CN109826642B - 隧道洞外调光方法 - Google Patents

隧道洞外调光方法 Download PDF

Info

Publication number
CN109826642B
CN109826642B CN201910043084.XA CN201910043084A CN109826642B CN 109826642 B CN109826642 B CN 109826642B CN 201910043084 A CN201910043084 A CN 201910043084A CN 109826642 B CN109826642 B CN 109826642B
Authority
CN
China
Prior art keywords
dimming
tunnel
hole
outside
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910043084.XA
Other languages
English (en)
Other versions
CN109826642A (zh
Inventor
张琦
陈豪
陈建忠
李科
丁浩
胡学兵
赵清碧
吴小丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Merchants Chongqing Communications Research and Design Institute Co Ltd
Original Assignee
China Merchants Chongqing Communications Research and Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Merchants Chongqing Communications Research and Design Institute Co Ltd filed Critical China Merchants Chongqing Communications Research and Design Institute Co Ltd
Priority to CN201910043084.XA priority Critical patent/CN109826642B/zh
Publication of CN109826642A publication Critical patent/CN109826642A/zh
Application granted granted Critical
Publication of CN109826642B publication Critical patent/CN109826642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种隧道洞外调光方法,通过在隧道洞口外设置调光结构,能够根据实时环境参数,使调光结构分段达到不同的计算透光率,科学合理地利用自然光为路面各区段提供加强照明各段落所需光通量。相当于在隧道洞外通过利用、调节自然光使洞外调光结构的各段落分别达到常规隧道洞内各加强照明段的需要亮度,从而使调光结构等效替代加强照明段,将光电照明转换为了自然光照明,实现加强照明零碳化,促进运营节能。

Description

隧道洞外调光方法
技术领域
本发明涉及隧道工程领域,特别涉及一种隧道洞外调光方法。
背景技术
驾驶者从洞外亮度较高的日光环境驶入隧道内较暗的亮度环境时,隧道内外的亮度差别使驾车面临显著的“黑洞效应”。视觉暗适应的过程中,眼睛对隧道内道路、设施、路面上障碍物的识别过程会出现暂时的中断,需要在一段时间恢复,在此过程中驾驶者对周围环境的识认能力逐步提升,直至完全适应洞内较暗的环境。为保证在一定行车速度下驾驶者进入隧道前能够识别到路面上的障碍物,通常在隧道入口段、过渡段设置不同规模的加强照明灯具以提高洞内亮度,使驾驶者逐步适应由亮变暗的光环境。洞内人工照明的实际需要亮度与洞外环境亮度成正比。洞外的环境亮度越高,洞内人工照明的亮度也需要相应提高,消耗的电能也越高。同理,驾驶者从隧道内较暗的亮度环境驶入洞外亮度较高的日光环境时,隧道内外的亮度差别使驾车面临显著的“白洞效应”,因此在隧道出口段也设置了加强照明灯具以提高洞内亮度,使驾驶者逐步适应由暗变亮的光环境。
隧道运营耗电量巨大,隧道照明系统能耗通常占实际运营能耗的绝大部分。隧道照明系统又以入口段、过渡段的加强照明灯具设备为主要能耗项,目前中国已是世界上隧道和地下工程数量最多、里程最长、发展速度最快的国家。照明电费支出成为运营单位的主要经营支出之一,给运营单位带来较大的经济压力。
一些隧道通过采用洞外遮光棚等形式降低洞外亮度,减小洞内外亮度差,从而降低洞内需要亮度,控制灯具降低发光亮度以实现节能。我国的部分城市隧道和高速公路隧道设置了洞外减光结构物,常见的洞外减光结构如钢筋混凝土格栅、遮光棚通常能提升隧道洞口的景观效果,也在一定程度上减小了洞外亮度,但对隧道照明方面的考虑不足,洞外减光结构物形式、结构长度的设计缺乏相应的理论依据,设置机理不明确,减光结构物下的路面均匀度较差,往往存在眩光现象,对驾驶安全和舒适性造成威胁。
