CN109786756A - 一种制备柔性锂离子电池电极的方法及其应用 - Google Patents

一种制备柔性锂离子电池电极的方法及其应用 Download PDF

Info

Publication number
CN109786756A
CN109786756A CN201910020146.5A CN201910020146A CN109786756A CN 109786756 A CN109786756 A CN 109786756A CN 201910020146 A CN201910020146 A CN 201910020146A CN 109786756 A CN109786756 A CN 109786756A
Authority
CN
China
Prior art keywords
formyl
carbon nanotube
imides
electrode
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910020146.5A
Other languages
English (en)
Inventor
杨鹏
吴东清
马列
鲁登
姜标
钟倩倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201910020146.5A priority Critical patent/CN109786756A/zh
Publication of CN109786756A publication Critical patent/CN109786756A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种制备柔性锂离子电池电极的方法,将3,4,9,10-苝四甲酰二亚胺与碳纳米管混合,抽滤后制备得到3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜的有机柔性正极材料。本发明采用商业化的、价格便宜的碳纳米管作为柔性基底,使用有机小分子3,4,9,10-苝四甲酰二亚胺代替传统无机电极材料和有机聚合物材料作为活性物质,制备得到高导电率、机械性能好的柔性电极,而且成本低廉,处理简单。

Description

一种制备柔性锂离子电池电极的方法及其应用
技术领域
本发明涉及一种柔性锂离子电池电极材料的制备方法,特别是涉及一种无金属集流体和粘结剂的柔性电极的制备方法。
背景技术
当前,电子设备的发展,尤其是便携性电子设备的兴起和进步,极大地改变了人们的生活。随着这些便携类消费电子产品需求的增长,对其续航能力也提出了更高的要求;作为当前主要的储能设备,锂离子电池因其较高的能量密度,较高的输出电压,以及无记忆效应等优点主导了当前的便携类电子设备市场。而目前应用较为广泛的锂离子电池大多存在体积较大,刚性不能弯曲折叠等缺点,和当前便携类电子产品向着柔性化,可穿戴,轻量化等发展趋势不符;此外,目前商业化的柔性电子设备大多数是具有柔性显示功能,而其储能部分却难以展示可折叠性。因此,发展新型电极材料,尤其是具有质轻,机械性能好的柔性电极材料成为当前亟需解决的问题。
目前制备柔性电极的方法,一种是将活性物质混合粘结剂涂覆在柔性的金属集流体上,这种制备方法导致整体电极中活性物质占比少,并且机械性能差;另一种方法是通过加入分散剂的方法与柔性导电材料,如石墨烯、碳纳米管以及聚合物制备成膜。现有技术制备柔性电极过程中,大多采用无机活性材料或不易溶解的聚合物作为活性物质,无机物硬度大,无法溶液加工,并且难以回收,无法降解,不环保;而聚合物合成过程复杂,导致效率低。在第二种方法中,往往需要加入有机溶剂作为分散剂,有机试剂有一定的污染性,不环保,并且这种方法无法使活性物质达到纳米尺寸的分散,分散效果不佳,导致电极的循环稳定性差。有机小分子来源广泛,可再生,成本低廉,质地轻柔,可溶液加工,废弃之后易在自然界中降解,具有很高的应用前景。因此,本领域的技术人员致力于开发一种高能量密度,高稳定性的基于有机小分子的柔性电极材料。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是如何制备无金属集流体和粘结剂的、具有高能量密度和高稳定性的、基于有机小分子的柔性电极材料。为实现上述目的,本发明提供了一种制备柔性锂离子电池电极的方法,包括如下步骤:
(1)将3,4,9,10-苝四甲酰二亚胺(PDI)与碳纳米管(CNT)在浓硫酸中混合,形成均一分散液;
(2)抽滤,得到3,4,9,10-苝四甲酰二亚胺/碳纳米管(PDI/CNT)复合薄膜的有机柔性正极材料。
进一步地,包括以下步骤:
步骤1:将所述碳纳米管分散在所述浓硫酸中,超声并搅拌形成分散液;
步骤2:将所述3,4,9,10-苝四甲酰二亚胺加入到所述步骤1中形成的分散液中,继续搅拌至形成均一分散液;
步骤3:将所述步骤2中制备得到的均一分散液加入冰水中稀释,并搅拌形成稀释后的分散液;
步骤4:将所述步骤3中制备得到的稀释后的分散液导入抽滤瓶中抽滤,并用去离子水清洗至中性,得到3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜;
步骤5:将所述步骤4中制备的所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜真空干燥,得到所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜的有机柔性正极材料;
所述3,4,9,10-苝四甲酰二亚胺与所述碳纳米管的质量比为1:1、2:1或3:1。
进一步地,包括以下步骤:
步骤1:将10mg所述碳纳米管分散在30ml所述浓硫酸中,超声并搅拌1小时;
步骤2:将10mg、20mg或30mg所述3,4,9,10-苝四甲酰二亚胺加入到所述步骤 1中形成的分散液中,继续搅拌0.5小时;
