CN109830603A - 一种基于离子液体的复合电子传输层及钙钛矿太阳电池 - Google Patents

一种基于离子液体的复合电子传输层及钙钛矿太阳电池 Download PDF

Info

Publication number
CN109830603A
CN109830603A CN201910085442.3A CN201910085442A CN109830603A CN 109830603 A CN109830603 A CN 109830603A CN 201910085442 A CN201910085442 A CN 201910085442A CN 109830603 A CN109830603 A CN 109830603A
Authority
CN
China
Prior art keywords
ionic liquid
layer
electron transport
transport layer
composite electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910085442.3A
Other languages
English (en)
Inventor
苗青青
张锁江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN201910085442.3A priority Critical patent/CN109830603A/zh
Publication of CN109830603A publication Critical patent/CN109830603A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

本发明涉及一种基于离子液体的复合电子传输层及钙钛矿太阳电池,其特征在于复合电子传输层由二氧化钛层及离子液体层构成,其中二氧化钛层采用离子液体辅助微波低温原位合成法进行合成。该法制备方法简单、可操作性强、反应温度低且不需高温退火、反应时间短、成本低、绿色环保,可获得高纯度、尺寸均匀、高性能的二氧化钛电子传输层材料。离子液体层采用固态离子液体溶解在溶剂中旋涂在制备的二氧化钛层上,低温烧结处理后可得基于离子液体的复合电子传输层。所制备的钙钛矿太阳电池具有更高的光电转换效率,且有效降低了生产工艺损耗、缩短了生产周期并降低了成本,尤其适用于柔性电池制备。