目前对隧道洞外减光与自然光利用的研究较少,尚无通过实时调控自然光代替洞内光电照明的研究。
发明内容
有鉴于此,本发明的目的在于提供一种隧道洞外调光方法,通过在隧道洞口外设置调光结构,能够根据实时环境参数,使调光结构分段达到不同的计算透光率,科学合理地利用自然光为路面各区段提供加强照明各段落所需光通量。相当于在隧道洞外通过利用、调节自然光使洞外调光结构的各段落分别达到常规隧道洞内各加强照明段的需要亮度,从而使调光结构等效替代加强照明段,将光电照明转换为了自然光照明,实现加强照明零碳化,促进运营节能。
本发明的隧道洞外调光方法,包括以下步骤:
S1、在隧道进口端和出口端洞外分别设置隧道进口端洞外调光结构和隧道出口端洞外调光结构,将隧道进口端洞外调光结构沿隧道长度方向划分为第一洞外调光段、第二洞外调光段、第三洞外调光段、第四洞外调光段、第五洞外调光段,并根据隧道设计速度vt、照明停车视距Ds以及隧道内净空高度h计算第一至第五洞外调光段的长度D1~D5;将隧道出口端洞外调光结构沿隧道长度方向划分为第六洞外调光段和第七洞外调光段,第六洞外调光段的长度D6和第七洞外调光段的长度D7均设定为30米;
S2、通过采集模块实时采集车流量和亮度数据,并将采集到的数据上传至运算模块;
S3、运算模块根据设计速度、设计小时交通量N以及洞外亮度L20(S)计算出第一至第五洞外调光段的实时需要亮度L1~L5以及第一至第五洞外调光段的光线透过初始值f1~f5;运算模块根据设计速度、设计小时交通量N、洞外亮度L20(S)以及中间段亮度Lin计算出第六洞外调光段的实时需要亮度L6和第七洞外调光段的实时需要亮度L7以及第六洞外调光段的光线透过初始值f6和第七洞外调光段的光线透过初始值f7;
S4、运算模块将各洞外调光段的光线透过率初始值下发至调光控制模块,由调光控制模块控制各洞外调光段的光线透过率分别达到该初始计算值,则各洞外调光段的自然光分别按照不同的设定光线透过率透过相应比例的光线,为各洞外调光段下路面提供所需亮度;同时,采集模块实时测取并上传第一洞外调光段的路面亮度值L1s和第六洞外调光段下的路面亮度值L6s,由运算模块进行循环反馈控制,直至洞外各段调光结构下路面均已透过所需光通量,等效于常规隧道内相应电光加强照明的实际效果。
进一步,在步骤S1中,第一至第五洞外调光段沿隧道长度方向自外向内依次设置,第六洞外调光段和第七洞外调光段沿隧道长度方向自内向外依次设置。
进一步,第一至第五洞外调光段的长度D1~D5的计算公式分别为:
Figure BDA0001948236050000031
Figure BDA0001948236050000032
Figure BDA0001948236050000033
Figure BDA0001948236050000034
式中:D1为第一洞外调光段的长度,单位为m;D2为第二洞外调光段的长度单位为m;D3为第三洞外调光段的长度,单位为m;D4为第四洞外调光段的长度,单位为m;D5为第五洞外调光段的长度,单位为m;Ds为照明停车视距,单位为m;vt为隧道设计速度,单位为km/h;vt/1.8为2s内的行驶距离;2vt/1.8为4s内的行驶距离;3vt/1.8为6s内的行驶距离;h为隧道内净空高度,单位为m。
进一步,在步骤S2中,采集模块包括洞外车流量检测器、洞外亮度检测器、洞外调光段亮度检测器。
进一步,在步骤S3中,第一至第五洞外调光段的实时需要亮度L1~L5的计算公式分别为:
L1=k×L20(S)
L2=0.5×k×L20(S)
L3=0.15×L1=0.15×k×L20(S)
L4=0.05×L1=0.05×k×L20(S)
L5=0.02×L1=0.02×k×L20(S)
式中:L1为第一洞外调光段的亮度,单位为cd/m2;L2为第二洞外调光段的亮度,单位为cd/m2;L3为第三洞外调光段的亮度,单位为cd/m2;L4为第四洞外调光段的亮度,单位为cd/m2;L5为第五洞外调光段的亮度,单位为cd/m2;k为亮度折减系数;L20(S)为洞外亮度,单位为cd/m2
第一至第五洞外调光段的光线透过初始值f1~f5根据实时洞外亮度L20(S)与所对应洞外调光段的实时需要亮度之比确定,即:
f1=L1/L20(S)=k;
f2=L2/L20(S)=0.5k=0.5f1;
f3=L3/L20(S)=0.15k=0.15f1;
f4=L4/L20(S)=0.05k=0.05f1;
f5=L5/L20(S)=0.02k=0.02f1。
进一步,在步骤S4中,设n=L1s-L1=L1s-k×L20(S),若0≤n≤m,则第一至第五洞外调光段下路面均已透过所需光通量,等效于常规隧道内相应电光加强照明的实际效果;若n>m,则将f1减小0.001,即f1(t)=f1(t-1)-0.001,通过调光控制模块控制第一至第五洞外调光段的光线透过率同步变化,f2(t)=0.5f1(t),f3(t)=0.15f1(t),f4(t)=0.05f1(t),f5(t)=0.02f1(t);若n<0,则将f1增大0.001,即f1(t)=f1(t-1)+0.001,调光控制模块控制各洞外调光段的光线透过率同步变化;进行循环反馈控制。
进一步,m根据全年最大洞外亮度L20(S)max的取值确定,L20(S)max取值范围为(2000,6500),m=0.001×L20(S)max,即m取值范围为(2,6.5)。
进一步,在步骤S3中,第六洞外调光段的实时需要亮度L6和第七洞外调光段的实时需要亮度L7的计算公式分别为:
L6=3×Lin
L7=5×Lin
式中:L6为第六洞外调光段的亮度,单位为cd/m2;L7为第七洞外调光段的亮度,单位为cd/m2;Lin为中间段的亮度,单位为cd/m2
第六洞外调光段的光线透过初始值f6和第七洞外调光段的光线透过初始值f7根据中间段的亮度Lin和洞外亮度L20(S)计算,即:
f6=L6/L20(S)=3Lin/L20(S);
f7=L7/L20(S)=5Lin/L20(S)=5/3×f6。
进一步,在步骤S4中,设j=L6s-L6=L6s-3×Lin,若0≤j≤p,则第六、第七洞外调光段下路面均已透过所需光通量,等效于常规隧道内相应电光加强照明的实际效果;
p的取值范围为(0.3×Lin,0.3×Lin+2);
若j>p,则将f6减小0.1×3Lin/L20(S),即f6(t)=f6(t-1)-0.3×Lin/L20(S),通过调光控制模块控制第六、第七洞外调光段的光线透过率同步变化,f7(t)=5/3×f6(t)
若j<0,则将f6增大0.1×3Lin/L20(S),即f6(t)=f6(t-1)+0.3×Lin/L20(S),调光控制模块控制第六、第七洞外调光段的光线透过率同步变化,f7(t)=5/3×f6(t);进行循环反馈控制。
进一步,若第五洞外调光段的亮度L5小于等于中间段亮度Lin的两倍,则不设置第五洞外调光段。
本发明的有益效果:本发明的隧道洞外调光方法,根据隧道各进出口加强照明段长度分段设置相同长度的隧道洞外调光结构,设置机理和理论依据明确。洞外调光结构下路面光学指标完全满足隧道照明系统设计要求,行车安全性及舒适性高。洞外光环境随时在发生变化,本方法是根据实时环境参数自动计算并动态调整当前洞外各段达到其等效段落所需透光率,透过相应光通量,实现实时动态智能调光。在隧道洞外通过利用、调节自然光使洞外调光结构的各段落分别达到常规隧道进出口内各加强照明段的需要亮度,用按需调整的洞外自然光等效替代洞内原本需要设置的加强照明段光电照明,即以自然光替代加强照明的方法取消隧道照明系统的主要能耗项(即加强照明灯具),实现加强照明零碳化,科学减光并利用自然光,从根本上解决隧道运营耗电量巨大的问题,促进运营节能。
附图说明
下面结合附图和实施例对本发明作进一步描述:
图1为本发明的流程示意图;
图2为本发明的流程框图。
具体实施方式
本发明的隧道洞外调光方法,包括以下步骤:
S1、在隧道进口端和出口端洞外分别设置隧道进口端洞外调光结构和隧道出口端洞外调光结构,将隧道进口端洞外调光结构沿隧道长度方向划分为第一洞外调光段、第二洞外调光段、第三洞外调光段、第四洞外调光段、第五洞外调光段,并根据隧道设计速度vt、照明停车视距Ds以及隧道内净空高度h计算第一至第五洞外调光段的长度D1~D5;将隧道出口端洞外调光结构沿隧道长度方向划分为第六洞外调光段和第七洞外调光段,第六洞外调光段的长度D6和第七洞外调光段的长度D7均设定为30米;
S2、通过采集模块实时采集车流量和亮度数据,并将采集到的数据上传至运算模块;
S3、运算模块根据设计速度、设计小时交通量N以及洞外亮度L20(S)计算出第一至第五洞外调光段的实时需要亮度L1~L5以及第一至第五洞外调光段的光线透过初始值f1~f5;运算模块根据设计速度、设计小时交通量N、洞外亮度L20(S)以及中间段亮度Lin计算出第六洞外调光段的实时需要亮度L6和第七洞外调光段的实时需要亮度L7以及第六洞外调光段的光线透过初始值f6和第七洞外调光段的光线透过初始值f7;
S4、运算模块将各洞外调光段的光线透过率初始值下发至调光控制模块,由调光控制模块控制各洞外调光段的光线透过率分别达到该初始计算值,则各洞外调光段的自然光分别按照不同的设定光线透过率透过相应比例的光线,为各洞外调光段下路面提供所需亮度;同时,采集模块实时测取并上传第一洞外调光段的路面亮度值L1s和第六洞外调光段下的路面亮度值L6s,由运算模块进行循环反馈控制,直至洞外各段调光结构下路面均已透过所需光通量,等效于常规隧道内相应电光加强照明的实际效果。
本实施例中,在步骤S1中,第一至第五洞外调光段沿隧道长度方向自外向内依次设置,第六洞外调光段和第七洞外调光段沿隧道长度方向自内向外依次设置。
本实施例中,第一至第五洞外调光段的长度D1~D5的计算公式分别为:
Figure BDA0001948236050000071
Figure BDA0001948236050000072
Figure BDA0001948236050000073
Figure BDA0001948236050000074