步骤3:将所述步骤2中制备好的分散液加入200ml冰水中稀释,并搅拌0.5小时;
步骤4:将所述步骤3中稀释后的分散液导入抽滤瓶中抽滤,并用去离子水清洗至中性,得到所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜;
步骤5:将所述步骤4中制备的所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜真空干燥12小时,得到所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜的有机柔性正极材料。
进一步地,所述碳纳米管为单壁碳纳米管(SWCNT)。
本发明还提供了一种柔性锂离子电池电极的应用,将所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜电极与锂片组装成扣式半电池。
本发明还提供了另一种柔性锂离子电池电极的应用,将所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜电极与预嵌锂的碳布组装成扣式全电池。
进一步地,所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜电极为直径12mm的圆形极片。
本发明还提供了第三种柔性锂离子电池电极的应用,将所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜电极与预嵌锂的碳布组装成软包全电池。
进一步地,所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜电极尺寸为2cm×3 cm。
进一步地,电池的组装在手套箱中进行,手套箱中水和氧的含量均低于0.1ppm,电解液为含1mol/l六氟磷酸锂(LiPF6)的碳酸乙烯酯:碳酸二甲酯:碳酸甲基乙基酯体积比为1:1:1的溶液,隔膜选用聚丙烯隔膜。
本发明利用商业化的、价格便宜的碳纳米管作导电网络和柔性基底,导电性极好,并且活性物质负载量可达到75%,稳定性好的电化学性能下,负载量可到67%,远远高于现有技术的负载量;碳纳米管提供的柔性基底具有极好的柔韧性。
本发明采用商业化的有机分子3,4,9,10-苝四甲酰二亚胺作为活性物质,成本低廉,可以在溶液中加工,操作简单,并且废弃之后可回收降解,较为环保。
本发明采用少量的硫酸可以分散足量的有机小分子,并且酸溶解再析出有机小分子可以使得小分子的尺寸更细化,达到更好的分散,从而增强有机小分子与导电网络之间的作用力,实现有机分子作为电极材料的稳定性。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜的有机柔性正极材料的制备流程;
图2(a)是3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜的有机柔性正极材料的照片,图2(b)是3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜的有机柔性正极材料的柔性展示,图2(c)是柔性正极在液氮中浸泡5分钟的低温性能;
图3(a)~图3(c)是PDI/CNT-2柔性电极与碳布组装成的软包全电池的性能,其中图3(a)为不同折叠状态下的循环性能,图3(b)为折叠180°的状态下的长循环性能,图3(c)为在不同折叠状态下点亮LED阵列版展示;
图4是浓硫酸溶解3,4,9,10-苝四甲酰二亚胺并析出的原理;
图5(a)和图5(b)分别是是实施例1中3,4,9,10-苝四甲酰二亚胺粉末在硫酸中分散前、后的扫描电子显微镜的形貌照片;
图6(a)~图6(d)分别是单壁碳纳米管薄膜(对比参照材料)、PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的表面形貌的扫描电子显微镜照片;
图7是单壁碳纳米管薄膜、PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的应力应变曲线;
图8是单壁碳纳米管薄膜、PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的热重分析曲线;
图9是是单壁碳纳米管薄膜、PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/ 单壁碳纳米管-3薄膜电极的方块电阻率;
图10是PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的循环伏安曲线;
图11是PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的充放电曲线;
图12(a)~图12(c)是分别是PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/ 单壁碳纳米管-3薄膜电极的倍率性能;
图13是PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极在0.5A/g的电流密度下的长循环性能;
图14是PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的电化学阻抗谱;
图15是实施例5中得到的PDI/单壁碳纳米管-2薄膜电极的循环前后的电化学阻抗谱变化。
具体实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
实施例1:
按照图1所示的流程制备3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜:
1)将10mg碳纳米管分散在30ml 18mol/L的浓硫酸中搅拌并超声1小时;
2)将10mg 3,4,9,10-苝四甲酰二亚胺加入上述碳纳米管的浓硫酸分散液中,搅拌0.5小时,使3,4,9,10-苝四甲酰二亚胺分散,并与碳纳米管形成均一的分散液;
3)将上述分散液加入200ml冰水中,稀释搅拌1小时;
4)将上述稀释后的溶液用真空抽滤瓶抽滤,抽滤结束并用去离子水洗涤至中性;
5)将上述制备得到的膜在真空干燥箱中真空干燥12小时,将膜揭下,得到 PDI/CNT-1薄膜,其中3,4,9,10-苝四甲酰二亚胺与碳纳米管质量比为1:1。
最后将PDI/CNT-1薄膜剪切成合适尺寸的圆形或长方形极片并称重。
图2(b)展示了实施例1中制备得到的3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜的柔韧性,碳纳米管提供的柔性基底具有极好的柔韧性。图2(c)展示了3,4,9,10 -苝四甲酰二亚胺/碳纳米管复合薄膜在液氮的低温环境下浸泡5分钟后,仍然能保持良好的柔韧性。
实施例2:
按照实施例1同样的步骤制备3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜,仅改变步骤2)中加入碳纳米管浓硫酸分散液中3,4,9,10-苝四甲酰二亚胺的质量为 20mg,得到PDI/CNT-2薄膜电极,其中3,4,9,10-苝四甲酰二亚胺与碳纳米管的质量比为2:1。
实施例3:
按照实施例1同样的步骤制备3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜,仅改变步骤2)中加入碳纳米管浓硫酸分散液中3,4,9,10-苝四甲酰二亚胺的质量为 30mg,得到PDI/CNT-3薄膜电极,其中3,4,9,10-苝四甲酰二亚胺与碳纳米管的质量比为3:1。
实施例4:
按照实施例1同样的步骤制备3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜,步骤1)中使用的是单壁碳纳米管,得到3,4,9,10-苝四甲酰二亚胺与单壁碳纳米管质量比为1:1的PDI/单壁碳纳米管-1薄膜电极。
实施例5:
按照实施例2同样的步骤制备3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜,步骤1)中使用的是单壁碳纳米管,得到3,4,9,10-苝四甲酰二亚胺与单壁碳纳米管质量比为2:1的PDI/单壁碳纳米管-2薄膜电极。
实施例6:
按照实施例3同样的步骤制备3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜,步骤1)中使用的是单壁碳纳米管,得到3,4,9,10-苝四甲酰二亚胺与单壁碳纳米管质量比为3:1的PDI/单壁碳纳米管-3薄膜电极。
本发明采用浓硫酸分散3,4,9,10-苝四甲酰二亚胺。3,4,9,10-苝四甲酰二亚胺先溶解于浓硫酸,然后再从浓硫酸中析出,这一过程可以使得3,4,9,10-苝四甲酰二亚胺分子的尺寸更细化,达到更好的分散,从而增强有机小分子与导电网络之间的作用力,实现有机分子作为电极材料的稳定性。图4是浓硫酸溶解3,4,9,10-苝四甲酰二亚胺并析出的原理。图5(a)和图5(b)分别是是实施例1中3,4,9,10-苝四甲酰二亚胺粉末在硫酸中分散前、后的扫描电子显微镜的形貌照片,两图对比可以看出,3,4,9,10-苝四甲酰二亚胺在硫酸中溶解并再析出后,由3~5um的块体状变为1um以下的条带状,尺寸更细化,分散更均匀。
对实施例4、5、6中制备得到的PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极分别进行了材料性能及电性能的测试,结果如下:
图6(a)~图6(d)分别是单壁碳纳米管薄膜(对比参照材料)、PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的表面形貌的扫描电子显微镜照片。可以看到,改变3,4,9,10-苝四甲酰二亚胺与碳纳米管的质量比,可以改变3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜的表面形貌。
图7是单壁碳纳米管薄膜、PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的应力应变曲线。可以看到,改变3,4,9,10-苝四甲酰二亚胺与碳纳米管的质量比,制备得到不同机械性能的薄膜电极材料。
图8是单壁碳纳米管薄膜、PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的热重分析曲线,可以看到三种PDI/单壁碳纳米管薄膜电极均具有良好的热稳定性,热分解温度大于500℃。
图9是是单壁碳纳米管薄膜、PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/ 单壁碳纳米管-3薄膜电极的方块电阻率,图10是PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的循环伏安曲线,图11是PDI/单壁碳纳米管-1、 PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的充放电曲线;图12(a)~图12 (c)是分别是PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的倍率性能,图13是PDI/单壁碳纳米管-1、PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极在0.5A/g的电流密度下的长循环性能,图14是PDI/单壁碳纳米管-1、 PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极的电化学阻抗谱,图15是实施例 5中得到的PDI/单壁碳纳米管-2薄膜电极的循环前后的电化学阻抗谱变化。可以看到, 3,4,9,10-苝四甲酰二亚胺与碳纳米管的质量比不同制备得到的PDI/单壁碳纳米管-1、 PDI/单壁碳纳米管-2、PDI/单壁碳纳米管-3薄膜电极均具有良好的电性能。
可以应用实施例1~6中制备得到的PDI/CNT薄膜电极进行扣式电池和软包电池的组装。
实施例7:
将实施例2中制备得到的PDI/CNT-2薄膜电极剪切成直径为12mm的圆形极片,与锂片组装成扣式半电池。电池的组装在手套箱中进行,手套箱水和氧含量均低于 0.1ppm。电解液选用含1mol/l六氟磷酸锂(LiPF6)的碳酸乙烯酯:碳酸二甲酯:碳酸甲基乙基酯体积比为1:1:1的溶液,隔膜选用聚丙烯隔膜。
实施例8:
使用与实施例7中相同的电池组装方法,将PDI/CNT-2薄膜电极剪切成直径为12mm的圆形极片,与预嵌锂的碳布组装得到2032型扣式全电池。
实施例9:
将实施例2中制备得到的PDI/CNT-2薄膜电极剪切成2cm×3cm的长方形极片,与预嵌锂的碳布组装成软包全电池。如图3(a)~图3(c)所示,组装成的软包全电池在不同折叠状态下均展示出良好的循环性能。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种制备柔性锂离子电池电极的方法,其特征在于,包括如下步骤:
(1)将3,4,9,10-苝四甲酰二亚胺与碳纳米管在浓硫酸中混合,形成均一分散液;
(2)抽滤,得到3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜的有机柔性正极材料。
2.如权利要求1所述的制备柔性锂离子电池电极的方法,其特征在于,包括以下步骤:
步骤1:将所述碳纳米管分散在所述浓硫酸中,超声并搅拌形成分散液;
步骤2:将所述3,4,9,10-苝四甲酰二亚胺加入到所述步骤1中形成的分散液中,继续搅拌至形成均一分散液;
步骤3:将所述步骤2中制备得到的均一分散液加入冰水中稀释,并搅拌形成稀释后的分散液;
步骤4:将所述步骤3中制备得到的稀释后的分散液导入抽滤瓶中抽滤,并用去离子水清洗至中性,得到3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜;
步骤5:将所述步骤4中制备的所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜真空干燥,得到所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜的有机柔性正极材料;
所述3,4,9,10-苝四甲酰二亚胺与所述碳纳米管的质量比为1:1、2:1或3:1。
3.如权利要求2所述的制备柔性锂离子电池电极的方法,其特征在于,包括以下步骤:
步骤1:将10mg所述碳纳米管分散在30ml所述浓硫酸中,超声并搅拌1小时;
步骤2:将10mg、20mg或30mg所述3,4,9,10-苝四甲酰二亚胺加入到所述步骤1中形成的分散液中,继续搅拌0.5小时;
步骤3:将所述步骤2中制备好的分散液加入200ml冰水中稀释,并搅拌0.5小时;
步骤4:将所述步骤3中稀释后的分散液导入抽滤瓶中抽滤,并用去离子水清洗至中性,得到3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜;
步骤5:将所述步骤4中制备的所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜真空干燥12小时,得到所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜的有机柔性正极材料。
4.如权利要求1~3任一项所述的制备柔性锂离子电池电极的方法,其特征在于,所述碳纳米管为单壁碳纳米管。
5.一种柔性锂离子电池电极的应用,其特征在于,将所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜电极与锂片组装成扣式半电池。
6.一种柔性锂离子电池电极的应用,其特征在于,将所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜电极与预嵌锂的碳布组装成扣式全电池。
7.如权利要求5~6任一项所述的一种柔性锂离子电池电极的应用,其特征在于,所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜电极为直径12mm的圆形极片。
8.一种柔性锂离子电池电极的应用,其特征在于,将所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜电极与预嵌锂的碳布组装成软包全电池。
9.如权利要求8所述的一种柔性锂离子电池电极的应用,其特征在于,所述3,4,9,10-苝四甲酰二亚胺/碳纳米管复合薄膜电极尺寸为2cm×3cm。
10.如权利要求5、6、8任一项所述的一种柔性锂离子电池电极的应用,其特征在于,电池的组装在手套箱中进行,手套箱中水和氧的含量均低于0.1ppm,电解液为含1mol/l六氟磷酸锂(LiPF6)的碳酸乙烯酯:碳酸二甲酯:碳酸甲基乙基酯体积比为1:1:1的溶液,隔膜选用聚丙烯隔膜。
CN201910020146.5A 2019-01-09 2019-01-09 一种制备柔性锂离子电池电极的方法及其应用 Pending CN109786756A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910020146.5A CN109786756A (zh) 2019-01-09 2019-01-09 一种制备柔性锂离子电池电极的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910020146.5A CN109786756A (zh) 2019-01-09 2019-01-09 一种制备柔性锂离子电池电极的方法及其应用

Publications (1)

Publication Number Publication Date
CN109786756A true CN109786756A (zh) 2019-05-21

Family

ID=66499272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910020146.5A Pending CN109786756A (zh) 2019-01-09 2019-01-09 一种制备柔性锂离子电池电极的方法及其应用

Country Status (1)

Country Link
CN (1) CN109786756A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916828A (zh) * 2020-08-13 2020-11-10 中南大学 一种锂硫电池电解液及其应用
CN112151766A (zh) * 2020-11-09 2020-12-29 上海交通大学烟台信息技术研究院 一种锂离子电池柔性电极及其制备方法和应用
CN112652743A (zh) * 2019-10-10 2021-04-13 多氟多化工股份有限公司 柔性正极及其制备方法
CN113921989A (zh) * 2021-09-16 2022-01-11 宁德卓高新材料科技有限公司 一种柔性隔膜制备工艺
CN114456356A (zh) * 2022-01-24 2022-05-10 郑州大学 聚苝四甲酰二亚胺、其制备方法及在锂/钠电池中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013040101A1 (en) * 2011-09-13 2013-03-21 Wildcat Discovery Technologies, Inc. Cathode for a battery
CN106229403A (zh) * 2016-08-08 2016-12-14 中国科学院化学研究所 一种苝酰亚胺或萘酰亚胺与碳纳米管复合的n‑型热电材料及其制备方法
CN107706406A (zh) * 2017-11-23 2018-02-16 上海交通大学 一种有机正极材料及其制备方法和应用
CN109004180A (zh) * 2018-07-27 2018-12-14 上海交通大学 一种基于相转换法制备的3,4,9,10-苝四甲酰二亚胺柔性有机电极

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013040101A1 (en) * 2011-09-13 2013-03-21 Wildcat Discovery Technologies, Inc. Cathode for a battery
CN106229403A (zh) * 2016-08-08 2016-12-14 中国科学院化学研究所 一种苝酰亚胺或萘酰亚胺与碳纳米管复合的n‑型热电材料及其制备方法
CN107706406A (zh) * 2017-11-23 2018-02-16 上海交通大学 一种有机正极材料及其制备方法和应用
CN109004180A (zh) * 2018-07-27 2018-12-14 上海交通大学 一种基于相转换法制备的3,4,9,10-苝四甲酰二亚胺柔性有机电极

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENPEI YUAN等: "Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
闻利群 著: "《含能材料超临界细化及改性技术》", 31 May 2010, 兵器工业出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652743A (zh) * 2019-10-10 2021-04-13 多氟多化工股份有限公司 柔性正极及其制备方法
CN111916828A (zh) * 2020-08-13 2020-11-10 中南大学 一种锂硫电池电解液及其应用
CN112151766A (zh) * 2020-11-09 2020-12-29 上海交通大学烟台信息技术研究院 一种锂离子电池柔性电极及其制备方法和应用
CN112151766B (zh) * 2020-11-09 2022-05-31 上海交通大学烟台信息技术研究院 一种锂离子电池柔性电极及其制备方法和应用
CN113921989A (zh) * 2021-09-16 2022-01-11 宁德卓高新材料科技有限公司 一种柔性隔膜制备工艺
CN114456356A (zh) * 2022-01-24 2022-05-10 郑州大学 聚苝四甲酰二亚胺、其制备方法及在锂/钠电池中的应用

Similar Documents

Publication Publication Date Title
Song et al. Recent progress in stretchable batteries for wearable electronics
CN109786756A (zh) 一种制备柔性锂离子电池电极的方法及其应用
Li et al. Fiber-shaped solid-state supercapacitors based on molybdenum disulfide nanosheets for a self-powered photodetecting system
Li et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte
Zhang et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery
Wang et al. Patterning islandlike MnO2 arrays by breath-figure templates for flexible transparent supercapacitors
CN105489814B (zh) 一种锂硫电池用改性隔膜的制备方法、改性隔膜以及具有多层该改性隔膜的锂硫电池
Zhang et al. Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage
Hu et al. Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies
Praveen et al. 3D-printed architecture of Li-ion batteries and its applications to smart wearable electronic devices
Jin et al. A flexible aqueous zinc–iodine microbattery with unprecedented energy density
CN106449134B (zh) 一种基于激光图形化的自由式微型超级电容器及制造方法
CN104934610B (zh) 一种锂离子电池用自支撑柔性复合电极材料制备方法
CN110323074A (zh) 一种不对称型全固态纤维状柔性超级电容器及其制备方法
CN106450245B (zh) 一种柔性可充放电锂硫电池正极材料及其制备方法
CN110265643A (zh) 一种Sb2O5/碳布柔性钠离子电池负极材料的制备方法
CN109742489A (zh) 一种锂-氧气/空气电池及其制备方法
Wang et al. Flexible self-powered fiber-shaped photocapacitors with ultralong cyclelife and total energy efficiency of 5.1%
Li et al. Rationally designed Mn2O3/CuxO core–shell heterostructure generated on copper foam as binder-free electrode for flexible asymmetric supercapacitor
CN111403184A (zh) 一种纳米碳掺杂MnO2异质结柔性电极的制备方法
Wang et al. High-performance asymmetric micro-supercapacitors based on electrodeposited MnO2 and N-doped graphene
CN105140461A (zh) 锂硫电池正极材料及其制备方法
CN114361570B (zh) 一种钠电池及其制备方法
Zhou et al. A novel method to prepare flexible 3D NiO nanosheets electrodes for alkaline rechargeable Ni− Zn batteries
Tian et al. Flexible in-plane zinc-ion hybrid capacitors with synergistic electrochemical behaviors for self-powered energy systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190521

RJ01 Rejection of invention patent application after publication