Description

一种基于离子液体的复合电子传输层及钙钛矿太阳电池
技术领域
本发明涉及光伏领域,特别涉及一种基于离子液体的复合电子传输层及钙钛矿太阳电池。
背景技术
太阳电池是利用太阳能的直接有效方式之一,提高太阳电池的光电转换效率并降低成本是当前的核心课题。钙钛矿太阳电池作为一种新型全固态光伏器件,近年效率发展飞速,目前已超过23%,已达到商业化的水平。由于其具有效率高、成本低、工艺简单、易于大规模生产等诸多优点被认为是最具有产业化实力的新型太阳电池。
钙钛矿太阳电池基本结构通常由导电基底、电子传输层、钙钛矿光吸收层、空穴传输层及金属电极组成。电子传输层作为钙钛矿太阳电池的重要组成部分,其性能直接影响器件的光电转换效率。当前的电子传输材料通常为二氧化钛、氧化锌、二氧化锡等。上述材料在制备电子传输层的过程中,反应温度较高且需要高温退火,增大了工艺损耗及电池的成本,不利于大规模工业化生产。此外当前的电子传输层存在载流子迁移率低、高缺陷态等严重制约和影响了电子的转移过程及器件的效率及稳定性。
发明内容
为了解决上述现有技术中的不足,本发明的目的在于提供一种基于离子液体的复合电子传输层及钙钛矿太阳电池,复合电子传输层由二氧化钛层及离子液体层构成,其中二氧化钛电子传输层通过一种离子液体辅助微波低温原位合成法进行合成,该法方法简单、可操作性强、反应温度低且不需高温退火、时间短、成本低、能耗小,可获得高纯度、尺寸均匀、光学性能良好的二氧化钛电子传输层材料。离子液体层采用固态离子液体溶解在溶剂中旋涂在制备的二氧化钛层上,低温烧结处理后可得基于离子液体的复合电子传输层。所制备的钙钛矿太阳电池具有更高的光电转换效率。
本发明提供的解决方案是:一种基于离子液体的复合电子传输层,其特征在于所述复合电子传输层由二氧化钛层及离子液体层构成,其中二氧化钛层采用离子液体辅助微波低温原位合成法进行合成。
本发明所述的离子液体辅助微波低温原位合成法包括如下步骤:
(5)将氯化钛/钛酸四丁酯/氟化钛的水溶液/醇溶液及功能化离子液体混合均匀;
(6)将干净的导电基底置于反应液中;
(7)反应液在50℃-70℃下微波加热反应;
(8)自然冷却后导电基底分别用水、乙醇冲洗后80℃干燥后获得在导电基底上原位生长的电子传输层。
本发明所述的离子液体辅助微波低温原位合成法中微波加热反应时间为0-30min;所述功能化离子液体阳离子选自咪唑类、吡啶类、吡咯类、哌啶类、吡唑类、三唑类、噻唑类、季铵盐类、季鏻盐类、胍类阳离子;所述离子液体阴离子选自Cl-、Br-、I-、BF4 -、PF6 -、CF3COO-、CF3SO3 -、NTf2 -、N(CN)2 -、C(CN)3 -、NCS-、NO3 -、H2PO4 -、HSO4 -、RCOO-、RSO4 -,其中R选自氢和具有直链或支链的烷基;所述离子液体与溶剂的体积比为1:40-40:1;所述氯化钛/钛酸四丁酯/氟化钛的水溶液/醇溶液的浓度为0.01M-2M;所述醇溶液选自甲醇、乙醇、丙醇中的一种或多种;所述导电基底为透明导电玻璃或柔性导电塑料;所述导电基底用聚酰亚胺胶带保护非导电面及导电面的公共电极,导电面朝向选自水平向上、水平向下、斜上、斜下、垂直于反应釜底面中的一种。
本发明所述的离子液体层制备方法包含以下步骤:
(1)将离子液体按一定浓度溶解在溶剂中;
(2)在长有通过离子液体辅助微波低温原位合成法合成的二氧化钛层上旋涂混合溶液;
(3)25-100℃烧结10-30min后即得复合电子传输层。
本发明所述离子液体常温下为固态;离子液体层制备方法中溶剂为甲醇、乙醇、丙醇中的一种或多种;混合溶液浓度为1-50mg/ml;旋涂速率为3000-6000rpm。
本发明还提供了一种复合电子传输层。
本发明所述的复合电子传输层通过本发明所提供的制备方法获得。
本发明还提供了一种钙钛矿太阳电池。
本发明所述的钙钛矿太阳电池,包括本发明所提供的基于离子液体的复合电子传输层。
本发明所述钙钛矿太阳电池结构自下而上依次包括导电基底、复合电子传输层、钙钛矿吸收层、空穴传输层、背电极层。
本发明与现有技术相比具有以下有益效果:
⑴本发明提供了一种基于离子液体的复合电子传输层,由离子液体辅助微波低温原位合成法制备的二氧化钛层及离子液体层组成。具有反应温度低、反应时间短、不需高温退火、方法简单、成本低、绿色环保等特点,有利于推广。可获得高纯度、尺寸均匀、光学性能良好的二氧化钛电子传输层材料。不需高温烧结。解决现有工艺中材料在制备电子传输层的过程中,反应温度较高且需要高温退火,工艺损耗大,成本高,不利于大规模工业化生产等问题。
⑵本发明提供了一类简单的基于离子液体的复合电子传输层,可在低温及短时间内获得高纯、均匀稳定的高性能二氧化钛电子传输层及离子液体电子传输层。
⑶本发明采用基于离子液体的钙钛矿太阳电池复合电子传输层,尤其适用于柔性钙钛矿太阳电池。
⑷相比现有技术,本发明提供的技术可用于制备系列高效的基于低温原位合成的二氧化钛电子传输层及离子液体电子传输层的钙钛矿太阳电池。本发明提供的基于离子液体的复合电子传输层所构建的钙钛矿太阳电池制备简单,周期短,有效降低了生产成本,具有更高的光电转换效率,适用于柔性钙钛矿太阳电池的制备,在工业化生产方面具有潜在的应用前景。
附图说明
图1是空白导电基底FTO的SEM图;
图2是对比实验的常规水热法原位二氧化钛电子传输材料的SEM图;
图3~图5是本发明制备的各种不同条件下原位生长二氧化钛电子传输材料的SEM图;
图6~图8是各种不同条件下离子液体电子传输层材料的SEM图。
具体实施方式
下面将结合实施例并配以附图对本发明作进一步说明。除非另有定义,本发明所使用的所有科学术语与本发明技术领域的技术人员通常理解的含义相同。下述非限制性实施例是为了更好的理解本发明,但不以任何方式限制本发明,任何变化实施都包含在本发明的技术范围内。本发明所使用的术语“及/或”包括一个或多个相关的所列项目的任意和所有的组合。
(一)TiO2电子传输层材料的原位低温制备
将钛原料与溶剂水或醇混合均匀,使得混合溶液的钛原料浓度为0.01M-2M,按离子液体与溶剂的体积比为1:40-40:1加入适量功能化离子液体混合均匀,置于微波反应釜中。将清洗干净的导电基底用聚酰亚胺胶带保护非导电面及导电面的公共电极,置于反应液中,导电面按朝向可选自水平向上、水平向下、斜向上、斜向下、垂直于反应釜底面中的一种。反应液在50℃-70℃下微波加热反应0-30min。自然冷却后导电基底分别用水、乙醇冲洗后80℃干燥即可获得在导电基底上原位生长的致密的电子传输层。
(二)离子液体电子传输层的制备
将离子液体按1-50mg/ml浓度溶解在溶剂中,在长有通过离子液体辅助微波低温原位合成法合成的二氧化钛层上旋涂混合溶液,旋涂速率为3000-6000rpm。在25-100℃烧结10-30min后即得复合电子传输层。
(三)钙钛矿太阳电池的制备
钙钛矿层的的钙钛矿材料选自如下化合物:MAxFA1-xPbI3-aBra、MAxFA1-xPbI3-bClb、MAxFA1-xPbBr3-cClc,其中x值为0-1,a,b,c值为0-3,MA为CH3NH3 +,FA为CH(NH2)2 +。本发明的钙钛矿材料并不局限于上述化合物,还可以是本领域技术人员认为合适的其它钙钛矿材料。将相应钙钛矿材料的DMF(N,N-二甲基甲酰胺)溶液或DMF及DMSO(二甲亚砜)混合溶液中形成钙钛矿溶液,使用匀胶机将钙钛矿溶液均匀旋涂在上述原位获得的电子传输层上,90℃加热30min,使得钙钛矿溶液在电子传输层上均匀结晶成膜。
空穴传输层优选为Spiro-OMeTAD、PEDOT:PSS或P3HT。将四叔丁基吡啶(TBP)、双三氟甲磺酰亚胺锂(Li-TFSI)加入空穴传输材料的氯苯溶液,均匀旋涂在钙钛矿层上,形成空穴传输材料层。
金属电极优选为金电极、银电极或铝电极,采用真空蒸镀或真空溅射的方法制备
(四)电池测试
钙钛矿太阳电池光电性能采用Keithley 2400进行测试,光源为3A级太阳能模拟器(Oriel),由标准硅电池校正入射光强为100mW cm-2(AM 1.5)。
实施例1
向预冷好的2M浓度的TiF4水溶液中添加10ml去离子水,再加入1ml离子液体,混合均匀,置于微波反应釜中。将清洗干净的导电基底FTO用聚酰亚胺胶带保护非导电面及导电面的公共电极,置于反应液中,导电面水平向下。反应液在60℃下微波加热反应5min。自然冷却后导电基底分别用水、乙醇冲洗后80℃干燥即可获得在导电基底FTO上原位生长的致密的电子传输层。
将离子液体按5mg/ml浓度溶解在乙醇中,在上述长有通过离子液体辅助微波低温原位合成法合成的二氧化钛层上旋涂混合溶液,旋涂速率为3000rpm。在50℃烧结30min后即得复合电子传输层。
使用匀胶机将钙钛矿溶液均匀旋涂在原位获得的电子传输层上,90℃加热30min后获得钙钛矿层。在钙钛矿层上均匀旋涂空穴传输材料溶液形成空穴传输层。在空穴传输层上真空蒸镀金电极获得基于离子液体辅助微波原位低温合成电子传输层的钙钛矿太阳电池。
图3为本实施例所得二氧化钛电子传输层材料的SEM图,表明所制备的二氧化钛电子传输层材料,形貌均一,形状均匀。图6为本实施例所得离子液体电子传输层材料的SEM图。
所制备的基于离子液体辅助微波原位低温合成二氧化钛电子传输层的钙钛矿太阳电池,最终获得了13.0%的光电转换效率,高于相同条件下传统水热法合成的二氧化钛电子传输层的器件效率10.2%,提高了27.4%,证明采用本发明的离子液体辅助微波原位低温合成钙钛矿太阳电池电子传输层的制备方法,可获得在短时间内获得高纯、均匀、稳定的高性能电子传输层材料,不需高温退火,无需多孔层,不需高温烧结,获得优于传统水热法的高效钙钛矿太阳电池器件,解决现有工艺中材料在制备电子传输层的过程中,反应温度较高且需要高温退火,工艺损耗大,成本高,不利于大规模工业化生产等问题。
所制备的基于离子液体的复合电子传输层的钙钛矿太阳电池,最终获得了18.5%的光电转换效率,高于相同条件下离子液体辅助微波原位低温合成二氧化钛电子传输层的器件效率13.0%,提高了42.3%。
实施例2
向预冷好的2M浓度的TiCl4水溶液中添加10ml乙醇,再加入1ml离子液体,混合均匀,置于微波反应釜中。将清洗干净的导电基底FTO用聚酰亚胺胶带保护非导电面及导电面的公共电极,置于反应液中,导电面斜向上。反应液在50℃下微波加热反应10min。自然冷却后导电基底分别用水、乙醇冲洗后80℃干燥即可获得在导电基底FTO上原位生长的致密的电子传输层。
将离子液体按1mg/ml浓度溶解在异丙醇中,在上述长有通过离子液体辅助微波低温原位合成法合成的二氧化钛层上旋涂混合溶液,旋涂速率为6000rpm。在100℃烧结10min后即得复合电子传输层。
使用匀胶机将钙钛矿溶液均匀旋涂在原位获得的电子传输层上,90℃加热30min后获得钙钛矿层。在钙钛矿层上均匀旋涂空穴传输材料溶液形成空穴传输层。在空穴传输层上真空蒸镀金电极获得基于离子液体辅助微波原位低温合成电子传输层的钙钛矿太阳电池。
图4为本实施例所得二氧化钛电子传输层材料的SEM图,表明所制备的二氧化钛电子传输层材料,形貌均一,形状均匀。图7为本实施例所得离子液体电子传输层材料的SEM图。
所制备的基于离子液体的复合电子传输层的钙钛矿太阳电池,最终获得了17.8%的光电转换效率,高于相同条件下离子液体辅助微波原位低温合成二氧化钛电子传输层的器件效率13.0%,提高了36.9%。
实施例3
向预冷好的2M浓度的TiCl4水溶液中添加40ml去离子水,再加入1ml离子液体,混合均匀,置于微波反应釜中。将清洗干净的导电基底FTO用聚酰亚胺胶带保护非导电面及导电面的公共电极,置于反应液中,导电面斜向下。反应液在70℃下微波加热反应20min。自然冷却后导电基底分别用水、乙醇冲洗后80℃干燥即可获得在导电基底FTO上原位生长的致密的电子传输层。
将离子液体按10mg/ml浓度溶解在乙醇中,在上述长有通过离子液体辅助微波低温原位合成法合成的二氧化钛层上旋涂混合溶液,旋涂速率为3000rpm。在50℃烧结30min后即得复合电子传输层。
使用匀胶机将钙钛矿溶液均匀旋涂在原位获得的电子传输层上,90℃加热30min后获得钙钛矿层。在钙钛矿层上均匀旋涂空穴传输材料溶液形成空穴传输层。在空穴传输层上真空蒸镀金电极获得基于离子液体辅助微波原位低温合成电子传输层的钙钛矿太阳电池。
图5为本实施例所得二氧化钛电子传输层材料的SEM图,表明所制备的二氧化钛电子传输层材料,形貌均一,形状均匀。图8为本实施例所得离子液体电子传输层材料的SEM图。
所制备的基于离子液体的复合电子传输层的钙钛矿太阳电池,最终获得了19.2%的光电转换效率,高于相同条件下离子液体辅助微波原位低温合成二氧化钛电子传输层的器件效率13.0%,提高了47.7%。
以上实施例的各种技术特征可进行任意组合,本说明书中所述的上述内容仅是对本发明所做的举例说明,但并不能因此而理解为对本发明专利范围的限制。凡依据本发明专利构思所述的技术特征、原理、构造等所做的简单变化或组合,均应包括于本发明专利的保护范围内。本发明所属技术领域的技术人员可以对所描述的具体实施例做若干修改、变形、改进、补充或类似方法的替代,只要不偏离本发明或超越本发明权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (8)

1.一种基于离子液体的复合电子传输层,其特征在于所述复合电子传输层由二氧化钛层及离子液体层构成,其中二氧化钛层采用离子液体辅助微波低温原位合成法进行合成。
2.根据权利要求1所述的基于离子液体的复合电子传输层,其特征在于所述的离子液体辅助微波低温原位合成法包括如下步骤:
(1)将氯化钛/钛酸四丁酯/氟化钛的水溶液/醇溶液及功能化离子液体混合均匀;
(2)将干净的导电基底置于反应液中;
(3)反应液在50℃-70℃下微波加热反应;
(4)自然冷却后导电基底分别用水、乙醇冲洗后80℃干燥后获得在导电基底上原位生长的电子传输层。
3.根据权利要求2所述的基于离子液体的复合电子传输层,其特征在于:所述的离子液体辅助微波低温原位合成法中微波加热反应时间为0-30min;所述功能化离子液体阳离子选自咪唑类、吡啶类、吡咯类、哌啶类、吡唑类、三唑类、噻唑类、季铵盐类、季鏻盐类、胍类阳离子;所述离子液体阴离子选自Cl-、Br-、I-、BF4 -、PF6 -、CF3COO-、CF3SO3 -、NTf2 -、N(CN)2 -、C(CN)3 -、NCS-、NO3 -、H2PO4 -、HSO4 -、RCOO-、RSO4 -,其中R选自氢和具有直链或支链的烷基;所述离子液体与溶剂的体积比为1:40-40:1;所述氯化钛/钛酸四丁酯/氟化钛的水溶液/醇溶液的浓度为0.01M-2M;所述醇溶液选自甲醇、乙醇、丙醇中的一种或多种;所述导电基底为透明导电玻璃或柔性导电塑料;所述导电基底用聚酰亚胺胶带保护非导电面及导电面的公共电极,导电面朝向选自水平向上、水平向下、斜上、斜下、垂直于反应釜底面中的一种。
4.根据权利要求1所述的基于离子液体的复合电子传输层,其特征在于所述的离子液体层制备方法包含以下步骤:
(1)将离子液体按一定浓度溶解在溶剂中;
(2)在长有通过离子液体辅助微波低温原位合成法合成的二氧化钛层上旋涂混合溶液;
(3)25-100℃烧结10-30min后即得复合电子传输层。
5.根据权利要求4所述的基于离子液体的复合电子传输层,其特征在于所述离子液体常温下为固态;离子液体层制备方法中溶剂为甲醇、乙醇、丙醇中的一种或多种;混合溶液浓度为1-50mg/ml;旋涂速率为3000-6000rpm。
6.一种基于离子液体的复合电子传输层,其特征在于,所述复合电子传输层通过权利要求1-5任一项所述制备方法获得。
7.一种钙钛矿太阳电池,其特征在于,包括权利要求6所述的基于离子液体的复合电子传输层。
8.根据权利要求7所述的钙钛矿太阳电池,其特征在于所述钙钛矿太阳电池结构自下而上依次包括导电基底、复合电子传输层、钙钛矿吸收层、空穴传输层、背电极层。
CN201910085442.3A 2019-01-29 2019-01-29 一种基于离子液体的复合电子传输层及钙钛矿太阳电池 Pending CN109830603A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910085442.3A CN109830603A (zh) 2019-01-29 2019-01-29 一种基于离子液体的复合电子传输层及钙钛矿太阳电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910085442.3A CN109830603A (zh) 2019-01-29 2019-01-29 一种基于离子液体的复合电子传输层及钙钛矿太阳电池

Publications (1)

Publication Number Publication Date
CN109830603A true CN109830603A (zh) 2019-05-31

Family

ID=66862846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910085442.3A Pending CN109830603A (zh) 2019-01-29 2019-01-29 一种基于离子液体的复合电子传输层及钙钛矿太阳电池

Country Status (1)

Country Link
CN (1) CN109830603A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845398A (zh) * 2019-11-20 2020-02-28 苏州大学 一种基于氰基吡啶类离子液体的钙钛矿太阳能电池用添加剂及其应用
CN112062680A (zh) * 2020-08-25 2020-12-11 南京工业大学 一种有机质子型离子液体、二维钙钛矿纯相量子阱结构薄膜、制备方法及其应用
CN113130806A (zh) * 2021-04-14 2021-07-16 中国计量大学 一种离子液体界面修饰的钙钛矿发光二极管制备方法
CN114551997A (zh) * 2022-01-25 2022-05-27 中国石油大学(华东) 一种全固态电解质的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245074A (ja) * 2005-02-28 2006-09-14 Dainippon Printing Co Ltd 有機薄膜太陽電池
CN105024014A (zh) * 2014-04-22 2015-11-04 中国科学院大连化学物理研究所 一种采用离子液体薄膜作为中间层的有机太阳能电池
CN105244449A (zh) * 2015-09-13 2016-01-13 北京化工大学 一种钙钛矿太阳能电池
CN105552236A (zh) * 2015-12-08 2016-05-04 中国电子科技集团公司第十八研究所 一种钙钛矿太阳电池及其制备方法
CN108190949A (zh) * 2018-02-13 2018-06-22 武汉理工大学 一种快速制备小粒径锐钛矿型纳米二氧化钛的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245074A (ja) * 2005-02-28 2006-09-14 Dainippon Printing Co Ltd 有機薄膜太陽電池
CN105024014A (zh) * 2014-04-22 2015-11-04 中国科学院大连化学物理研究所 一种采用离子液体薄膜作为中间层的有机太阳能电池
CN105244449A (zh) * 2015-09-13 2016-01-13 北京化工大学 一种钙钛矿太阳能电池
CN105552236A (zh) * 2015-12-08 2016-05-04 中国电子科技集团公司第十八研究所 一种钙钛矿太阳电池及其制备方法
CN108190949A (zh) * 2018-02-13 2018-06-22 武汉理工大学 一种快速制备小粒径锐钛矿型纳米二氧化钛的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845398A (zh) * 2019-11-20 2020-02-28 苏州大学 一种基于氰基吡啶类离子液体的钙钛矿太阳能电池用添加剂及其应用
CN110845398B (zh) * 2019-11-20 2023-02-10 苏州大学 一种基于氰基吡啶类离子液体的钙钛矿太阳能电池用添加剂及其应用
CN112062680A (zh) * 2020-08-25 2020-12-11 南京工业大学 一种有机质子型离子液体、二维钙钛矿纯相量子阱结构薄膜、制备方法及其应用
CN112062680B (zh) * 2020-08-25 2021-06-22 南京工业大学 一种有机质子型离子液体、二维钙钛矿纯相量子阱结构薄膜、制备方法及其应用
CN113130806A (zh) * 2021-04-14 2021-07-16 中国计量大学 一种离子液体界面修饰的钙钛矿发光二极管制备方法
CN114551997A (zh) * 2022-01-25 2022-05-27 中国石油大学(华东) 一种全固态电解质的制备方法及应用

Similar Documents

Publication Publication Date Title
CN109830603A (zh) 一种基于离子液体的复合电子传输层及钙钛矿太阳电池
CN107482122B (zh) 一种钙钛矿太阳能电池及制备方法
CN104505409B (zh) 一种SnO2多孔结构钙钛矿光伏电池及其制备方法
CN109524548B (zh) 一种钙钛矿太阳能电池及其制备方法
CN105870341B (zh) 一种提高钙钛矿晶体生长质量的方法及太阳能电池器件
CN107240643B (zh) 溴元素掺杂甲胺铅碘钙钛矿太阳能电池及其制作方法
CN102122580B (zh) 改性的二氧化钛纳米管染料敏化光阳极薄膜的制备方法
CN107565023B (zh) 一种钙钛矿太阳能电池及制备方法
CN109216557A (zh) 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
CN104966763B (zh) 一种提高钙钛矿太阳能电池效率的方法
CN108288675B (zh) 一种铁盐掺杂Spiro-OMeTAD的空穴传输层及含该空穴传输层的太阳能电池
CN107359248B (zh) 一种稳定无光浴高效有机太阳能电池器件及其制备方法
CN106410035A (zh) 一种三步旋涂制备钙钛矿薄膜的方法及其应用
CN106935707B (zh) 一种基于聚合物电解质传输层钙钛矿光伏电池的制备方法
CN104979494A (zh) 一种钙钛矿薄膜及其制备方法和应用
CN108574046A (zh) 一种钙钛矿太阳能电池及其制备方法
CN106384785A (zh) 一种锡掺杂甲基铵基碘化铅钙钛矿太阳能电池
CN106098943A (zh) 一种高稳定混合维钙钛矿材料及应用
CN106299136A (zh) 一种室温溶解碘化铅制备掺杂钙钛矿薄膜电池的方法
CN110246971A (zh) 基于前氧化空穴传输层的无机钙钛矿太阳能电池及制备方法
CN107833969B (zh) 一种高效率平面异质结钙钛矿薄膜太阳能电池及制备方法
CN106591914B (zh) 一种电沉积法制备的铜铟硒硫薄膜太阳能电池吸收层
CN106299141A (zh) 一种复合电子传输层结构的钙钛矿太阳能电池的制造方法
CN114883493A (zh) 一种基于三维/二维钙钛矿太阳能电池及其制备方法
CN109950405A (zh) Spiro-OMeTAD的氧化方法以及使用所述氧化方法制备的钙钛矿太阳能电池器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190531