式中:D1为第一洞外调光段的长度,单位为m;D2为第二洞外调光段的长度单位为m;D3为第三洞外调光段的长度,单位为m;D4为第四洞外调光段的长度,单位为m;D5为第五洞外调光段的长度,单位为m;Ds为照明停车视距,单位为m;vt为隧道设计速度,单位为km/h;vt/1.8为2s内的行驶距离;2vt/1.8为4s内的行驶距离;3vt/1.8为6s内的行驶距离;h为隧道内净空高度,单位为m。本实施例的照明停车视距Ds的取值参见表1。
表1照明停车视距Ds(m)
Figure BDA0001948236050000081
本实施例中,在步骤S2中,采集模块包括洞外车流量检测器、洞外亮度检测器、洞外调光段亮度检测器。
本实施例中,在步骤S3中,第一至第五洞外调光段的实时需要亮度L1~L5的计算公式分别为:
L1=k×L20(S)
L2=0.5×k×L20(S)
L3=0.15×L1=0.15×k×L20(S)
L4=0.05×L1=0.05×k×L20(S)
L5=0.02×L1=0.02×k×L20(S)
式中:L1为第一洞外调光段的亮度,单位为cd/m2;L2为第二洞外调光段的亮度,单位为cd/m2;L3为第三洞外调光段的亮度,单位为cd/m2;L4为第四洞外调光段的亮度,单位为cd/m2;L5为第五洞外调光段的亮度,单位为cd/m2;k为亮度折减系数;L20(S)为洞外亮度,单位为cd/m2;本实施例的亮度折减系数k的取值参见表2。
表2亮度折减系数k
Figure BDA0001948236050000091
注:当交通量在其中间值时,按线性内插取值。
第一至第五洞外调光段的光线透过初始值f1~f5根据实时洞外亮度L20(S)与所对应洞外调光段的实时需要亮度之比确定,即:
f1=L1/L20(S)=k;
f2=L2/L20(S)=0.5k=0.5f1;
f3=L3/L20(S)=0.15k=0.15f1;
f4=L4/L20(S)=0.05k=0.05f1;
f5=L5/L20(S)=0.02k=0.02f1。
本实施例中,在步骤S4中,设n=L1s-L1=L1s-k×L20(S),若0≤n≤m,则第一至第五洞外调光段下路面均已透过所需光通量,等效于常规隧道内相应电光加强照明的实际效果;若n>m,则将f1减小0.001,即f1(t)=f1(t-1)-0.001,通过调光控制模块控制第一至第五洞外调光段的光线透过率同步变化,f2(t)=0.5f1(t),f3(t)=0.15f1(t),f4(t)=0.05f1(t),f5(t)=0.02f1(t);若n<0,则将f1增大0.001,即f1(t)=f1(t-1)+0.001,调光控制模块控制各洞外调光段的光线透过率同步变化;进行循环反馈控制。
本实施例中,m根据全年最大洞外亮度L20(S)max的取值确定,L20(S)max取值范围为(2000,6500),m=0.001×L20(S)max,即m取值范围为(2,6.5)。
本实施例中,在步骤S3中,第六洞外调光段的实时需要亮度L6和第七洞外调光段的实时需要亮度L7的计算公式分别为:
L6=3×Lin
L7=5×Lin
式中:L6为第六洞外调光段的亮度,单位为cd/m2;L7为第七洞外调光段的亮度,单位为cd/m2;Lin为中间段的亮度,单位为cd/m2;本实施例的中间段亮度Lin的取值参见表3。
表3中间段亮度表Lin(cd/m2)
Figure BDA0001948236050000101
第六洞外调光段的光线透过初始值f6和第七洞外调光段的光线透过初始值f7根据中间段的亮度Lin和洞外亮度L20(S)计算,即:
f6=L6/L20(S)=3Lin/L20(S);
f7=L7/L20(S)=5Lin/L20(S)=5/3×f6。
本实施例中,在步骤S4中,设j=L6s-L6=L6s-3×Lin,若0≤j≤p,则第六、第七洞外调光段下路面均已透过所需光通量,等效于常规隧道内相应电光加强照明的实际效果;
p的取值范围为(0.3×Lin,0.3×Lin+2);
若j>p,则将f6减小0.1×3Lin/L20(S),即f6(t)=f6(t-1)-0.3×Lin/L20(S),通过调光控制模块控制第六、第七洞外调光段的光线透过率同步变化,f7(t)=5/3×f6(t)
若j<0,则将f6增大0.1×3Lin/L20(S),即f6(t)=f6(t-1)+0.3×Lin/L20(S),调光控制模块控制第六、第七洞外调光段的光线透过率同步变化,f7(t)=5/3×f6(t);进行循环反馈控制。
本实施例中,若第五洞外调光段的亮度L5小于等于中间段亮度Lin的两倍,则不设置第五洞外调光段。
实施例一:
假定一长3km的单洞单向两车道隧道,设计时速为80km/h,设计小时交通量N为1200veh/(h·ln),纵坡为0%,隧道内净空高度为7m,洞外亮度L20(S)max=4000cd/m2,当前实时洞外亮度L20(S)=3000cd/m2。根据表1可得,照明停车视距Ds=100m;根据表2可得,亮度折减系数k=0.035;根据表3可得,中间段亮度Lin=3.5。
根据本发明所述算法计算:
Figure BDA0001948236050000111
Figure BDA0001948236050000112
Figure BDA0001948236050000113
D6=30m
D7=30m
当L5≤2Lin(2Lin=7cd/m2),不设置第五洞外调光段。经计算,L5=0.02×L1=0.02×k×L20(S)=0.02×0.035×4000cd/m2=2.8cd/m2,即L5<7cd/m2,故不设置第五洞外调光段,D5=0m。传感单元实时测取上传的参数包括车流量数据、第一洞外调光段区域路面实测亮度值L1s、第六洞外调光段区域路面实测亮度值L6s、隧道进出口端实时洞外亮度值L20(S)。
第一至第四洞外调光段及第六、第七洞外调光段的光线透过率初始值分别为:f1=k=0.035;f2=0.5k=0.0175;f3=0.15k=0.00525;f4=0.05k=0.00175;f6=3Lin/L20(S)=0.0035;f7=5Lin/L20=0.00583。
运算模块将f1~f7取值下发至调光控制模块,由调光控制模块控制各洞外调光段的光线透过率分别达到该值,则各洞外调光段的自然光分别按照不同光线透过率透过相应比例的光线,为各洞外调光段下路面提供所需亮度。
隧道进口端的洞外调光段循环进行反馈控制:n=L1s-L1=L1s-k×L20(S)=L1s-105,若0≤n≤m,已知L20(S)max=4000cd/m2,m=0.001×L20(S)max=4cd/m2,即0≤n≤4,则第一至第四洞外调光段下路面均已透过所需光通量(实际亮度略大于计算所需亮度),等效于常规隧道内相应电光加强照明的实际效果;若n>4,则f1(t)=f1(t-1)-0.001=0.035-0.001=0.034,调光控制模块控制第一至第四洞外调光段的光线透过率同步变化,f2(t)=0.5f1(t)=0.5×0.034=0.017;f3(t)=0.15f1(t)=0.15×0.034=0.0051;f4(t)=0.05f1(t)=0.05×0.034=0.0017;若n<0,则f1(t)=f1(t-1)+0.001=0.035+0.001=0.036,调光控制模块控制第一至第四洞外调光段的光线透过率同步变化,f2(t)=0.5f1(t)=0.5×0.036=0.018;f3(t)=0.15f1(t)=0.15×0.036=0.0054;f4(t)=0.05f1(t)=0.05×0.036=0.0018;如此循环反馈控制,直至0≤n≤4后,仍持续反馈。
隧道出口端的洞外调光段循环进行反馈控制:j=L6s-L6=L6s-3×Lin=L6s-10.5,若0≤j≤2,则第六、第七洞外调光段下路面均已透过所需光通量(实际亮度略大于计算所需亮度),等效于常规隧道内相应电光加强照明的实际效果。p的取值范围为(1.05,3.05);若j>2,则f6(t)=f6(t-1)-0.3×Lin/L20(S)=0.0035-0.00035=0.00315,调光控制模块控制第六、第七洞外调光段的光线透过率同步变化,f7(t)=5/3×f6(t)=0.00525;若j<0,则f6(t)=f6(t-1)+0.3×Lin/L20(S)=0.0035+0.00035=0.00385,调光控制模块控制第六、第七洞外调光段的光线透过率同步变化,f7(t)=5/3×f6(t)=0.00642;如此循环反馈控制,直至0≤j≤2后,仍持续反馈。
由此,隧道进出口端各洞外调光段均通过实时调整相应段落的光线透过率为洞外调光段提供常规隧道内电光加强照明段所需的亮度,以自然光替代电光照明,实现对自然光的科学利用,大幅节约能源消耗。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

1.一种隧道洞外调光方法,其特征在于,包括以下步骤:
S1、在隧道进口端和出口端洞外分别设置隧道进口端洞外调光结构和隧道出口端洞外调光结构,将隧道进口端洞外调光结构沿隧道长度方向划分为第一洞外调光段、第二洞外调光段、第三洞外调光段、第四洞外调光段、第五洞外调光段,并根据隧道设计速度vt、照明停车视距Ds以及隧道内净空高度h计算第一至第五洞外调光段的长度D1~D5;将隧道出口端洞外调光结构沿隧道长度方向划分为第六洞外调光段和第七洞外调光段,第六洞外调光段的长度D6和第七洞外调光段的长度D7均设定为30米;
S2、通过采集模块实时采集车流量和亮度数据,并将采集到的数据上传至运算模块;
S3、运算模块根据设计速度、设计小时交通量N以及洞外亮度L20(S)计算出第一至第五洞外调光段的实时需要亮度L1~L5以及第一至第五洞外调光段的光线透过初始值f1~f5;运算模块根据设计速度、设计小时交通量N、洞外亮度L20(S)以及中间段亮度Lin计算出第六洞外调光段的实时需要亮度L6和第七洞外调光段的实时需要亮度L7以及第六洞外调光段的光线透过初始值f6和第七洞外调光段的光线透过初始值f7;
S4、运算模块将各洞外调光段的光线透过初始值下发至调光控制模块,由调光控制模块控制各洞外调光段的光线透过率分别达到该初始值,则各洞外调光段的自然光分别按照不同的设定光线透过率透过相应比例的光线,为各洞外调光段下路面提供所需亮度;同时,采集模块实时测取并上传第一洞外调光段的路面亮度值L1s和第六洞外调光段下的路面亮度值L6s,由运算模块进行循环反馈控制,直至洞外各段调光结构下路面均已透过所需光通量,等效于常规隧道内相应电光加强照明的实际效果;
在步骤S1中,第一至第五洞外调光段沿隧道长度方向自外向内依次设置,第六洞外调光段和第七洞外调光段沿隧道长度方向自内向外依次设置;
第一至第五洞外调光段的长度D1~D5的计算公式分别为:
Figure FDA0002413535890000021
Figure FDA0002413535890000022
Figure FDA0002413535890000023
Figure FDA0002413535890000024
式中:D1为第一洞外调光段的长度,单位为m;D2为第二洞外调光段的长度单位为m;D3为第三洞外调光段的长度,单位为m;D4为第四洞外调光段的长度,单位为m;D5为第五洞外调光段的长度,单位为m;Ds为照明停车视距,单位为m;vt为隧道设计速度,单位为km/h;vt/1.8为2s内的行驶距离;2vt/1.8为4s内的行驶距离;3vt/1.8为6s内的行驶距离;h为隧道内净空高度,单位为m。
2.根据权利要求1所述的隧道洞外调光方法,其特征在于:在步骤S2中,采集模块包括洞外车流量检测器、洞外亮度检测器、洞外调光段亮度检测器。
3.根据权利要求1所述的隧道洞外调光方法,其特征在于,在步骤S3中,第一至第五洞外调光段的实时需要亮度L1~L5的计算公式分别为:
L1=k×L20(S)
L2=0.5×k×L20(S)
L3=0.15×L1=0.15×k×L20(S)
L4=0.05×L1=0.05×k×L20(S)
L5=0.02×L1=0.02×k×L20(S)
式中:L1为第一洞外调光段的亮度,单位为cd/m2;L2为第二洞外调光段的亮度,单位为cd/m2;L3为第三洞外调光段的亮度,单位为cd/m2;L4为第四洞外调光段的亮度,单位为cd/m2;L5为第五洞外调光段的亮度,单位为cd/m2;k为亮度折减系数;L20(S)为洞外亮度,单位为cd/m2
第一至第五洞外调光段的光线透过初始值f1~f5根据洞外调光段实时需要亮度与所对应实时洞外亮度L20(S)之比确定,即:
f1=L1/L20(S)=k;
f2=L2/L20(S)=0.5k=0.5f1;
f3=L3/L20(S)=0.15k=0.15f1;
f4=L4/L20(S)=0.05k=0.05f1;
f5=L5/L20(S)=0.02k=0.02f1。
4.根据权利要求3所述的隧道洞外调光方法,其特征在于:在步骤S4中,设n=L1s-L1=L1s-k×L20(S),若0≤n≤m,则第一至第五洞外调光段下路面均已透过所需光通量,等效于常规隧道内相应电光加强照明的实际效果;若n>m,则将f1减小0.001,即f1(t)=f1(t-1)-0.001,通过调光控制模块控制第一至第五洞外调光段的光线透过率同步变化,f2(t)=0.5f1(t),f3(t)=0.15f1(t),f4(t)=0.05f1(t),f5(t)=0.02f1(t);若n<0,则将f1增大0.001,即f1(t)=f1(t-1)+0.001,调光控制模块控制各洞外调光段的光线透过率同步变化;进行循环反馈控制。
5.根据权利要求4所述的隧道洞外调光方法,其特征在于:m根据全年最大洞外亮度L20(S)max的取值确定,L20(S)max取值范围为(2000,6500),m=0.001×L20(S)max,即m取值范围为(2,6.5)。
6.根据权利要求1所述的隧道洞外调光方法,其特征在于,在步骤S3中,第六洞外调光段的实时需要亮度L6和第七洞外调光段的实时需要亮度L7的计算公式分别为:
L6=3×Lin
L7=5×Lin
式中:L6为第六洞外调光段的亮度,单位为cd/m2;L7为第七洞外调光段的亮度,单位为cd/m2;Lin为中间段的亮度,单位为cd/m2
第六洞外调光段的光线透过初始值f6和第七洞外调光段的光线透过初始值f7根据中间段的亮度Lin和洞外亮度L20(S)计算,即:
f6=L6/L20(S)=3Lin/L20(S);
f7=L7/L20(S)=5Lin/L20(S)=5/3×f6。
7.根据权利要求6所述的隧道洞外调光方法,其特征在于:在步骤S4中,设j=L6s-L6=L6s-3×Lin,若0≤j≤p,则第六、第七洞外调光段下路面均已透过所需光通量,等效于常规隧道内相应电光加强照明的实际效果;
p的取值范围为(0.3×Lin,0.3×Lin+2);
若j>p,则将f6减小0.1×3Lin/L20(S),即f6(t)=f6(t-1)-0.3×Lin/L20(S),通过调光控制模块控制第六、第七洞外调光段的光线透过率同步变化,f7(t)=5/3×f6(t)
若j<0,则将f6增大0.1×3Lin/L20(S),即f6(t)=f6(t-1)+0.3×Lin/L20(S),调光控制模块控制第六、第七洞外调光段的光线透过率同步变化,f7(t)=5/3×f6(t);进行循环反馈控制。
8.根据权利要求1至7中任一项所述的隧道洞外调光方法,其特征在于:若第五洞外调光段的亮度L5小于等于中间段亮度Lin的两倍,则不设置第五洞外调光段。
CN201910043084.XA 2019-01-17 2019-01-17 隧道洞外调光方法 Active CN109826642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910043084.XA CN109826642B (zh) 2019-01-17 2019-01-17 隧道洞外调光方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910043084.XA CN109826642B (zh) 2019-01-17 2019-01-17 隧道洞外调光方法

Publications (2)

Publication Number Publication Date
CN109826642A CN109826642A (zh) 2019-05-31
CN109826642B true CN109826642B (zh) 2020-05-29

Family

ID=66860990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910043084.XA Active CN109826642B (zh) 2019-01-17 2019-01-17 隧道洞外调光方法

Country Status (1)

Country Link
CN (1) CN109826642B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586944B (zh) * 2020-05-29 2022-09-06 北京交科公路勘察设计研究院有限公司 基于etc门架系统的公路隧道智能照明控制系统及方法
CN112879034B (zh) * 2021-03-30 2022-03-15 华杰工程咨询有限公司 一种隧道洞口的过渡结构及其建造方法
CN113795070A (zh) * 2021-09-01 2021-12-14 珠海华发城市研究院有限公司 一种隧道照明系统的自适应无级调光控制系统及控制方法
CN114777073B (zh) * 2022-03-17 2023-08-25 山东省交通规划设计院集团有限公司 一种基于自然光的隧道入口段照明装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451281C (zh) * 2007-01-24 2009-01-14 易继先 设置在公路隧道口处的减光棚
CN102271447B (zh) * 2011-06-28 2013-07-03 江西方兴科技有限公司 高速公路隧道led照明的无级调光控制方法
CN202647574U (zh) * 2012-07-03 2013-01-02 湖南省交通科学研究院 一种基于自然光的新型隧道照明节能系统
CN202841628U (zh) * 2012-09-28 2013-03-27 重庆三弓科技发展有限公司 一种隧道照明无缝过渡控制系统
CN103334768B (zh) * 2013-06-17 2016-02-03 武汉理工大学 一种公路隧道入口遮光过渡设施
CN203412164U (zh) * 2013-08-23 2014-01-29 陕西光伏产业有限公司 一种太阳能过渡光照棚及由其组成的太阳能发电装置
CN103759216A (zh) * 2013-11-11 2014-04-30 王艳 一种基于自然光的新型隧道照明节能系统
JP2015204150A (ja) * 2014-04-11 2015-11-16 パナソニックIpマネジメント株式会社 照明制御システム
CN104470139B (zh) * 2014-12-11 2017-10-31 大连海事大学 一种隧道照明闭环反馈控制方法
CN104864355B (zh) * 2015-05-15 2017-01-25 长安大学 一种不设人工光源的公路隧道照明解决方法
CN105188229B (zh) * 2015-10-19 2017-10-10 福建船政交通职业学院 一种自适应分段控制的隧道照明控制系统及方法
CN105184024B (zh) * 2015-10-23 2019-03-22 招商局重庆交通科研设计院有限公司 隧道遮光棚长度计算方法
CN205137330U (zh) * 2015-11-25 2016-04-06 四川省交通运输厅公路规划勘察设计研究院 基于自然光的隧道照明系统
CN105240786A (zh) * 2015-11-25 2016-01-13 四川省交通运输厅公路规划勘察设计研究院 基于自然光的隧道照明系统
CN205895257U (zh) * 2016-07-06 2017-01-18 山西省交通建设工程监理总公司 隧道口亮度渐变节能系统
CN106154377B (zh) * 2016-07-06 2018-10-26 同济大学 一种隧道口减光罩光环境优化装置
CN106874571B (zh) * 2017-01-21 2018-05-29 长安大学 一种隧道入口遮阳棚渐变光环境设计方法
CN106640119B (zh) * 2017-03-14 2018-07-31 合肥工业大学 公路隧道出入口遮光自动调节系统
CN206957729U (zh) * 2017-03-14 2018-02-02 合肥工业大学 公路隧道出入口遮光自动调节系统
CN107355231B (zh) * 2017-06-29 2019-08-27 西安建筑科技大学 一种公路隧道口外延伸段的调光系统及方法
CN207316597U (zh) * 2017-07-27 2018-05-04 招商局重庆交通科研设计院有限公司 隧道洞外光环境模拟装置
CN207453982U (zh) * 2017-11-21 2018-06-05 贵阳电气控制设备有限公司 一种高速公路隧道视觉环境改善设备
CN108035734A (zh) * 2018-01-04 2018-05-15 招商局重庆交通科研设计院有限公司 公路隧道洞外减光棚及减光方法
CN207962506U (zh) * 2018-02-11 2018-10-12 福建路达交通设施有限公司 一种隧道入口照明节能机构
CN109101696B (zh) * 2018-07-17 2022-11-08 长安大学 一种公路隧道入口连续渐低光环境的实现方法
CN108915718A (zh) * 2018-08-01 2018-11-30 齐鲁交通发展集团有限公司 一种隧道出入口处照明综合系统

Also Published As

Publication number Publication date
CN109826642A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
CN109826642B (zh) 隧道洞外调光方法
Qin et al. A “vehicle in, light brightens; vehicle out, light darkens” energy-saving control system of highway tunnel lighting
CN104066243B (zh) 隧道led照明控制方法
Peña-García Sustainable tunnel lighting: One decade of proposals, advances and open points
CN104470139A (zh) 一种隧道照明闭环反馈控制方法和控制系统
JP5726601B2 (ja) トンネル入口部照明システム
CN202841628U (zh) 一种隧道照明无缝过渡控制系统
CN107896411A (zh) 隧道照明系统及其控制方法
CN113905474A (zh) 一种城市隧道智能照明系统及调光方法
CN107454721B (zh) 一种自感应调光隧道照明系统及其调光控制方法
Doulos et al. Minimizing lighting consumption in existing tunnels using a no-cost fine-tuning method for switching lighting stages according revised luminance levels
CN107041031B (zh) 一种照明段结构动态配置的隧道照明控制系统
CN105657889A (zh) 一种隧道照明系统
CN109101696B (zh) 一种公路隧道入口连续渐低光环境的实现方法
CN106640119A (zh) 公路隧道出入口遮光自动调节系统
CN112799243A (zh) 一种公路隧道照明系统结构及设计控制方法
CN109874211A (zh) 一种高速公路隧道智能照明系统及方法
CN101437343A (zh) 一种公路隧道照明模糊控制方法
CN105205321B (zh) 一种隧道照明灯具布设优化方法
CN109874213A (zh) 一种改进高速公路型隧道照明辅助装置
CN109458605A (zh) 一种基于道路能见度的路灯亮度调节系统
CN201374844Y (zh) 一种隧道出入口段照明自动调节装置
CN110662330A (zh) 基于光感应和车辆检测的隧道灯调光调色方法
Liang et al. Design method of combined gradient dimming structures for highway tunnels
Aslı et al. Artificial intelligence supported tunnel lighting system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant