CN 109879945 A CN109879945 A CN 109879945A CN 201910218648 A CN201910218648 A CN 201910218648A CN 109879945 A CN109879945 A CN 109879945A
Authority
CN
China
Prior art keywords
seq
gene
cracking resistance
bnind
ind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910218648.9A
Other languages
Chinese (zh)
Other versions
CN109879945B (en
Inventor
范楚川
周永明
翟云孤
蔡胜利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201910218648.9A priority Critical patent/CN109879945B/en
Publication of CN109879945A publication Critical patent/CN109879945A/en
Application granted granted Critical
Publication of CN109879945B publication Critical patent/CN109879945B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention belongs to rape molecular breeding technical fields, disclose the function and application of a cabbage type rape cracking resistance angle gene BnIND, there are the functions of partial redundance in siliqua of oilseed rape dehiscence process for two homologous copies of the gene, and BnA03.IND copy is bigger compared with the effect played in silique dehiscence process of BnC03.IND copy;Sequence comparing analysis finds that two copies of BnIND gene encode albumen with the same function, and promoter region has biggish sequence variations;Since the sequence difference of promoter region causes two of BnIND gene to copy the difference occurred on gene expression amount, BnA03.IND copy is eventually led to compared with BnC03.IND copy and plays bigger effect in siliqua of oilseed rape dehiscence process.The present invention provides important functional gene and breeding material for the genetic improvement of rape cracking resistance angle character.

Description

The function and application of cabbage type rape cracking resistance angle gene BnIND
Technical field
The invention belongs to rape molecular breeding fields, are related to a cabbage type rape gene BnIND in terms of silique cracking resistance Function and application.
Background technique
The cracking of mature silique is the one kind of rape during long-term evolution in order to adapt to environment, produce offspring and formed Biological characteristics.But the easy to cracking of silique is unfavorable character in Rape-seed production, will lead to the rape underproduction, is also unfavorable for machine The popularization and application of toolization harvest.According to statistics, annual resulting production loss typically constitutes from about the 20% of total output, in severe day Up to 50% under the conditions of gas (Price etc., 1996;Child etc., 1998).Therefore, the cracking resistance angle oil for being suitble to mechanized harvest is developed Vegetable kind will bring significant economic benefit.
In Cruciferae (Brassicaceae) plant including arabidopsis and rape, the cracking of silique is by one A little specialized cells are developed between two fruit lobes caused by absciss layer area.Absciss layer area is made of lignifying floor and separating layer;In silique When mature, lignifying layer is hardened, the hydrolase of separating layer secretion simultaneously leads to the reduction of its breaking resistance, their collective effect causes Silique cracks from absciss layer.
In arabidopsis, gene relevant to silique cracking and its regulated and control network also have a large amount of research.Wherein, two function Can redundancy MADS-box gene SHATTERPROOF1 (SHP1) and SHP2 participation fruit lobe edge development (Liljegren etc., 2000);They regulate and control the expression of downstream INDEHISCENT (IND) gene.The afunction mutant of these genes is all unable to shape At normal fruit lobe edge, cause silique that cannot crack, seed can not shed.The Rape pod development and arabidopsis ten of cabbage type rape Seemingly, therefore the cracking resistance Mechanism Study in arabidopsis provides information abundant for the correlative study in rape to split-phase.
Cabbage type rape is a kind of allotetraploid species, is by two diploid progenitors kind Chinese cabbage (B.rapa, AA genes Group) and wild cabbage (B.oleracea, CC genome) natural hybrization after evolve (Chalhoub etc., 2014).Cabbage type rape Silique be easy cracking, traditional method mainly by interspecific hybridization is introduced into the Crack resistant base in sibling species because raising resistance (Prakash and Chopra 1988;Morgan etc., 1998;Summers etc., 2003).
In conclusion problem of the existing technology is:
The method of the prior art takes a long time, and can also introduce some other unfavorable economical character simultaneously, so that they are not It is suitble to growth condition (Summers etc., 2003).Compared with interspecific hybridization method, will can fast and effeciently it be intended by genetic transformation Crack resistant base in southern mustard has successfully applied to the something lost of silique cracking resistance in Brassica Crops because importeding into excellent kind Biography improvement (Chandler etc., 2005;Deng 2006), but this method at present many countries and regions by turn The limitation of gene policy.Other than interspecific hybridization and transgenosis, it is anti-to improve new hereditary variation can also to be generated by mutagenesis Split angle property.For example, Braatz etc. (2018) is by the mutagenic obtained cracking resistance cornicult variant of EMS, and confirm only to copy ind is bis- Cracking resistance angle property increases in mutant, shows that two copies of the gene have function conservative and the feature of redundancy.However, luring at random Change also results in a large amount of background mutation and has an adverse effect to other characters.Such as the list of two kinds of random mutagenesis of ind is prominent The all extremely significant reduction (Braatz etc., 2018) of variant fertility.In cabbage type rape carry out random mutagenesis another mainly lack The characteristic being trapped in its polyploid causes most of genes to have multiple intimate homologous copies, and random mutagenesis is usually only One of energy random mutation, therefore generally will not all generate apparent phenotype.
Solve the meaning of above-mentioned technical problem:
In recent years, CRISPR/Cas9 successfully applies to as a kind of efficient fixed point target gene editing technique In rape.The present invention targets BnIND homologous gene using CRISPR/Cas9 technology, obtains mutant single plant by genetic transformation, It is separated by inbreeding of more generation, finally obtains the homozygous mutant of the homozygous and double copy of single copy, and to these mutation type surfaces Identification, genetic analysis and the measurement of cracking resistance angle property.Result of study shows double copy mutant of BnIND gene and single The Mutants homozygous of BnA03.IND copy mutation can produce the silique that cracking resistance angle property dramatically increases.BnIND gene is for rape The improvement of silique cracking form has huge application potential and prospect, and new genetic resources are provided for yield of rape breeding.
Summary of the invention
In view of the problems of the existing technology, the present invention provides a kind of cabbage type rape gene BnIND in silique cracking resistance The function and application of aspect, while it is same to provide a kind of two using gene editing technical appraisement cabbage type rape BnIND gene Source copies the function in terms of silique cracking resistance.The present invention targets two homologous copies of cabbage type rape BnIND gene, quickly high Effect obtains the apparent cabbage type rape germ plasm resource of cracking resistance angle phenotype that can stablize heredity, to cracking resistance angle cabbage type rape Breeding has great importance.The mutant is compared without containing T-DNA insertion with wild type, and cracking resistance angle index has reached extremely aobvious It writes horizontal.
The invention is realized in this way a kind of cabbage type rape cracking resistance angle gene BnIND, cabbage type rape cracking resistance angle Candidate gene BnIND nucleotides sequence is classified as SEQ ID NO:12, SEQ ID NO:13.
Another object of the present invention is to provide a kind of cabbage type rape cracking resistance angle gene BnIND coding albumen, The amino acid sequence of the albumen are as follows: SEQ ID NO:24, SEQ ID NO:25.
Another object of the present invention is to provide a kind of control for separating cabbage type rape cracking resistance angle gene BnIND is sweet The promoter at blue type rape cracking resistance angle, the nucleotides sequence of the sequence promoter are classified as SEQ ID NO:26, SEQ ID NO:27.
It is mutated another object of the present invention is to provide a kind of using cabbage type rape cracking resistance angle gene BnIND Double-mutant, the double-mutant is by two of BnIND copies while the nucleotide sequence mutation in gene coding region occurs, Plant containing the mutation has cracking resistance angle character, and the double-mutant nucleotide sequence of cracking resistance angle phenotype is generated after mutation are as follows: SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO: 19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22 and SEQ ID NO:23.
It is mutated another object of the present invention is to provide a kind of using cabbage type rape cracking resistance angle gene BnIND Single mutation, the single mutation occurs the nucleotide sequence mutation in gene coding region by the single copy of BnIND, contains mutation The plant of nucleotide sequence has cracking resistance angle character afterwards, and the single mutation nucleotides sequence that cracking resistance angle phenotype is generated after mutation is classified as SEQ ID NO:28.
Another object of the present invention is to provide a kind of applications using double mutation in breeding.
Another object of the present invention is to provide kind to utilize application of the single mutation in breeding.
Another object of the present invention is to provide a kind of using cabbage type rape cracking resistance angle gene BnIND in Wild cabbage type The application of rape cracking resistance angle character improvement kind.
In the present invention, cabbage type rape cracking resistance angle candidate gene BnIND, nucleotides sequence list such as sequence are as follows:
>BnA03.IND
ATGTCTGGCTCAAAAGCAGATGCAGCCATAGCCCCAATAGTCATGATGGAGCATCATCATCTCCTTAT GAATTGGAACAAACCTATTGATCTCATTACAGAAGAAAACTCTTTTAACCACAATCCTCATTTCATAGTAGATCCA CCTTCCGAAACCCTAAGCCACTTCCAGCCCCCGCCGACAATCTTCTCCGATCACGGAGGAGGAGAGGAAGCAGAAG AAGAAGAAGAAGAAGAAGGAGAGGAAGAGATGGATCCGATGAAGAAGATGCAATACGCGATTGCTGCCATGCAGCC CGTAGACCTCGATCCAGCCACCGTTCCTAAGCCGAACCGCCGTAACGTAAGGGTAAGCGACGACCCTCAGACGGTG GTGGCTCGTCGGCGTAGAGAAAGGATAAGCGAGAAGATCCGGATATTGAAGAGGATGGTGCCAGGCGGTGCAAAGA TGGACACTGCCTCCATGCTCGACGAAGCCATCCGCTACACCAAGTTCTTGAAACGGCAGGTGAGGCTAGCTTCTTC AGCCTCACACTCAGCTTGGAGCTCCTATGTCTGA SEQ ID NO:12.
>BnC03.IND
ATGTCTGGTTCAAAAGCAGATGCAGCAGCCATAGCTCCAATAGTCATGATGGAGCCTCATCATCTCCT TATGAACTGGAACAAACCTATTGATCTCATTACACAAGAAAACTCTTTTAACCACAATCCTCATTTCATGGTAGAT CCACCTTCCGAAACCCTAAGCCACTTCCAGCCCCCGCCGACAGTCTTCTCCGATCACGGAGGAGGAGAGGAAGCAG AAGACGAAGAAGGAGAGGAAGAGATGGATGAGATGAAGGAGATGCAATACGCGATTGCTGCCATGCAGCCCGTAGA CATCGATCCAGCCACCGTTCCTAAGCCGAACCGCCGTAACGTAAGGGTAAGCGAGGACCCCCAGACGGTGGTGGCT CGTCGGCGTAGAGAAAGGATAAGCGAGAAGATCCGGATATTGAAGAGGATGGTGCCAGGCGGTGCAAAGATGGACA CTGCCTCCATGCTCGACGAAGCCATCCGCTACACCAAGTTCTTGAAACGGCAGGTGAGGCTTCTTCAGCCTCACAC TCAGCTTGGGGCTCCTATGTCTGACCCTTCTTGCCTTTGTTATTACCACAACTCGG ATACCTAA SEQ ID NO: 13.
The amino acid sequence of albumen is such as
>BnA03.IND
MSGSKADAAIAPIVMMEHHHLLMNWNKPIDLITEENSFNHNPHFIVDPPSETLSHFQPPPTIFSDHGG GEEAEEEEEEEGEEEMDPMKKMQYAIAAMQPVDLDPATVPKPNRRNVRVSDDPQTVVARRRRERISEKIRILKRMV PGGAKMDTASMLDEAIRYTKFLKRQVRLASSASHSAWSSYV SEQ ID NO:24.
>BnC03.IND
MSGSKADAAAIAPIVMMEPHHLLMNWNKPIDLITQENSFNHNPHFMVDPPSETLSHFQPPPTVFSDHG GGEEAEDEEGEEEMDEMKEMQYAIAAMQPVDIDPATVPKPNRRNVRVSEDPQTVVARRRRERISEKIRILKRMVPG GAKMDTASMLDEAIRYTKFLKRQVRLLQPHTQLGAPMSDPSCLCYYHNSDT SEQ ID NO:25.
Promoter sequence are as follows:
>BnA03.IND
GGGTGAGGTATCTCCATTTCAATTCTTCTCTTTATATATTAATCGAATTATTTACGTATGAAATGAAC GTTTATATAGAAATTTCGTGTGGAAAACGACATGTACACGGCATCTCAAGACCAATTAGTAATATACTTTAGTGGT GATTACATGTTTACTTATCCAATTGAGAATTTAAAGCATCGACAATACCTTAATGTCGATTAAGCCGTCCCCACTT CATGTAATGAGTTATGGGGGGAGAGAGAGATCCCGAAATTCGTCAAATAAAACAACTTAGAACTAAAAACCGACAC CAAGTATCATAAAGGAAATGTTGAAGAAGTCATTTATCGTATCCAGCTCACAATTCCTAAGATTAAATCATGACCG TTGGAAGAGCTTATAAGATTAAACTGAAGAAATTGTGGGTTTTAGAAGAAAGACAAGAAAGAGAAGAACATGATCT TACATTGCCTATTTTGGTGTATAGGAGTTGTCAAAAAGAGGAGAGAGAGGAGACAATTAGGTCAAATAAATGAGCA CTAAAAATGGAGACATGTGTTGAGTAACTATTACAAGAGCGACTTATGCTTCTATATGGCAATGATATCATCACCA AAGTGCAATGCCCCTTTTTGCCCTAGTTTCGTAAAGTCTCTCTCCTTCTTCGTCCTTAGGAAAAACCCTAAATTAA ATCCTGTGTTCTTGATCTTTCTTTTTGAGTAACCATGATTTTGACCACACACTAGTTCTTCTATATTTTGTGGTCT ATAGGATTTTGCTTTATATGTGTTTCTTGTATTGCTCCGTACGTGCGTATATAAATTTAAATGGTTACAACAAGGT TTATTATAAATAGGCACAAATTAGTCCATGAAGTTATTTAGCTTGCACAAGTATAATTTGTTAAGTATTTAAATAT ATAAATTTGTTACAAAACTTAATTAAATTTATCTGATTATATTTTCTTTAGTGTTCTTCCTTTGCCAACGTTGAGG TAGCTATTATTATTATTATTTTGAACATTATGTACGTAGTTATCTTGGCTAGTTATGATTCGAATTCTTAATTTGG ATCACACTTAACAGTATTTAAAATATTCTTAGAACTAAAATAATTAAGAGTTACCTTTAAATTGAAGTATTCGTGC TAAACAGAAACTAGAATAAACAAATGATTGCATGTTAATTTTTTTTTTCGATTTTCCTATCAGAATAAACACATGA TTGCATGCAAATTTTGTTTTTGATTACGTTATCTTTTGTTTATTTTAGTTTTGATGCTAATTAATATTTTTTATTA ACAACTCACATACATTCTACCTGATTCTAGGTCAGATAATGACACAGCGCAACAAAATTAATACAAAACCTTCGGA AAGTAGAATACCGCAGAAGTAACTTTTTTGGGTACATACGAAATACAGTGAAATCTCTATAAATTAATAATGTTGG GACTATACCAAAACTATAATTTTTTATTAATTTATAGAGATTAATTTATCGATATACTAATTGAATCAAAAACTTA ATTTGAGACTAAAAAATTATATTATTTTATAGAGATTTTTAGTGTATATTAATTTATAGAATATTATTTTATAAAA AATTTTAGTGTGTATTAATTTATAGAGTATTAATTTAAAGAGGTTATACTGTAATGTGAATCTTCGAAAAACATGC CATACATAACCACGGATCATAGTCGACACCTCAACGTGAAGCAAATTTGACAATTTACATACATAACCAACAAAAA GTAGAATACCTTGAAAATTTAAAACCCAAAATATGATGTAAAACTCAAGCTTGGTCCAGAGCATAAAAAAATTAAA GCCATCGCTTTGGTATCACATATTTAAACGTCAGTTTTTTTTTTTTTTTTTTTTGGGGGGGGGGGGGGGGTAATAT AAAAATATAATTAACAAAAAAAAATTATGAAACAATTAGCATGTAAAACACTAATCTTTTGGTTGTGACAAAACGT TTTCACAAATGTTCTATAAATAAATTCAAGTGCATTTTATCTGCAAAATATATACTTTCACTCATAAAATAAGAGC GTTTAAAACATTCATACACGCACTACATTGACATGACAAAAGAAATCCGCAAATACACATGATGTATGTCGAAAAA AACAAAAAATACACATGATGTATATATAGAGAGGATAGTATCTAGGAAATAAGACTATATTATATATATAAAGAAA ATAGAGAAAAGATAAAAATATAAATTGGTATGTATAAAAGAAAGGTCTATGCGTCT CTAG SEQ ID NO:26.
>BnC03.IND
CTAGAGACGCATAGACCTTTCTTTTATACATACCAAAATTTTTTTCTCTAATTTCTTTATATATATAA TATAGTCTTATTTCCTAGATATATCCGAACTAAATATGTTTGTATTTGCGGATTTCTTTTGTCATGTCAATCTAGT GCGTATATGAATGTTTTAAACGCTCTTATTTTATGAGTGAAAGTATATATTTTGCAGATAAAATGTGCTTGAATTT ATTTATAGAACATTTGTGAAAACGTTTTGTCACAACCAAAAGACTAGTGTTTTACATGCTAATTATTTCATAAATT TTCTTGATATTTATATTTTTATATTACTTCCCCAAAAAAAAAAACTGACGTTTAAATATCTGATACCAAAGCGATG GCTTTAATTTTTTTATGCTCTGGACCAAGCTTGAGTTTTACATCATATTTTGGGTTTAGGTTTTCACGGTATTCTA CTTTTTGTTGGTTATGTATGTAGATTGTCAAATTTGCTTCACGTTGAGGTGTCGACTATGATCCGTGGTTATGTCG TATGGCATGATTTTTGAAGATTCAAACTACTTCGTATGTCTACCCAAAAATGTTACTTCCGCGGTAATCTACTTTC CGAAAGTTTTGTATAATTTTGTTGCGCTGTGTCATTATCTGACCTAGAATCAGGTAGAATGTATGGAAGTTGTTAA TAAAAAAATATTAATTAGCATCAAAACTAAAATAAACAAAAGATAACATAATCAAAAACAAAATTTGCATGCAATC ATGTGTTTATTCTGATATATAGGATATTCGAAAAAAAAAATAACATGCAATCATTTGTTTATTGTAGTTTCTGTTT AACACGAATACTTCAATTTCAAGTTAACTCTTAATTATTTTAGTACTAAGAATATTTTAAATAGTATTTTTTTAAA TACTGTTAAGTGTTATCCAAATTAAGAATTTGAATCATAACTAGCCAAAATAACTACGTACATAATACATAATGTT CAAAATAATAATAATAATAATAATAATAATAATAATAATAGCTACCTCAACTTTGGCAAATGAAGAACACTAAAGA AAATATAATCAGATAAAGTTAATCAAGTTTTGTAGCAAATTTATATATTTAAATACTTAACACACACACACACACA CACATTTATATACCTCTTGTGCAAGCTAAATAACCTCATGGACTAATTTGTGCCTGTTTATAATAAACCTTAATTG TTGTAACCATTTAAATTTATATACGCACGTACGG SEQ ID NO:27.
The nucleotide sequence of double-mutant is such as
IND-59-14-8 aaccS4
CCATCC-GCTACACCAAGTTCTTG wt
CCATCCAGCTACACCAAGTTCTTG +A
CCATCCAGCTACACCAAGTTCTTG+A SEQ ID NO:14.
IND-67-3-2 aacc S4
CCATCC-GCTACACCAAGTTCTTG wt
CCA----GCTACACCAAGTTCTTG -3bp
CCATCCAGCTACACCAAGTTCTTG+A SEQ ID NO:15.
IND-146-1-1 aacc S4
CCATCC-GCTACACCAAGTTCTTG wt
CCATCCAGCTACACCAAGTTCTTG+A SEQ ID NO:16.
S1
CCAATA-GTCATGATGGAGCCTCA wt
CCAATATGTCATGATGGAGCCTCA+T SEQ ID NO:17.
IND-105-1-6 aacc
S4
CCATCC-GCTACACCAAGTTCTTG wt
CCATCCAGCTACACCAAGTTCTTG+A SEQ ID NO:18.
S1
CCAATA-GTCATGATGGAGCCTCA wt
CCAATATGTCATGATGGAGCCTCA+T SEQ ID NO:19.
S3
AGCCGAACCGCCGTAACGTAAGG wt
AGCCGAAC--------CGTAAGG- 8bp SEQ ID NO:20.
S4
CCATCC-GCTACACCAAGTTCTTG wt
CCATCCAGCTACACCAAGTTCTTG+A.SEQ ID NO:21.
IND-210-2-2 aacc S4
CCATCC-GCTACACCAAGTTCTTG wt
CCATCCTGCTACACCAAGTTCTTG+T SEQ ID NO:22.
S4
CCATCCGCTACACCAAGTTCTTG wt
GCTACACCAAGTTCTTG -17bp.SEQ ID NO:23.
Single mutation nucleotide sequence is such as
IND-201-4-10 aaCC S4
CCATCCGCT---ACACCAAGTTCTTG wt
TGGACACCAAGTTCTTG -11bp ,+3bp SEQ ID NO:28.
In the present invention, by cloning the genome sequence of cabbage type rape cracking resistance angle gene BnIND, CRISPR/ is utilized CAS9 technology targets two homologous copies of BnIND, obtains mutant, obtained mutant single plant are as follows:
IND-5-6-4 AAcc、IND-230-4-9 AAcc、IND-201-4-10 aaCC、IND-59-14-8 aacc、 IND-67-3-2 aacc、IND-146-1-1 aacc、IND-105-1-6 aacc、IND-210-2-2 aacc。
The present invention carries out cracking resistance angle assessment of indices by the silique to obtained mutant and wild type single plant, finds BnIND The extremely significant increase of cracking resistance angle index of the homozygous mutation of double copy Mutants homozygous of gene and single BnA03.IND copy.
The present invention carries out phenotype and displaing microstructure observing by mutant to acquisition and wild type silique, discovery with it is wild Type is compared, and structure of the Mutants homozygous of double Mutants homozygous and single BnA03.IND copy mutation at fruit lobe edge has not Same institutional framework difference.Sequence comparing analysis finds that two copies of BnIND gene encode albumen with the same function, and Promoter region has biggish sequence variations;Further gene expression analysis confirms BnA03.IND during development The expression quantity of copy is significantly higher than BnC03.IND copy.Thus, it could be seen that the sequence difference due to promoter region leads to BnIND There is the difference on gene expression amount in two copies of gene, eventually lead to BnA03.IND copy and exist compared with BnC03.IND copy Bigger effect is played in siliqua of oilseed rape dehiscence process.
In conclusion advantages of the present invention and good effect are as follows:
The CRISPR/Cas9 that the present invention uses is a kind of efficient fixed point target gene editing technique, the technology specific aim By force, gene knockout is carried out to rape with it, it can acquisition mutant rapidly and efficiently.Mutant is planted, by inbreeding of more generation Separation can obtain the Mutants homozygous without T-DNA insertion.This method more rapidly than traditional crossbreeding technology, than Mutation breeding is safer.
Microexamination discovery is carried out to the mutant silique of acquisition, in interior peel edge, the mutant majority of BnIND Pericarp membrane has the cell wall thicker than wild type.It there's almost no the lignifying layer of peel edge in double-mutant and divide B layers of the endocarp of absciss layer, lignifying is directly connected with the lignifying vascular bundle of diaphragm, and continuous wood is formd around pericarp Matter group prevents the cracking of silique.Although the lignifying structure of single mutant is similar with wild type, there is also some small Difference.It is compared with wild type, single mutant shows one layer small of the non-wood keratinocyte cells to form separating layer.In addition to this, In the mono- Mutants homozygous of BnA03.IND, pericarp and diaphragm are closely joined together by lignifying bridge and prevent opening for silique It splits.But in wild type and BnC03.IND single mutant, in the endocarp layer of lignifying and the diaphragm vascular tissue of lignifying Between exist have apparent separating layer.
This experiment obtains the Brassica napus Mutant Cr germ plasm resource with cracking resistance corner characteristics, compared to wild type, dashes forward The extremely significant increase of variant cracking resistance angle index.The material provides valuable resource for rapeseed breeding plan.
Gene of the invention is the important gene that silique cracking is controlled in cabbage type rape, its two homologous copies are in oil There are the functions of partial redundance in dish silique dehiscence process, and BnA03.IND copy is copied compared with BnC03.IND and cracked in silique Effect played in journey is bigger;Sequence comparing analysis finds that two copies of BnIND gene encode albumen with the same function, And promoter region has biggish sequence variations;Further gene expression analysis confirms during Rape pod development The expression quantity of BnA03.IND copy is significantly higher than BnC03.IND copy;Since the sequence difference of promoter region leads to BnIND There is the difference on gene expression amount in two copies of gene, eventually lead to BnA03.IND copy and exist compared with BnC03.IND copy Bigger effect is played in siliqua of oilseed rape dehiscence process.The present invention provides important function for the genetic improvement of rape cracking resistance angle character It can gene and breeding material.
Detailed description of the invention
Fig. 1 is that utilization CRISPR/CAS9 technology provided in an embodiment of the present invention obtains cracking resistance angle Brassica napus Mutant Cr Method flow diagram.
Fig. 2 is the gene structure figure and carrier figure of BnIND two copies provided in an embodiment of the present invention.
In figure: (1) it includes an exon that white box, which represents the gene, and gray area indicates the bHLH structure of the gene Domain, the vertical line in genetic model indicate that target site, arrow indicate the direction of sgRNA.S1-S4 illustrates target sequence, leukorrhagia The area PAM of scribing line.(2) structure figures of SBnIND carrier.
Fig. 3 is the gene expression figure provided in an embodiment of the present invention in J9707 in different tissues.
Fig. 4 is the measurement result of cracking resistance ascent provided in an embodiment of the present invention, shows the mono- Mutants homozygous of BnA03.IND It is extremely significant higher than wild type with the cracking resistance ascent of double Mutants homozygous.
Fig. 5 is the phenotypic map provided in an embodiment of the present invention for indicating wild type and mutant.
Fig. 6 is 18 periods provided in an embodiment of the present invention in Rape pod development, the slice microexamination figure of silique.
A in figure, b, c, d are the structural schematic diagram before phloroglucinol stain;E, f, g, h are paraffin section phloroglucinol stain The silique fruit lobe edge hair of single Mutants homozygous of effect picture afterwards, BnIND Gene Double Mutants homozygous and BnA03.IND copy It educates abnormal.
Specific embodiment
In order to make the objectives, technical solutions, and advantages of the present invention clearer, with reference to embodiments, to the present invention It is further elaborated.It should be appreciated that the specific embodiments described herein are merely illustrative of the present invention, it is not used to Limit the present invention.
In the prior art, it is not obtained using the homologous gene of CRISPR/Cas9 technology targeting BnIND by genetic transformation It to mutant single plant, is separated by inbreeding of more generation, obtains the homozygous mutant of double copies.Do not dash forward to BnIND function forfeiture The cracking resistance angle mechanism of variant is illustrated, and the reason of two copies are to technical effect caused by the property of cracking resistance angle is not parsed.
To solve the above problems, below with reference to concrete scheme, the present invention is described in detail.
A kind of cabbage type rape cracking resistance angle gene BnIND provided in an embodiment of the present invention, cabbage type rape cracking resistance angle Candidate gene BnIND nucleotides sequence is classified as SEQ ID NO:12, SEQ ID NO:13.
The embodiment of the present invention provides a kind of albumen of cabbage type rape cracking resistance angle gene BnIND coding, the albumen Amino acid sequence are as follows: SEQ ID NO:23, SEQ ID NO:24.
The embodiment of the present invention provides a kind of control cabbage type rape for separating cabbage type rape cracking resistance angle gene BnIND The promoter at cracking resistance angle, the nucleotides sequence of the sequence promoter are classified as SEQ ID NO:25, SEQ ID NO:26.
The embodiment of the present invention provides a kind of double mutation being mutated using cabbage type rape cracking resistance angle gene BnIND Body, the double-mutant copies while occurring the nucleotide sequence mutation in gene coding region by two of BnIND, containing described The plant of mutation has cracking resistance angle character, the double-mutant nucleotide sequence of cracking resistance angle phenotype is generated after mutation are as follows: SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22 and SEQ ID NO:23.
It is prominent that the embodiment of the present invention provides a kind of list being mutated using cabbage type rape cracking resistance angle gene BnIND Become, by the single copy of BnIND the nucleotide sequence mutation in gene coding region occurs for the single mutation, contains nucleosides after mutation The plant of acid sequence has cracking resistance angle character, and the single mutation nucleotides sequence that cracking resistance angle phenotype is generated after mutation is classified as SEQ ID NO: 28。
In the present invention, cabbage type rape cracking resistance angle candidate gene BnIND, nucleotides sequence list such as sequence are as follows:
>BnA03.IND
ATGTCTGGCTCAAAAGCAGATGCAGCCATAGCCCCAATAGTCATGATGGAGCATCATCATCTCCTTAT GAATTGGAACAAACCTATTGATCTCATTACAGAAGAAAACTCTTTTAACCACAATCCTCATTTCATAGTAGATCCA CCTTCCGAAACCCTAAGCCACTTCCAGCCCCCGCCGACAATCTTCTCCGATCACGGAGGAGGAGAGGAAGCAGAAG AAGAAGAAGAAGAAGAAGGAGAGGAAGAGATGGATCCGATGAAGAAGATGCAATACGCGATTGCTGCCATGCAGCC CGTAGACCTCGATCCAGCCACCGTTCCTAAGCCGAACCGCCGTAACGTAAGGGTAAGCGACGACCCTCAGACGGTG GTGGCTCGTCGGCGTAGAGAAAGGATAAGCGAGAAGATCCGGATATTGAAGAGGATGGTGCCAGGCGGTGCAAAGA TGGACACTGCCTCCATGCTCGACGAAGCCATCCGCTACACCAAGTTCTTGAAACGGCAGGTGAGGCTAGCTTCTTC AGCCTCACACTCAGCTTGGAGCTCCTATGTCTGA SEQ ID NO:12.
>BnC03.IND
ATGTCTGGTTCAAAAGCAGATGCAGCAGCCATAGCTCCAATAGTCATGATGGAGCCTCATCATCTCCT TATGAACTGGAACAAACCTATTGATCTCATTACACAAGAAAACTCTTTTAACCACAATCCTCATTTCATGGTAGAT CCACCTTCCGAAACCCTAAGCCACTTCCAGCCCCCGCCGACAGTCTTCTCCGATCACGGAGGAGGAGAGGAAGCAG AAGACGAAGAAGGAGAGGAAGAGATGGATGAGATGAAGGAGATGCAATACGCGATTGCTGCCATGCAGCCCGTAGA CATCGATCCAGCCACCGTTCCTAAGCCGAACCGCCGTAACGTAAGGGTAAGCGAGGACCCCCAGACGGTGGTGGCT CGTCGGCGTAGAGAAAGGATAAGCGAGAAGATCCGGATATTGAAGAGGATGGTGCCAGGCGGTGCAAAGATGGACA CTGCCTCCATGCTCGACGAAGCCATCCGCTACACCAAGTTCTTGAAACGGCAGGTGAGGCTTCTTCAGCCTCACAC TCAGCTTGGGGCTCCTATGTCTGACCCTTCTTGCCTTTGTTATTACCACAACTCGG ATACCTAA SEQ ID NO: 13.
The amino acid sequence of albumen is such as
>BnA03.IND
MSGSKADAAIAPIVMMEHHHLLMNWNKPIDLITEENSFNHNPHFIVDPPSETLSHFQPPPTIFSDHGG GEEAEEEEEEEGEEEMDPMKKMQYAIAAMQPVDLDPATVPKPNRRNVRVSDDPQTVVARRRRERISEKIRILKRMV PGGAKMDTASMLDEAIRYTKFLKRQVRLASSASHSAWSSYV SEQ ID NO:24.
>BnC03.IND
MSGSKADAAAIAPIVMMEPHHLLMNWNKPIDLITQENSFNHNPHFMVDPPSETLSHFQPPPTVFSDHG GGEEAEDEEGEEEMDEMKEMQYAIAAMQPVDIDPATVPKPNRRNVRVSEDPQTVVARRRRERISEKIRILKRMVPG GAKMDTASMLDEAIRYTKFLKRQVRLLQPHTQLGAPMSDPSCLCYYHNSDT SEQ ID NO:25.
Promoter sequence are as follows:
>BnA03.IND
GGGTGAGGTATCTCCATTTCAATTCTTCTCTTTATATATTAATCGAATTATTTACGTATGAAATGAAC GTTTATATAGAAATTTCGTGTGGAAAACGACATGTACACGGCATCTCAAGACCAATTAGTAATATACTTTAGTGGT GATTACATGTTTACTTATCCAATTGAGAATTTAAAGCATCGACAATACCTTAATGTCGATTAAGCCGTCCCCACTT CATGTAATGAGTTATGGGGGGAGAGAGAGATCCCGAAATTCGTCAAATAAAACAACTTAGAACTAAAAACCGACAC CAAGTATCATAAAGGAAATGTTGAAGAAGTCATTTATCGTATCCAGCTCACAATTCCTAAGATTAAATCATGACCG TTGGAAGAGCTTATAAGATTAAACTGAAGAAATTGTGGGTTTTAGAAGAAAGACAAGAAAGAGAAGAACATGATCT TACATTGCCTATTTTGGTGTATAGGAGTTGTCAAAAAGAGGAGAGAGAGGAGACAATTAGGTCAAATAAATGAGCA CTAAAAATGGAGACATGTGTTGAGTAACTATTACAAGAGCGACTTATGCTTCTATATGGCAATGATATCATCACCA AAGTGCAATGCCCCTTTTTGCCCTAGTTTCGTAAAGTCTCTCTCCTTCTTCGTCCTTAGGAAAAACCCTAAATTAA ATCCTGTGTTCTTGATCTTTCTTTTTGAGTAACCATGATTTTGACCACACACTAGTTCTTCTATATTTTGTGGTCT ATAGGATTTTGCTTTATATGTGTTTCTTGTATTGCTCCGTACGTGCGTATATAAATTTAAATGGTTACAACAAGGT TTATTATAAATAGGCACAAATTAGTCCATGAAGTTATTTAGCTTGCACAAGTATAATTTGTTAAGTATTTAAATAT ATAAATTTGTTACAAAACTTAATTAAATTTATCTGATTATATTTTCTTTAGTGTTCTTCCTTTGCCAACGTTGAGG TAGCTATTATTATTATTATTTTGAACATTATGTACGTAGTTATCTTGGCTAGTTATGATTCGAATTCTTAATTTGG ATCACACTTAACAGTATTTAAAATATTCTTAGAACTAAAATAATTAAGAGTTACCTTTAAATTGAAGTATTCGTGC TAAACAGAAACTAGAATAAACAAATGATTGCATGTTAATTTTTTTTTTCGATTTTCCTATCAGAATAAACACATGA TTGCATGCAAATTTTGTTTTTGATTACGTTATCTTTTGTTTATTTTAGTTTTGATGCTAATTAATATTTTTTATTA ACAACTCACATACATTCTACCTGATTCTAGGTCAGATAATGACACAGCGCAACAAAATTAATACAAAACCTTCGGA AAGTAGAATACCGCAGAAGTAACTTTTTTGGGTACATACGAAATACAGTGAAATCTCTATAAATTAATAATGTTGG GACTATACCAAAACTATAATTTTTTATTAATTTATAGAGATTAATTTATCGATATACTAATTGAATCAAAAACTTA ATTTGAGACTAAAAAATTATATTATTTTATAGAGATTTTTAGTGTATATTAATTTATAGAATATTATTTTATAAAA AATTTTAGTGTGTATTAATTTATAGAGTATTAATTTAAAGAGGTTATACTGTAATGTGAATCTTCGAAAAACATGC CATACATAACCACGGATCATAGTCGACACCTCAACGTGAAGCAAATTTGACAATTTACATACATAACCAACAAAAA GTAGAATACCTTGAAAATTTAAAACCCAAAATATGATGTAAAACTCAAGCTTGGTCCAGAGCATAAAAAAATTAAA GCCATCGCTTTGGTATCACATATTTAAACGTCAGTTTTTTTTTTTTTTTTTTTTGGGGGGGGGGGGGGGGTAATAT AAAAATATAATTAACAAAAAAAAATTATGAAACAATTAGCATGTAAAACACTAATCTTTTGGTTGTGACAAAACGT TTTCACAAATGTTCTATAAATAAATTCAAGTGCATTTTATCTGCAAAATATATACTTTCACTCATAAAATAAGAGC GTTTAAAACATTCATACACGCACTACATTGACATGACAAAAGAAATCCGCAAATACACATGATGTATGTCGAAAAA AACAAAAAATACACATGATGTATATATAGAGAGGATAGTATCTAGGAAATAAGACTATATTATATATATAAAGAAA ATAGAGAAAAGATAAAAATATAAATTGGTATGTATAAAAGAAAGGTCTATGCGTCT CTAG SEQ ID NO:26.
>BnC03.IND
CTAGAGACGCATAGACCTTTCTTTTATACATACCAAAATTTTTTTCTCTAATTTCTTTATATATATAA TATAGTCTTATTTCCTAGATATATCCGAACTAAATATGTTTGTATTTGCGGATTTCTTTTGTCATGTCAATCTAGT GCGTATATGAATGTTTTAAACGCTCTTATTTTATGAGTGAAAGTATATATTTTGCAGATAAAATGTGCTTGAATTT ATTTATAGAACATTTGTGAAAACGTTTTGTCACAACCAAAAGACTAGTGTTTTACATGCTAATTATTTCATAAATT TTCTTGATATTTATATTTTTATATTACTTCCCCAAAAAAAAAAACTGACGTTTAAATATCTGATACCAAAGCGATG GCTTTAATTTTTTTATGCTCTGGACCAAGCTTGAGTTTTACATCATATTTTGGGTTTAGGTTTTCACGGTATTCTA CTTTTTGTTGGTTATGTATGTAGATTGTCAAATTTGCTTCACGTTGAGGTGTCGACTATGATCCGTGGTTATGTCG TATGGCATGATTTTTGAAGATTCAAACTACTTCGTATGTCTACCCAAAAATGTTACTTCCGCGGTAATCTACTTTC CGAAAGTTTTGTATAATTTTGTTGCGCTGTGTCATTATCTGACCTAGAATCAGGTAGAATGTATGGAAGTTGTTAA TAAAAAAATATTAATTAGCATCAAAACTAAAATAAACAAAAGATAACATAATCAAAAACAAAATTTGCATGCAATC ATGTGTTTATTCTGATATATAGGATATTCGAAAAAAAAAATAACATGCAATCATTTGTTTATTGTAGTTTCTGTTT AACACGAATACTTCAATTTCAAGTTAACTCTTAATTATTTTAGTACTAAGAATATTTTAAATAGTATTTTTTTAAA TACTGTTAAGTGTTATCCAAATTAAGAATTTGAATCATAACTAGCCAAAATAACTACGTACATAATACATAATGTT CAAAATAATAATAATAATAATAATAATAATAATAATAATAGCTACCTCAACTTTGGCAAATGAAGAACACTAAAGA AAATATAATCAGATAAAGTTAATCAAGTTTTGTAGCAAATTTATATATTTAAATACTTAACACACACACACACACA CACATTTATATACCTCTTGTGCAAGCTAAATAACCTCATGGACTAATTTGTGCCTGTTTATAATAAACCTTAATTG TTGTAACCATTTAAATTTATATACGCACGTACGG SEQ ID NO:27.
The nucleotide sequence of double-mutant is such as
IND-59-14-8 aaccS4
CCATCC-GCTACACCAAGTTCTTG wt
CCATCCAGCTACACCAAGTTCTTG +A
CCATCCAGCTACACCAAGTTCTTG+A SEQ ID NO:14.
IND-67-3-2 aacc S4
CCATCC-GCTACACCAAGTTCTTG wt
CCA----GCTACACCAAGTTCTTG -3bp
CCATCCAGCTACACCAAGTTCTTG+A SEQ ID NO:15.
IND-146-1-1 aacc S4
CCATCC-GCTACACCAAGTTCTTG wt
CCATCCAGCTACACCAAGTTCTTG+A SEQ ID NO:16.
S1
CCAATA-GTCATGATGGAGCCTCA wt
CCAATATGTCATGATGGAGCCTCA+T SEQ ID NO:17.
IND-105-1-6 aacc
S4
CCATCC-GCTACACCAAGTTCTTG wt
CCATCCAGCTACACCAAGTTCTTG+A SEQ ID NO:18.
S1
CCAATA-GTCATGATGGAGCCTCA wt
CCAATATGTCATGATGGAGCCTCA+T SEQ ID NO:19.
S3
AGCCGAACCGCCGTAACGTAAGG wt
AGCCGAAC--------CGTAAGG- 8bp SEQ ID NO:20.
S4
CCATCC-GCTACACCAAGTTCTTG wt
CCATCCAGCTACACCAAGTTCTTG+A.SEQ ID NO:21.
IND-210-2-2 aacc S4
CCATCC-GCTACACCAAGTTCTTG wt
CCATCCTGCTACACCAAGTTCTTG+T SEQ ID NO:22.
S4
CCATCCGCTACACCAAGTTCTTG wt
GCTACACCAAGTTCTTG -17bp.SEQ ID NO:23.
Single mutation nucleotide sequence is such as
IND-201-4-10 aaCC S4
CCATCCGCTACACCAAGTTCTTG
TGGACACCAAGTTCTTG -11bp ,+3bp SEQ ID NO:28.
The invention will be further described combined with specific embodiments below.
Embodiment
It is provided in an embodiment of the present invention to obtain cracking resistance angle Brassica napus Mutant Cr single plant using CRISPR/CAS9 technology, The cracking resistance angle Brassica napus Mutant Cr are as follows:
IND-5-6-4 AAcc、IND-230-4-9 AAcc、IND-201-4-10 aaCC、IND-59-14-8 aacc、 IND-67-3-2 aacc,IND-146-1-1 aacc,IND-105-1-6 aacc,IND-210-2-2 aacc;
As shown in Figure 1, provided in an embodiment of the present invention prominent using CRISPR/CAS9 technology acquisition cracking resistance angle cabbage type rape The method of variant obtains mutant single plant by genetic transformation using the homologous gene of CRISPR/Cas9 technology targeting BnIND, It is separated by selfing, finally obtains Mutants homozygous;And pass through the mutation type surface identification to acquisition, the measurement of cracking resistance angle property and something lost Pass analysis.
It specifically includes:
Vector construction: S101 targets bHLH structure using four sgRNA of CRISPR-P programming, first three sgRNA The upstream in domain, the targeting sequence of the 4th sgRNA is in bHLH structural domain.It is targeted with pYLCRIPSR/Cas9 multiple gene group Carrier system carries out vector construction, the carrier constructed by sequence verification.
Genetic transformation: S102 has separated the gene of BnA03.IND and BnC03.IND from cabbage type rape pure lines J9707 Group DNA and coded sequence, are suitable for Agrobacterium-medialed transformation.Carrier is turned with the hypocotyl genetic transformation of mediated by agriculture bacillus Enter semi-winterness cabbage type rape pure lines J9707 in, by the tissue-cultured seedling obtained after hygromycin selection be placed in a greenhouse growth ( Illumination/dark 16/8 hour at 22 DEG C).
Positive identification: S103 carries out PCR to the tissue-cultured seedling in greenhouse and confirms its positive, using specific primer to progress The presence of PCR amplification verifying T-DNA.
S104, editor's detection: positive using the method preliminary screening T0 generation based on polyacrylamide gel electrophoresis (PAGE) The mutation of genetically modified plants carries out PCR fragment direct Sequencing to editor's single plant after PAGE glue screening or is cloned into pEASY- In T1 carrier, the genotype for determining transgenic plant is sequenced using Sanger.
S105, selfing are homozygous: the T0 generation editor single plant self-pollination of acquisition generates T1 generation and T2 generation, near target site PCR product be sequenced to obtain double Mutants homozygous, these double Mutants homozygous can all cause frameshift mutation to be produced without function Protein.Double Mutants homozygous of a batch without T-DNA insertion are obtained by PCR verifying.
Gene expression amount analysis: S106 extracts the RNA of the different tissues in J9707, is carried out with the CDNA that RNA is inverted to QRT-PCR is tested to detect the expression of BnA03.IND and BnC03.IND in different tissues.
The measurement of cracking resistance angle: S107 carries out the survey of cracking resistance angle to the mutant and wild type of acquisition using the method for random collision It is fixed.20 complete siliques are put into cylindrical beaker (internal diameter 13.4cm, height 20.5cm), by 13 14 millimeters of diameter Steel ball put into beaker, be to be shaken 10 minutes on 300 revs/min of shaking table in revolving speed, cracking angle in every two minutes record beakers The number of fruit.According to cracking resistance angle calculation formulaCalculate cracking resistance ascent.
S108, Phenotypic Observation: marking in florescence and spend, and about 5 weeks collection siliques of Post flowering are used for microexamination.By silique Middle part cut 5mm length and fix and be embedded in paraffin.The cross section of 8 μ m-thicks is obtained using 2016 slicer of Leica RM. Lignin analysis is carried out to cross section, 2% phloroglucin of slice is handled 2 minutes, then develops the color and takes pictures in 50% hydrochloric acid. Image is obtained using Nikon ECLIPSE 80i compound microscope.It uses zoom stereoscope (SMZ-U, Nikon, Japan) It observes the form of complete mature silique and takes pictures.
In step S103, positive identification primer PB-R are as follows:
GCGCGCggtctcTACCGACGCGTATCC SEQ ID NO:1.
BnINDS3-F
AttGTGGCTTAGGGTTTCGGAAGG SEQ ID NO:2.
In step S104, editor's identification primer are as follows:
BnIND-1:GAAAGGTCTATGCGTCTCTAGTC SEQ ID NO:3.
BnIND-5 AGGAGAGGAAGAGATGGCTCC SEQ ID NO:4.
BnIND-7 CTGAGTGTGAGGCTGAAGAAG SEQ ID NO:5.
BnIND-12 GTGAGGCTGAAGAAGCTAGC SEQ ID NO:6.
BnIND-14 GGAAGAGATGGATGAGATGAACG SEQ ID NO:7.
BnIND-15 AGGGTCAGACATAGGAGGC SEQ ID NO:8.
BnIND-16 TCTTCTTCTGCTTCCTCTCCTC SEQ ID NO:9.
In step S104, gene cloning primer BnIND-2 GGTCTATGCGTCTCTAGTCCAA SEQ ID NO:10.
BnIND-17 CAACATGAAACGCGTGATAGAA SEQ ID NO:11.
In the measurement of step S106 cracking resistance angle, the mutant of acquisition are as follows:
IND-201-4-10 aaCC
S4
CCATCCGCT---ACACCAAGTTCTTG wt
a-----------TGGACACCAAGTTCTTG -11bp,+3bp
IND-5-6-4 AAcc
S1
CCAATA-GTCATGATGGAGCCTCA wt
c CCAATAAGTCATGATGGAGCCTCA +A
IND-230-4-9 AAcc
CCAATAGTCATGATGGAGCCTCA wt
c CCAA--GTCATGATGGAGCCTCA -2bp
IND-59-14-8 aacc
S4
CCATCC-GCTACACCAAGTTCTTG wt
a CCATCCAGCTACACCAAGTTCTTG +A
c CCATCCAGCTACACCAAGTTCTTG+A SEQ ID NO:14.
IND-67-3-2 aacc
S4
CCATCC-GCTACACCAAGTTCTTG wt
a CCA----GCTACACCAAGTTCTTG -3bp
c CCATCCAGCTACACCAAGTTCTTG+A SEQ ID NO:15.
IND-146-1-1 aacc
S4
CCATCC-GCTACACCAAGTTCTTG wt
a CCATCCAGCTACACCAAGTTCTTG+A SEQ ID NO:16.
S1
CCAATA-GTCATGATGGAGCCTCA wt
c CCAATATGTCATGATGGAGCCTCA+T SEQ ID NO:17.
IND-105-1-6 aacc
S4
CCATCC-GCTACACCAAGTTCTTG wt
a CCATCCAGCTACACCAAGTTCTTG+A SEQ ID NO:18.
S1
CCAATA-GTCATGATGGAGCCTCA wt
c CCAATATGTCATGATGGAGCCTCA+T SEQ ID NO:19.
S3
AGCCGAACCGCCGTAACGTAAGG wt
c AGCCGAAC--------CGTAAGG- 8bp SEQ ID NO:20.
S4
CCATCC-GCTACACCAAGTTCTTG wt
c CCATCCAGCTACACCAAGTTCTTG+A.SEQ ID NO:21.
IND-210-2-2 aacc
S4
CCATCC-GCTACACCAAGTTCTTG wt
a CCATCCTGCTACACCAAGTTCTTG+T SEQ ID NO:22.
S4
CCATCCGCTACACCAAGTTCTTG wt
C//----GCTACACCAAGTTCTTG -17bp.SEQ ID NO:23.
The genomic DNA that step S102 is isolated, the nucleotide sequence of BnIND gene are as follows:
>BnA03.IND
ATGTCTGGCTCAAAAGCAGATGCAGCCATAGCCCCAATAGTCATGATGGAGCATCATCATCTCCTTAT GAATTGGAACAAACCTATTGATCTCATTACAGAAGAAAACTCTTTTAACCACAATCCTCATTTCATAGTAGATCCA CCTTCCGAAACCCTAAGCCACTTCCAGCCCCCGCCGACAATCTTCTCCGATCACGGAGGAGGAGAGGAAGCAGAAG AAGAAGAAGAAGAAGAAGGAGAGGAAGAGATGGATCCGATGAAGAAGATGCAATACGCGATTGCTGCCATGCAGCC CGTAGACCTCGATCCAGCCACCGTTCCTAAGCCGAACCGCCGTAACGTAAGGGTAAGCGACGACCCTCAGACGGTG GTGGCTCGTCGGCGTAGAGAAAGGATAAGCGAGAAGATCCGGATATTGAAGAGGATGGTGCCAGGCGGTGCAAAGA TGGACACTGCCTCCATGCTCGACGAAGCCATCCGCTACACCAAGTTCTTGAAACGGCAGGTGAGGCTAGCTTCTTC AGCCTCACACTCAGCTTGGAGCTCCTATGTCTGA SEQ ID NO:12.
>BnC03.IND
ATGTCTGGTTCAAAAGCAGATGCAGCAGCCATAGCTCCAATAGTCATGATGGAGCCTCATCATCTCCT TATGAACTGGAACAAACCTATTGATCTCATTACACAAGAAAACTCTTTTAACCACAATCCTCATTTCATGGTAGAT CCACCTTCCGAAACCCTAAGCCACTTCCAGCCCCCGCCGACAGTCTTCTCCGATCACGGAGGAGGAGAGGAAGCAG AAGACGAAGAAGGAGAGGAAGAGATGGATGAGATGAAGGAGATGCAATACGCGATTGCTGCCATGCAGCCCGTAGA CATCGATCCAGCCACCGTTCCTAAGCCGAACCGCCGTAACGTAAGGGTAAGCGAGGACCCCCAGACGGTGGTGGCT CGTCGGCGTAGAGAAAGGATAAGCGAGAAGATCCGGATATTGAAGAGGATGGTGCCAGGCGGTGCAAAGATGGACA CTGCCTCCATGCTCGACGAAGCCATCCGCTACACCAAGTTCTTGAAACGGCAGGTGAGGCTTCTTCAGCCTCACAC TCAGCTTGGGGCTCCTATGTCTGACCCTTCTTGCCTTTGTTATTACCACAACTCGG ATACCTAA SEQ ID NO: 13.
The invention will be further described combined with specific embodiments below.
Embodiment
The acquisition methods of cabbage type rape cracking resistance provided in an embodiment of the present invention angle gene BnIND function include:
(1), gene cloning: (seed comes from Wuhan, China rapeseed national project to plantation semi-winterness rape pure lines J9707 Research center), genomic DNA is extracted from fresh and tender blade, specific preparation method effectively extracts rape leaf total DNA referring to a kind of Method, Hua Zhong Agriculture University's journal, 1994,13 (5): 521-523, the method for report carry out, with 1% Ago-Gel electricity Swimming detection DNA mass, and with UV spectrophotometer measuring DNA concentration.Clone and separate obtains from the DNA of extraction The genomic DNA and coded sequence of BnA03.IND and BnC03.IND.
(2), vector construction: genomic DNA and coded sequence to isolated BnA03.IND and BnC03.IND into Row analysis devises four sgRNA on two copies of BnIND using CRISPR-P program.First three sgRNA targets bHLH The upstream of structural domain, the targeting sequence of the 4th sgRNA is in bHLH structural domain.Four sgRNA two copy in only There are the variation containing a base in BnA03.IND copy, other three sgRNA on first sgRNA to go up in two copies It is complete the same.Vector construction is carried out with pYLCRIPSR/Cas9 multiple gene group target carrier system, is constructed by sequence verification Carrier;
(3), the carrier built is transferred to semi-winterness Wild cabbage type oil with the hypocotyl genetic transforming method of mediated by agriculture bacillus Dish is sheerly in J9707, is carried out:
1) it sterilizes:
A. seed fills small semicanal with 2ml centrifuge tube, and 75% alcohol is added and impregnates seed 3min, notices that the time cannot be too long, Not so seed is not easy to germinate.
B. remove alcohol, 84 thimerosals (diluting one times with distilled water) are added and impregnate seed 3min;Remove 84 thimerosals, uses Aseptic water washing 4 to 5 times.Note: 84 thimerosal concentration sterile waters: commercialization 84 liquid=1:1;How much dosage is according to sub determine of committing genocide It is fixed, to be totally submerged seed.
2) sow: a. is multicast to M0 with the aseptic nipper seed that will sterilize, and every ware 10-12.B. culture dish is put into sterile culture In box, sets and cultivated 6 days at 24 DEG C of half-light.
3) bacterium is shaken: with LB training objective agrobacterium strains after sowing 4 days.Sterilize PU bottles of addition 4ml LB culture solutions, then inhales Enter the target bacteria of 10ul activation, and antibiotic is added, is i.e. 4ml LB liquid+4uL kan+4uL Gent+10uL bacterium night;In 28 Bacterium, about 15h are shaken in DEG C 180-220rpm shaking table.Note: it has to carry out object bacteria positive detection before shaking bacterium.- 80 DEG C of picking guarantors The agrobacterium strains deposited, in LB (anti-kanamycins and gentamicin) plate streaking culture, room temperature (28 DEG C or so) dark culture 40- 48h;Shake the survey of bacterium frontier inspection in picking single colonie side: a shakes bacterium: numbering and half spot of picking is seeded in the liquid LB that 1mL contains two kinds of antibiotic In, 28 DEG C, 220r/min culture.B detection: other half spot of picking 0.02M NaOH is cracked into 10min, utilizes special primer PCR detection is carried out, and negative and positive control is set, positive bacterium colony is chosen according to result.
4) it the preparation of explant and infects:
The OD value (in LB 0.8 or so preferably, general 16 hours) for surveying bacterium, draw the cultured bacterial strain of 2ml to 2ml without In bacterium centrifuge tube, 6000rpm is centrifuged 3min, outwells supernatant;It is suspended again with 2mlDM primary, 6000rpm is centrifuged 3min, in abandoning After clear, then 2mlDM suspends, by the bacterium solution to have suspended put 4 DEG C it is spare.
Seedling hypocotyl is equipped with 18ml M1 liquid during plate is prior into sterilized petri dishes after being cut sowing 6 days with sterile scissors Culture medium, the explant body length cut are 0.8-1.0cm, are disposably vertically cut as far as possible when cutting explant.Every ware 150-200 When a explant, the ready 2ml DM suspension bacteria liquid of the first step is added, starting timing dip dyeing 15min, (time cannot be grown, not so Explant is easily dead), the compartment time rocks once, and 4-5 times.Then bacterium solution is quickly sucked out, explant is transferred to sterile Pad have three layers filter paper plate in, siphon away a large amount of bacterium solutions adhered on explant.
5) it goes in M1 culture medium, the lower 24 DEG C of placements of 20-25 explant half-light of every ware.
6) it is gone in M2 after 2-3 days, and goes in light culture (24 DEG C daytime 16hs/ evening 8hs).
7) it is gone in M3 after 3 weeks, every 2-3 week subculture is primary, until there is green bud.
8) it is transferred to M4 root media to take root, rootage duration needs 2-4 weeks.Growing can be children after healthy and strong whole seedlings Seedling is transferred to crop field or greenhouse normal growth is solid.
The tissue-cultured seedling obtained after hygromycin selection is placed in a greenhouse growth, and (illumination/dark 16/8 is small at 22 DEG C When);
(4), the detection of mutant:
(1) positive identification for carrying out transgenosis to mutation single plant with specific primer BnINDS3-F/PB-R, picks out and contains The positive single plant for thering is T-DNA to be inserted into.
(2) according to target proximity sequence, according to the primer premier5 design primer of the sequence near target fragment, Primer carries out blast analysis after determining, guarantees without other homologous sequences.
(3) PCR amplification is carried out with the target fragment primer of design.
(4) 1% Agarose horizontal electrophoresis detect PCR amplification effect.
(5) Native PAGE gel electrophoresis method detects pcr amplification product.
(6) PCR amplification is carried out to editor's single plant after PAGE glue screening, product is directly sent company, surveyed using Sanger Sequence determines the genotype of transgenic plant.
(5), selfing is homozygous: the T0 generation editor single plant self-pollination of acquisition generates T1 generation and T2 generation, near target site PCR product be sequenced to obtain the homozygous mutant of the homozygous and double copy of single copy, these Mutants homozygous can all cause frameshit prominent Sell of one's property the protein that raw function is lost.Double Mutants homozygous of a batch without T-DNA insertion are obtained by PCR sequence verification;
(6), the expression analysis of gene: extract J9707 in different tissues RNA, with rna transcription at CDNA carry out QRT-PCR experiment finds that two copy expression quantity in vegetative reproduction organ are higher, the expression quantity highest in silique skin, simultaneously The expression of BnA03.IND is significantly larger than the expression of BnC03.IND.
(7), cracking resistance angle measures: carrying out the survey of cracking resistance angle to the mutant and wild type of acquisition using the method for random collision It is fixed.20 complete siliques are put into cylindrical beaker (internal diameter 13.4cm, height 20.5cm), by 13 14 millimeters of diameter Steel ball put into beaker, be to be shaken 10 minutes on 300 revs/min of shaking table in revolving speed, cracking angle in every two minutes record beakers The number of fruit.Cracking resistance ascent is calculated according to cracking resistance angle calculation formula.As a result cracking resistance angle system of double Mutants homozygous than wild type Number increases about 1.3 times, has had reached the level of signifiance.
(8), Phenotypic Observation: marking in florescence and spend, and about 5 weeks collection siliques of Post flowering are used for microexamination.As a result table Bright, the fruit lobe marginal texture of double-mutant silique is obvious and wild type is different.It is fixed simultaneously that 5mm length will be cut in the middle part of silique It is embedded in paraffin.The cross section of 8 μ m-thicks is obtained using 2016 slicer of Leica RM.Lignin analysis is carried out to cross section, 2% phloroglucin of slice is handled 2 minutes, then develops the color and takes pictures in 50% hydrochloric acid.It is multiple using Nikon ECLIPSE 80i It closes microscope and obtains image.Use the form of zoom stereoscope (SMZ-U, Nikon, Japan) observation complete mature silique And it takes pictures.Mutant and wild type silique to acquisition carry out microexamination discovery, in interior peel edge, the mutant of BnIND Most middle pericarp membranes has the cell wall thicker than wild type.It there's almost no the wooden of peel edge in double-mutant Change layer and separating layer, b layers of the endocarp of lignifying are directly connected with the lignifying vascular bundle of diaphragm, form around pericarp Continuous lignifying group prevents the cracking of silique.Although the lignifying structure of single mutant is similar with wild type, there is also Some small differences.It is compared with wild type, single mutant shows one layer small of the non-wood keratinocyte cells to form separating layer.It removes Except this, in the mono- Mutants homozygous of BnA03.IND, pericarp and diaphragm are closely joined together by lignifying bridge and prevent angle The cracking of fruit.But in wild type and BnC03.IND single mutant, in the endocarp layer of lignifying and the diaphragm dimension of lignifying There are apparent separating layers among tubing.
The mono- Mutants homozygous of BnA03.IND and the extremely significant increase of double Mutants homozygous cracking resistance ascents.Sequence comparing analysis It was found that two copies of BnIND gene encode albumen with the same function, and promoter region has biggish sequence variations; The expression quantity that further gene expression analysis confirms that BnA03.IND is copied during Rape pod development is significantly higher than BnC03.IND copy.Thus, it could be seen that since the sequence difference of promoter region causes two copies of BnIND gene to occur Difference on gene expression amount eventually leads to BnA03.IND copy and sends out in siliqua of oilseed rape dehiscence process compared with BnC03.IND copy Wave bigger effect.
The invention will be further described combined with specific embodiments below.
Fig. 2 is the gene structure figure and carrier figure of BnIND two copies provided in an embodiment of the present invention.
In figure: (1) it includes an exon that white box, which represents the gene, and gray area indicates the bHLH structure of the gene Domain, the vertical line in genetic model indicate that target site, arrow indicate the direction of sgRNA.S1-S4 illustrates target sequence, leukorrhagia The area PAM of scribing line.(2) structure figures of SBnIND carrier.
Fig. 3 is the gene expression figure provided in an embodiment of the present invention in J9707 in different tissues.
Fig. 4 is the measurement result of cracking resistance ascent provided in an embodiment of the present invention, shows the mono- Mutants homozygous of BnA03.IND It is significantly higher than wild type figure with the cracking resistance ascent of double Mutants homozygous.
Fig. 5 is the phenotypic map provided in an embodiment of the present invention for indicating wild type and mutant.
Fig. 6 is that the embodiment of the present invention is provided in 18 periods of Rape pod development, the slice microexamination figure of silique.
A in figure, b, c, d are the structural schematic diagram before phloroglucinol stain;E, f, g, h are paraffin section phloroglucinol stain Effect picture afterwards, BnIND gene mutation keep silique fruit lobe margin development abnormal.
The foregoing is merely illustrative of the preferred embodiments of the present invention, is not intended to limit the invention, all in essence of the invention Made any modifications, equivalent replacements, and improvements etc., should all be included in the protection scope of the present invention within mind and principle.
Sequence table
<110>Hua Zhong Agriculture University
<120>function and application of cabbage type rape cracking resistance angle gene BnIND
<160> 28
<170> SIPOSequenceListing 1.0
<210> 1
<211> 27
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 1
gcgcgcggtc tctaccgacg cgtatcc 27
<210> 2
<211> 24
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 2
attgtggctt agggtttcgg aagg 24
<210> 3
<211> 23
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 3
gaaaggtcta tgcgtctcta gtc 23
<210> 4
<211> 21
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 4
aggagaggaa gagatggctc c 21
<210> 5
<211> 21
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 5
ctgagtgtga ggctgaagaa g 21
<210> 6
<211> 20
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 6
gtgaggctga agaagctagc 20
<210> 7
<211> 23
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 7
ggaagagatg gatgagatga acg 23
<210> 8
<211> 19
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 8
agggtcagac ataggaggc 19
<210> 9
<211> 22
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 9
tcttcttctg cttcctctcc tc 22
<210> 10
<211> 22
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 10
ggtctatgcg tctctagtcc aa 22
<210> 11
<211> 22
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 11
caacatgaaa cgcgtgatag aa 22
<210> 12
<211> 558
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 12
atgtctggct caaaagcaga tgcagccata gccccaatag tcatgatgga gcatcatcat 60
ctccttatga attggaacaa acctattgat ctcattacag aagaaaactc ttttaaccac 120
aatcctcatt tcatagtaga tccaccttcc gaaaccctaa gccacttcca gcccccgccg 180
acaatcttct ccgatcacgg aggaggagag gaagcagaag aagaagaaga agaagaagga 240
gaggaagaga tggatccgat gaagaagatg caatacgcga ttgctgccat gcagcccgta 300
gacctcgatc cagccaccgt tcctaagccg aaccgccgta acgtaagggt aagcgacgac 360
cctcagacgg tggtggctcg tcggcgtaga gaaaggataa gcgagaagat ccggatattg 420
aagaggatgg tgccaggcgg tgcaaagatg gacactgcct ccatgctcga cgaagccatc 480
cgctacacca agttcttgaa acggcaggtg aggctagctt cttcagcctc acactcagct 540
tggagctcct atgtctga 558
<210> 13
<211> 588
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 13
atgtctggtt caaaagcaga tgcagcagcc atagctccaa tagtcatgat ggagcctcat 60
catctcctta tgaactggaa caaacctatt gatctcatta cacaagaaaa ctcttttaac 120
cacaatcctc atttcatggt agatccacct tccgaaaccc taagccactt ccagcccccg 180
ccgacagtct tctccgatca cggaggagga gaggaagcag aagacgaaga aggagaggaa 240
gagatggatg agatgaagga gatgcaatac gcgattgctg ccatgcagcc cgtagacatc 300
gatccagcca ccgttcctaa gccgaaccgc cgtaacgtaa gggtaagcga ggacccccag 360
acggtggtgg ctcgtcggcg tagagaaagg ataagcgaga agatccggat attgaagagg 420
atggtgccag gcggtgcaaa gatggacact gcctccatgc tcgacgaagc catccgctac 480
accaagttct tgaaacggca ggtgaggctt cttcagcctc acactcagct tggggctcct 540
atgtctgacc cttcttgcct ttgttattac cacaactcgg atacctaa 588
<210> 14
<211> 71
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 14
ccatccgcta caccaagttc ttgccatcca gctacaccaa gttcttgcca tccagctaca 60
ccaagttctt g 71
<210> 15
<211> 67
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 15
ccatccgcta caccaagttc ttgccagcta caccaagttc ttgccatcca gctacaccaa 60
gttcttg 67
<210> 16
<211> 47
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 16
ccatccgcta caccaagttc ttgccatcca gctacaccaa gttcttg 47
<210> 17
<211> 47
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 17
ccaatagtca tgatggagcc tcaccaatat gtcatgatgg agcctca 47
<210> 18
<211> 47
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 18
ccatccgcta caccaagttc ttgccatcca gctacaccaa gttcttg 47
<210> 19
<211> 47
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 19
ccaatagtca tgatggagcc tcaccaatat gtcatgatgg agcctca 47
<210> 20
<211> 38
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 20
agccgaaccg ccgtaacgta aggagccgaa ccgtaagg 38
<210> 21
<211> 47
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 21
ccatccgcta caccaagttc ttgccatcca gctacaccaa gttcttg 47
<210> 22
<211> 47
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 22
ccatccgcta caccaagttc ttgccatcct gctacaccaa gttcttg 47
<210> 23
<211> 40
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 23
ccatccgcta caccaagttc ttggctacac caagttcttg 40
<210> 24
<211> 185
<212> PRT
<213>artificial sequence (Artificial Sequence)
<400> 24
Met Ser Gly Ser Lys Ala Asp Ala Ala Ile Ala Pro Ile Val Met Met
1 5 10 15
Glu His His His Leu Leu Met Asn Trp Asn Lys Pro Ile Asp Leu Ile
20 25 30
Thr Glu Glu Asn Ser Phe Asn His Asn Pro His Phe Ile Val Asp Pro
35 40 45
Pro Ser Glu Thr Leu Ser His Phe Gln Pro Pro Pro Thr Ile Phe Ser
50 55 60
Asp His Gly Gly Gly Glu Glu Ala Glu Glu Glu Glu Glu Glu Glu Gly
65 70 75 80
Glu Glu Glu Met Asp Pro Met Lys Lys Met Gln Tyr Ala Ile Ala Ala
85 90 95
Met Gln Pro Val Asp Leu Asp Pro Ala Thr Val Pro Lys Pro Asn Arg
100 105 110
Arg Asn Val Arg Val Ser Asp Asp Pro Gln Thr Val Val Ala Arg Arg
115 120 125
Arg Arg Glu Arg Ile Ser Glu Lys Ile Arg Ile Leu Lys Arg Met Val
130 135 140
Pro Gly Gly Ala Lys Met Asp Thr Ala Ser Met Leu Asp Glu Ala Ile
145 150 155 160
Arg Tyr Thr Lys Phe Leu Lys Arg Gln Val Arg Leu Ala Ser Ser Ala
165 170 175
Ser His Ser Ala Trp Ser Ser Tyr Val
180 185
<210> 25
<211> 195
<212> PRT
<213>artificial sequence (Artificial Sequence)
<400> 25
Met Ser Gly Ser Lys Ala Asp Ala Ala Ala Ile Ala Pro Ile Val Met
1 5 10 15
Met Glu Pro His His Leu Leu Met Asn Trp Asn Lys Pro Ile Asp Leu
20 25 30
Ile Thr Gln Glu Asn Ser Phe Asn His Asn Pro His Phe Met Val Asp
35 40 45
Pro Pro Ser Glu Thr Leu Ser His Phe Gln Pro Pro Pro Thr Val Phe
50 55 60
Ser Asp His Gly Gly Gly Glu Glu Ala Glu Asp Glu Glu Gly Glu Glu
65 70 75 80
Glu Met Asp Glu Met Lys Glu Met Gln Tyr Ala Ile Ala Ala Met Gln
85 90 95
Pro Val Asp Ile Asp Pro Ala Thr Val Pro Lys Pro Asn Arg Arg Asn
100 105 110
Val Arg Val Ser Glu Asp Pro Gln Thr Val Val Ala Arg Arg Arg Arg
115 120 125
Glu Arg Ile Ser Glu Lys Ile Arg Ile Leu Lys Arg Met Val Pro Gly
130 135 140
Gly Ala Lys Met Asp Thr Ala Ser Met Leu Asp Glu Ala Ile Arg Tyr
145 150 155 160
Thr Lys Phe Leu Lys Arg Gln Val Arg Leu Leu Gln Pro His Thr Gln
165 170 175
Leu Gly Ala Pro Met Ser Asp Pro Ser Cys Leu Cys Tyr Tyr His Asn
180 185 190
Ser Asp Thr
195
<210> 26
<211> 2256
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 26
gggtgaggta tctccatttc aattcttctc tttatatatt aatcgaatta tttacgtatg 60
aaatgaacgt ttatatagaa atttcgtgtg gaaaacgaca tgtacacggc atctcaagac 120
caattagtaa tatactttag tggtgattac atgtttactt atccaattga gaatttaaag 180
catcgacaat accttaatgt cgattaagcc gtccccactt catgtaatga gttatggggg 240
gagagagaga tcccgaaatt cgtcaaataa aacaacttag aactaaaaac cgacaccaag 300
tatcataaag gaaatgttga agaagtcatt tatcgtatcc agctcacaat tcctaagatt 360
aaatcatgac cgttggaaga gcttataaga ttaaactgaa gaaattgtgg gttttagaag 420
aaagacaaga aagagaagaa catgatctta cattgcctat tttggtgtat aggagttgtc 480
aaaaagagga gagagaggag acaattaggt caaataaatg agcactaaaa atggagacat 540
gtgttgagta actattacaa gagcgactta tgcttctata tggcaatgat atcatcacca 600
aagtgcaatg cccctttttg ccctagtttc gtaaagtctc tctccttctt cgtccttagg 660
aaaaacccta aattaaatcc tgtgttcttg atctttcttt ttgagtaacc atgattttga 720
ccacacacta gttcttctat attttgtggt ctataggatt ttgctttata tgtgtttctt 780
gtattgctcc gtacgtgcgt atataaattt aaatggttac aacaaggttt attataaata 840
ggcacaaatt agtccatgaa gttatttagc ttgcacaagt ataatttgtt aagtatttaa 900
atatataaat ttgttacaaa acttaattaa atttatctga ttatattttc tttagtgttc 960
ttcctttgcc aacgttgagg tagctattat tattattatt ttgaacatta tgtacgtagt 1020
tatcttggct agttatgatt cgaattctta atttggatca cacttaacag tatttaaaat 1080
attcttagaa ctaaaataat taagagttac ctttaaattg aagtattcgt gctaaacaga 1140
aactagaata aacaaatgat tgcatgttaa tttttttttt cgattttcct atcagaataa 1200
acacatgatt gcatgcaaat tttgtttttg attacgttat cttttgttta ttttagtttt 1260
gatgctaatt aatatttttt attaacaact cacatacatt ctacctgatt ctaggtcaga 1320
taatgacaca gcgcaacaaa attaatacaa aaccttcgga aagtagaata ccgcagaagt 1380
aacttttttg ggtacatacg aaatacagtg aaatctctat aaattaataa tgttgggact 1440
ataccaaaac tataattttt tattaattta tagagattaa tttatcgata tactaattga 1500
atcaaaaact taatttgaga ctaaaaaatt atattatttt atagagattt ttagtgtata 1560
ttaatttata gaatattatt ttataaaaaa ttttagtgtg tattaattta tagagtatta 1620
atttaaagag gttatactgt aatgtgaatc ttcgaaaaac atgccataca taaccacgga 1680
tcatagtcga cacctcaacg tgaagcaaat ttgacaattt acatacataa ccaacaaaaa 1740
gtagaatacc ttgaaaattt aaaacccaaa atatgatgta aaactcaagc ttggtccaga 1800
gcataaaaaa attaaagcca tcgctttggt atcacatatt taaacgtcag tttttttttt 1860
tttttttttt gggggggggg ggggggtaat ataaaaatat aattaacaaa aaaaaattat 1920
gaaacaatta gcatgtaaaa cactaatctt ttggttgtga caaaacgttt tcacaaatgt 1980
tctataaata aattcaagtg cattttatct gcaaaatata tactttcact cataaaataa 2040
gagcgtttaa aacattcata cacgcactac attgacatga caaaagaaat ccgcaaatac 2100
acatgatgta tgtcgaaaaa aacaaaaaat acacatgatg tatatataga gaggatagta 2160
tctaggaaat aagactatat tatatatata aagaaaatag agaaaagata aaaatataaa 2220
ttggtatgta taaaagaaag gtctatgcgt ctctag 2256
<210> 27
<211> 1242
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 27
ctagagacgc atagaccttt cttttataca taccaaaatt tttttctcta atttctttat 60
atatataata tagtcttatt tcctagatat atccgaacta aatatgtttg tatttgcgga 120
tttcttttgt catgtcaatc tagtgcgtat atgaatgttt taaacgctct tattttatga 180
gtgaaagtat atattttgca gataaaatgt gcttgaattt atttatagaa catttgtgaa 240
aacgttttgt cacaaccaaa agactagtgt tttacatgct aattatttca taaattttct 300
tgatatttat atttttatat tacttcccca aaaaaaaaaa ctgacgttta aatatctgat 360
accaaagcga tggctttaat ttttttatgc tctggaccaa gcttgagttt tacatcatat 420
tttgggttta ggttttcacg gtattctact ttttgttggt tatgtatgta gattgtcaaa 480
tttgcttcac gttgaggtgt cgactatgat ccgtggttat gtcgtatggc atgatttttg 540
aagattcaaa ctacttcgta tgtctaccca aaaatgttac ttccgcggta atctactttc 600
cgaaagtttt gtataatttt gttgcgctgt gtcattatct gacctagaat caggtagaat 660
gtatggaagt tgttaataaa aaaatattaa ttagcatcaa aactaaaata aacaaaagat 720
aacataatca aaaacaaaat ttgcatgcaa tcatgtgttt attctgatat ataggatatt 780
cgaaaaaaaa aataacatgc aatcatttgt ttattgtagt ttctgtttaa cacgaatact 840
tcaatttcaa gttaactctt aattatttta gtactaagaa tattttaaat agtatttttt 900
taaatactgt taagtgttat ccaaattaag aatttgaatc ataactagcc aaaataacta 960
cgtacataat acataatgtt caaaataata ataataataa taataataat aataataata 1020
gctacctcaa ctttggcaaa tgaagaacac taaagaaaat ataatcagat aaagttaatc 1080
aagttttgta gcaaatttat atatttaaat acttaacaca cacacacaca cacacattta 1140
tatacctctt gtgcaagcta aataacctca tggactaatt tgtgcctgtt tataataaac 1200
cttaattgtt gtaaccattt aaatttatat acgcacgtac gg 1242
<210> 28
<211> 40
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 28
ccatccgcta caccaagttc ttgtggacac caagttcttg 40

Claims (8)

1. a kind of cabbage type rape cracking resistance angle gene BnIND, which is characterized in that cabbage type rape cracking resistance angle gene BnIND Nucleotides sequence is classified as SEQ ID NO:12, SEQ ID NO:13.
2. a kind of albumen of cabbage type rape cracking resistance as described in claim 1 angle gene BnIND coding, which is characterized in that described The amino acid sequence of albumen are as follows: SEQ ID NO:24, SEQ ID NO:25.
3. the control cabbage type rape cracking resistance that a kind of separation claim 1 requires cabbage type rape cracking resistance angle gene BnIND The promoter at angle, which is characterized in that the nucleotides sequence of the sequence promoter is classified as SEQ ID NO:26, SEQ ID NO:27.
4. a kind of utilize the double-mutant that cabbage type rape cracking resistance angle gene BnIND is mutated described in claim 1, feature It is, the double-mutant copies while occurring the nucleotide sequence mutation in gene coding region by two of BnIND, containing The plant for stating mutation has cracking resistance angle character, the double-mutant nucleotide sequence of cracking resistance angle phenotype is generated after mutation are as follows: SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22 and SEQ ID NO:23.
5. a kind of using the single mutation that cabbage type rape cracking resistance angle gene BnIND is mutated described in claim 1, feature exists In by the single copy of BnIND the nucleotide sequence mutation in gene coding region occurs for the single mutation, contains nucleosides after mutation The plant of acid sequence has cracking resistance angle character, and the single mutation nucleotides sequence that cracking resistance angle phenotype is generated after mutation is classified as SEQ ID NO: 28。
6. a kind of application using double mutation as claimed in claim 4 in breeding.
7. a kind of application of single mutation using described in claim 5 in breeding.
8. a kind of utilize cabbage type rape cracking resistance angle candidate gene BnIND described in claim 1 in cabbage type rape cracking resistance angle property The application of shape improvement kind.
CN201910218648.9A 2019-03-21 2019-03-21 Function and application of brassica napus pod dehiscence resistance gene BnIND Active CN109879945B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910218648.9A CN109879945B (en) 2019-03-21 2019-03-21 Function and application of brassica napus pod dehiscence resistance gene BnIND

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910218648.9A CN109879945B (en) 2019-03-21 2019-03-21 Function and application of brassica napus pod dehiscence resistance gene BnIND

Publications (2)

Publication Number Publication Date
CN109879945A true CN109879945A (en) 2019-06-14
CN109879945B CN109879945B (en) 2021-05-28

Family

ID=66933607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910218648.9A Active CN109879945B (en) 2019-03-21 2019-03-21 Function and application of brassica napus pod dehiscence resistance gene BnIND

Country Status (1)

Country Link
CN (1) CN109879945B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023168213A3 (en) * 2022-03-02 2023-10-05 Pioneer Hi-Bred International, Inc. Ind variants and resistance to pod shatter in brassica

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431889A (en) * 2004-06-18 2009-05-13 加利福尼亚大学董事会 Brassica INDEHISCENT1 sequences
CN100584952C (en) * 2003-06-23 2010-01-27 拜尔生物科学公司 Methods and means for delaying seed shattering in plants
US20140351967A1 (en) * 2008-07-17 2014-11-27 Bayer Cropscience N.V. Brassica Plant Comprising a Mutant Indehiscent Allele
CN104531751A (en) * 2008-08-20 2015-04-22 巴斯夫植物科学有限公司 Plants having enhanced yield-related traits and a method for making the same
US20170055480A1 (en) * 2007-11-28 2017-03-02 Bayer Cropscience N.V. Brassica plant comprising a mutant indehiscent allele
CN109266646A (en) * 2018-09-27 2019-01-25 中国农业科学院油料作物研究所 The method and application of cabbage type rape BnMAX1 gene are knocked out using CRISPR-Cas9 system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100584952C (en) * 2003-06-23 2010-01-27 拜尔生物科学公司 Methods and means for delaying seed shattering in plants
CN101431889A (en) * 2004-06-18 2009-05-13 加利福尼亚大学董事会 Brassica INDEHISCENT1 sequences
US20120149891A1 (en) * 2004-06-18 2012-06-14 The Regents Of The University Of California Brassica indehiscent1 sequences
US20170055480A1 (en) * 2007-11-28 2017-03-02 Bayer Cropscience N.V. Brassica plant comprising a mutant indehiscent allele
US20140351967A1 (en) * 2008-07-17 2014-11-27 Bayer Cropscience N.V. Brassica Plant Comprising a Mutant Indehiscent Allele
CN104531751A (en) * 2008-08-20 2015-04-22 巴斯夫植物科学有限公司 Plants having enhanced yield-related traits and a method for making the same
CN109266646A (en) * 2018-09-27 2019-01-25 中国农业科学院油料作物研究所 The method and application of cabbage type rape BnMAX1 gene are knocked out using CRISPR-Cas9 system

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
JANINA BRAATZ 等: ""CRISPR-Cas9 Targeted Mutagenesis Leads to Simultaneous Modification of Different Homoeologous Gene Copies in Polyploid Oilseed Rape (Brassica napus)"", 《PLANT PHYSIOL》 *
JANINA BRAATZ 等: ""The effect of INDEHISCENT point mutations on silique shatter resistance in oilseed rape (Brassica napus)"", 《THEOR APPL GENET》 *
MUHAMMAD HAFEEZ ULLAH KHAN 等: ""Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology"", 《JOURNAL OF CELLULAR PHYSIOLOGY》 *
NCBI: ""PREDICTED: Brassica napus transcription factor IND-like (LOC106444851), mRNA"", 《GENBANK》 *
PAULINE STEPHENSON 等: ""The power of model-to-crop translation illustrated by reducing seed loss from pod shatter in oilseed rape"", 《BIORXIV》 *
THOMAS GIRIN 等: ""Brassicaceae INDEHISCENT genes specify valve margin cell fate and repress replum formation"", 《THE PLANT JOURNAL》 *
UNIPROTKB: ""A0A0D3B967_BRAOL"", 《UNIPROTKB》 *
YUNGU ZHAI 等: ""CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L"", 《THEOR APPL GENET》 *
彭鹏飞 等: ""甘蓝型油菜裂角相关基因BnRPL的克隆与分析"", 《中国油料作物学报》 *
文雁成 等: ""油菜抗裂角研究进展"", 《植物遗传资源学报》 *
朱恺毓: ""利用CRISPR/CAS9技术创建甘蓝型油菜多室突变体"", 《中国优秀硕士学位论文全文数据库(电子期刊) 农业科技辑》 *
浦惠明 等: ""甘蓝型油菜角果的抗裂角特性及其相关分析"", 《中国油料作物学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023168213A3 (en) * 2022-03-02 2023-10-05 Pioneer Hi-Bred International, Inc. Ind variants and resistance to pod shatter in brassica

Also Published As

Publication number Publication date
CN109879945B (en) 2021-05-28

Similar Documents

Publication Publication Date Title
CN102358902B (en) Silkworm fibroin heavy-chain gene mutation sequence and mutation method and application
CN108130328B (en) Application of male sterility gene OsDPW3 and rice fertility restoration method
CN108239647A (en) A kind of gene, molecular labeling and application for controlling rape plant type
CN109022450B (en) ZmCL 2-1 gene for regulating and controlling included angle of corn leaves and application thereof
CN110128516A (en) Barley moisture-proof controlling gene HvERF2.11, albumen and its application in breeding
CN107353332B (en) Protein and the application of a kind of rice chloroplast developmental regulation Gene A HS1 and its coding
CN102181456B (en) Cotton flowering hormone GhFT and vector, construct, cell and polypeptide thereof
CN106496313B (en) Disease-resistance-related protein IbSWEET10 and its encoding gene and application
CN113583099B (en) Method for cultivating alfalfa male sterile line and corresponding maintainer line and related biological material thereof
CN113789334B (en) Application of HY5 gene in regulation and control of plant resistance to pest and disease damage
CN110358772A (en) The OsEBP89 gene and preparation method of raising rice abiotic stress resistance and application
CN108603198A (en) Manipulate the composition and method of development of plants
CN108640983A (en) The application of FvCPC2 albumen and its encoding gene in the growth of regulation and control multiple eating bacterium mycelia and fruit body development
CN109879945A (en) The function and application of cabbage type rape cracking resistance angle gene BnIND
CN111118042A (en) Powdery mildew-resistant grape calcium-dependent protein kinase gene VpCDPK9 and application thereof
CN110938122A (en) Male sterile gene OsNIN5, application thereof and fertility restoration method
CN114250233B (en) Application of arabidopsis calcium ion channel gene AtCNGC3 in sclerotinia sclerotiorum prevention and control
CN111499709B (en) RGN1 protein related to grain number per ear of rice as well as encoding gene and application thereof
CN114457106A (en) Application of tomato gene SlCIPK7 in regulation and control of plant drought resistance
CN102586264B (en) Method for improving plant yield
CN109293756A (en) The albumen of one control rice rice blast fungus sporulation quantity and infection ability
CN101817875B (en) Rice adventitious root protruding control gene OsDARE1 and application thereof
CN114134155B (en) MLO gene mutant and preparation method and application thereof
CN116333077B (en) Application of corn ZmLAC9 gene in plant adaptation to salt stress
CN116515857B (en) Apricot PaPIP1-2 gene for kernel and application thereof in improving cold resistance of plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant