CN109774977B - 一种基于四元数的时间最优的卫星姿态快速机动方法 - Google Patents

一种基于四元数的时间最优的卫星姿态快速机动方法 Download PDF

Info

Publication number
CN109774977B
CN109774977B CN201910240335.3A CN201910240335A CN109774977B CN 109774977 B CN109774977 B CN 109774977B CN 201910240335 A CN201910240335 A CN 201910240335A CN 109774977 B CN109774977 B CN 109774977B
Authority
CN
China
Prior art keywords
quaternion
attitude
maneuver
angular velocity
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910240335.3A
Other languages
English (en)
Other versions
CN109774977A (zh
Inventor
祁海铭
姚小松
刘国华
于晓至
张永合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Zhongkechen New Satellite Technology Co ltd
Original Assignee
Shanghai Engineering Center for Microsatellites
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Engineering Center for Microsatellites filed Critical Shanghai Engineering Center for Microsatellites
Priority to CN201910240335.3A priority Critical patent/CN109774977B/zh
Publication of CN109774977A publication Critical patent/CN109774977A/zh
Application granted granted Critical
Publication of CN109774977B publication Critical patent/CN109774977B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明涉及一种基于四元数的时间最优的卫星姿态快速机动方法,包括下列步骤:根据初始姿态机动四元数和目标姿态机动四元数确定姿态机动空间轴和姿态机动角;根据所述姿态机动角确定角速度;以及基于所述角速度确定四元数机动轨迹。通过本发明,可以满足姿态快速机动的需求,从而尽可能快地将探测器定向到观测目标以完成观测。

Description

一种基于四元数的时间最优的卫星姿态快速机动方法
技术领域
本发明总体而言涉及航天器姿态控制技术领域,具体而言,涉及一种基于四元数的时间最优的卫星姿态快速机动方法。
背景技术
随着现代卫星技术的不断发展,卫星在各个领域得到了广泛的应用。这其中,科学探测卫星占据了很大比例。科学探测卫星的一个重要作用是对宇宙空间的探索,例如对宇宙射线等爆发源的观测。在太空中,一旦发现了诸如爆发源之类的观测目标,需要尽快将探测器指向观测目标。由于宇宙射线等观测目标大多属于暂现源信号,因此需要卫星通过快速姿态机动迅速地指向爆发源观测目标,其姿态机动时间的长短直接决定了科学观测任务完成的效果,甚至决定了任务的成败。这对卫星姿态机动的快速性提出了很高的要求。
目前常用的卫星姿态快速机动算法主要基于欧拉轴进行的各种路径规划算法,但卫星的姿态机动并不局限于某一个欧拉轴,而是一个空间轴的机动,传统的姿态机动算法无法兼顾时间最优及轨迹最优的双重需求。
发明内容
本发明的任务是提供一种基于四元数的时间最优的卫星姿态快速机动方法,通过该方法,可以满足姿态快速机动的需求,从而尽可能快地将探测器定向到观测目标以完成观测。
根据本发明,该任务通过一种基于四元数的时间最优的卫星姿态快速机动方法来解决,该方法包括下列步骤:
根据初始姿态机动四元数和目标姿态机动四元数确定姿态机动空间轴和姿态机动角;
根据所述姿态机动角确定角速度;以及
基于所述角速度确定四元数机动轨迹。
在本发明的一个优选方案中规定,根据初始姿态机动四元数和目标姿态机动四元数确定姿态机动空间轴和姿态机动角包括:
根据初始姿态四元数qint和目标姿态四元数qend计算出误差四元数qe
Figure BDA0002009455710000021
若q0e<0,则:qe=[-q0e -q1e -q2e -q3e]T
将误差四元数表示成由标量和三维矢量组成的形式:
Figure BDA0002009455710000022
以及
确定机动的空间角
Figure BDA0002009455710000023
及旋转空间轴E:
Figure BDA0002009455710000024
Figure BDA0002009455710000025
在本发明的另一优选方案中规定,根据所述姿态机动角确定角速度包括:
如果
Figure BDA0002009455710000026
则根据下式确定角速度:
Figure BDA0002009455710000027
其中:
Figure BDA0002009455710000028
如果
Figure BDA0002009455710000029
则根据下式确定角速度:
Figure BDA0002009455710000031
其中:
Figure BDA0002009455710000032
其中ωmax为最大机动限幅角速度,dωmax最大机动角加速度。
在本发明的又一优选方案中规定,基于所述角速度确定四元数机动轨迹包括:
根据所述角速度,实时地计算出旋转空间角E(θ),包括:
如果
Figure BDA0002009455710000033
Figure BDA0002009455710000034
其中:
Figure BDA0002009455710000035
以及
如果
Figure BDA0002009455710000036
Figure BDA0002009455710000041
其中:
Figure BDA0002009455710000042
实时地计算出相比于初始姿态四元数qint的误差四元数:
Figure BDA0002009455710000043
以及
根据qint、dqe实时地计算出姿态机动过程中惯性系下姿态四元数Q:
Q=qint·dqe
本发明至少具有下列有益效果:本发明针对卫星空间轴姿态机动,对姿态四元数进行了时间最优的轨迹规划,满足了应用卫星对姿态快速机动的需求;本发明提出的技术方案通过了地面仿真验证,机动过程中,姿态四元数按照规划的最优时间进行轨迹机动,保证了卫星姿态机动的快速性需求。
附图说明
下面结合附图参考具体实施例来进一步阐述本发明。
图1示出了根据本发明的空间轴机动轨迹规划示意图;
图2示出了本发明的姿态四元数时间最优路径规划示意图;
图3示出了在具体实施例中应用的根据本发明的姿态四元数时间最优路径规划示意图;
图4a示出了在具体实施例中应用的根据本发明的快速机动算法仿真得出的姿态四元数的机动轨迹;
图4b示出了在具体实施例中应用的根据本发明的快速机动算法仿真得出的机动过程中卫星角速度变化曲线;
图4c示出了在具体实施例中应用的根据本发明的快速机动算法仿真得出的机动过程中卫星角速度变化曲线细节图;
图5a示出了未采用本发明提出的方法仿真得到的姿态四元数的机动轨迹;
图5b示出了未采用本发明提出的方法仿真得到的机动过程中卫星角速度变化曲线;以及
图5c示出了未采用本发明提出的方法仿真得到的机动过程中卫星角速度变化曲线细节图。
具体实施方式
应当指出,各附图中的各组件可能为了图解说明而被夸大地示出,而不一定是比例正确的。在各附图中,给相同或功能相同的组件配备了相同的附图标记。
在本发明中,除非特别指出,“布置在…上”、“布置在…上方”以及“布置在…之上”并未排除二者之间存在中间物的情况。此外,“布置在…上或上方”仅仅表示两个部件之间的相对位置关系,而在一定情况下、如在颠倒产品方向后,也可以转换为“布置在…下或下方”,反之亦然。
在本发明中,各实施例仅仅旨在说明本发明的方案,而不应被理解为限制性的。
在本发明中,除非特别指出,量词“一个”、“一”并未排除多个元素的场景。
在此还应当指出,在本发明的实施例中,为清楚、简单起见,可能示出了仅仅一部分部件或组件,但是本领域的普通技术人员能够理解,在本发明的教导下,可根据具体场景需要添加所需的部件或组件。
在此还应当指出,在本发明的范围内,“相同”、“相等”、“等于”等措辞并不意味着二者数值绝对相等,而是允许一定的合理误差,也就是说,所述措辞也涵盖了“基本上相同”、“基本上相等”、“基本上等于”。
另外,本发明的各方法的步骤的编号并未限定所述方法步骤的执行顺序。除非特别指出,各方法步骤可以以不同顺序执行。
下面根据两个实施例进一步阐述本发明。
实施例一
本发明实施例提供的一种基于四元数时间最优轨迹规划的卫星姿态快速机动算法包括:
步骤一、已知:
姿态机动前的初始姿态四元数为:
qint=[q0int q1int q2int q3int]T
姿态机动后的目标姿态四元数为:
qend=[q0end q1end q2end q3end]T
根据初始姿态四元数和目标姿态四元数计算出误差四元数:
Figure BDA0002009455710000066
若q0e<0,则:qe=[-q0e -q1e -q2e -q3e]T
根据姿态四元数的定义可知,四元数由标量和三维矢量组成,标量代表欧拉轴转角,三维矢量代表欧拉轴方向,因此,误差四元数可表示为:
Figure BDA0002009455710000061
可以得出机动的空间角及旋转空间轴如下所示:
Figure BDA0002009455710000062
Figure BDA0002009455710000063
步骤二、根据步骤一求出的空间角
Figure BDA0002009455710000064
对机动空间轴进行角速度规划方法,主要设计如下:
空间轴机动轨迹规划示意图如图1,其中ωmax为最大机动限幅角速度,dωmax最大机动角加速度,dωmax由卫星惯量和执行机构所能提供的最大力矩共同决定。
(1)若
Figure BDA0002009455710000065
则空间轴角速度及空间角规划如下:
Figure BDA0002009455710000071
其中:
Figure BDA0002009455710000072
(2)若
Figure BDA0002009455710000073
则空间轴角速度及空间角规划如下:
Figure BDA0002009455710000074
其中:
Figure BDA0002009455710000075
步骤三、提出了确定四元数机动轨迹的方法,主要包括以下几个步骤:
步骤3.1、根据步骤二中的角速度规划结果,实时计算出旋转空间角E(θ):
(1)若
Figure BDA0002009455710000076
Figure BDA0002009455710000081
其中:
Figure BDA0002009455710000082
(2)若
Figure BDA0002009455710000083
Figure BDA0002009455710000084
其中:
Figure BDA0002009455710000086
上式中,由此可以实时计算出旋转空间角E(θ)。
步骤3.2、实时计算出相比于初始姿态四元数qint的误差四元数:
Figure BDA0002009455710000085
根据qint、dqe实时计算出姿态机动过程中惯性系下姿态四元数Q: Q=qint·dqe
实时获得了机动过程中的姿态四元数,便获得了四元数的轨迹规划路线,从而实现了卫星姿态的快速机动,如图2所示。
实施例二
本实例针对某型号卫星,描述本发明实例的具体实施方式。
以某科学探测卫星为例,该卫星的主要功能是探测宇宙中的X射线,当发现目标源时,要求卫星通过姿态机动快速将安装于卫星本体上的高精度载荷探测器对准目标源,因此对卫星姿态机动的快速性提出了很高的要求。
本发明实施例提供的一种基于四元数时间最优的轨迹规划卫星姿态快速机动算法包括:
步骤一、已知姿态机动前的初始姿态四元数和目标姿态四元数分别为:
qint=[1 0 0 0]T
Figure BDA0002009455710000091
可以计算出初始姿态四元数和终止姿态四元数的误差四元数:
Figure BDA0002009455710000092
由于q0e<0,故:
Figure BDA0002009455710000093
由于:
Figure BDA0002009455710000094
可以得出机动的空间角和旋转空间轴如下:
Figure BDA0002009455710000095
Figure BDA0002009455710000096
步骤二、对机动轴进行角速度时间最优轨迹规划:
由步骤一求得机动空间角
Figure BDA0002009455710000064
为90deg,根据卫星主轴惯量为 [1140.7,778.5,1281.5]kgm2和选用六斜装反作用飞轮的最大输出力矩,将最大机动角速度ωmax设置为1.8deg/s,最大机动角加速度dωmax定为0.07deg/s2,机动轴的角速度时间最优轨迹规划如图3所示。
由于
Figure BDA0002009455710000101
故空间轴角速度及空间角规划如下:
Figure BDA0002009455710000102
其中:
Figure BDA0002009455710000103
步骤三、提出了确定四元数机动轨迹的方法,主要包括以下几个步骤:
步骤3.1、根据步骤二中的角速度规划结果,实时计算出旋转空间角E(θ):
Figure BDA0002009455710000104
步骤3.2、实时计算出相比于初始姿态四元数qint的误差四元数:
Figure BDA0002009455710000105
根据qint、dqe实时计算出姿态机动过程中惯性系下姿态四元数Q:
Q=qint·dqe=dqe
Figure BDA0002009455710000106
实时获得了机动过程中的姿态四元数,便获得了四元数的轨迹规划路线,图4a为姿态四元数的机动轨迹,图4b和图4c分别为机动过程中卫星的姿态角速度变化曲线和细节图,从图上可以看出机动开始96s后角速率控制精度优于0.001°/s。
图5a-c为未采用本发明所用方法仿真得出的曲线,图5a 为姿态四元数的机动轨迹,图5b和图5c分别为机动过程中卫星的姿态角速度变化曲线和细节图,从图上可以看出,四元数没有轨迹规划,卫星的姿态加速度需要在机动开始190s后才能达到角速率控制精度优于0.001°/s。
本发明至少具有下列有益效果:本发明针对卫星空间轴姿态机动,对姿态四元数进行了时间最优的轨迹规划,满足了应用卫星对姿态快速机动的需求;本发明提出的技术方案通过了地面仿真验证,机动过程中,姿态四元数按照规划的最优时间进行轨迹机动,保证了卫星姿态机动的快速性需求。
虽然本发明的一些实施方式已经在本申请文件中予以了描述,但是本领域技术人员能够理解,这些实施方式仅仅是作为示例示出的。本领域技术人员在本发明的教导下可以想到众多的变型方案、替代方案和改进方案而不超出本发明的范围。所附权利要求书旨在限定本发明的范围,并藉此涵盖这些权利要求本身及其等同变换的范围内的方法和结构。

Claims (1)

1.一种基于四元数的时间最优的卫星姿态快速机动方法,包括下列步骤:
根据初始姿态机动四元数和目标姿态机动四元数确定姿态机动空间轴和姿态机动角;
根据所述姿态机动角确定角速度;以及
基于所述角速度确定四元数机动轨迹;
其中根据初始姿态机动四元数和目标姿态机动四元数确定姿态机动空间轴和姿态机动角包括:
根据初始姿态四元数qint和目标姿态四元数qend计算出误差四元数qe
Figure FDA0002635116550000011
若q0e<0,则:qe=[-q0e -q1e -q2e -q3e]T
将误差四元数表示成由标量和三维矢量组成的形式:
Figure FDA0002635116550000012
以及
确定机动的空间角
Figure FDA0002635116550000017
及旋转空间轴E:
Figure FDA0002635116550000013
Figure FDA0002635116550000014
其中根据所述姿态机动角确定角速度包括:
如果
Figure FDA0002635116550000015
则根据下式确定角速度:
Figure FDA0002635116550000016
其中:
Figure FDA0002635116550000021
如果
Figure FDA0002635116550000022
则根据下式确定角速度:
Figure FDA0002635116550000023
其中:
Figure FDA0002635116550000024
其中ωmax为最大机动限幅角速度,dωmax最大机动角加速度;
其中基于所述角速度确定四元数机动轨迹包括:
根据所述角速度,实时地计算出旋转空间角E(θ),包括:
如果
Figure FDA0002635116550000025
Figure FDA0002635116550000026
其中:
Figure FDA0002635116550000031
以及
如果
Figure FDA0002635116550000032
Figure FDA0002635116550000033
其中:
Figure FDA0002635116550000034
实时地计算出相比于初始姿态四元数qint的误差四元数:
Figure FDA0002635116550000035
以及
根据qint、dqe实时地计算出姿态机动过程中惯性系下姿态四元数Q:
Q=qint·dqe
其中根据实时获得的机动过程中的姿态四元数Q,获得四元数的轨迹规划路线。
CN201910240335.3A 2019-03-28 2019-03-28 一种基于四元数的时间最优的卫星姿态快速机动方法 Active CN109774977B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910240335.3A CN109774977B (zh) 2019-03-28 2019-03-28 一种基于四元数的时间最优的卫星姿态快速机动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910240335.3A CN109774977B (zh) 2019-03-28 2019-03-28 一种基于四元数的时间最优的卫星姿态快速机动方法

Publications (2)

Publication Number Publication Date
CN109774977A CN109774977A (zh) 2019-05-21
CN109774977B true CN109774977B (zh) 2021-05-07

Family

ID=66491448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910240335.3A Active CN109774977B (zh) 2019-03-28 2019-03-28 一种基于四元数的时间最优的卫星姿态快速机动方法

Country Status (1)

Country Link
CN (1) CN109774977B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111026142B (zh) * 2019-12-11 2023-04-14 北京控制工程研究所 一种大干扰和小惯量情况下的快速姿态机动方法及系统
CN111897355B (zh) * 2020-08-06 2022-09-13 中国科学院微小卫星创新研究院 一种卫星姿态机动轨迹规划方法
CN114061381B (zh) * 2021-12-14 2023-07-14 北京轩宇空间科技有限公司 一种探空火箭载荷平台的快速调姿方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068217A (en) * 1996-10-16 2000-05-30 Space Systems/Loral, Inc. Method to reorient a spacecraft using only initial single axis attitude knowledge
JP3623747B2 (ja) * 2001-03-19 2005-02-23 日本電気航空宇宙システム株式会社 三軸衛星の姿勢変更制御方式
US7487016B2 (en) * 2004-12-15 2009-02-03 The Boeing Company Method for compensating star motion induced error in a stellar inertial attitude determination system
US9199746B2 (en) * 2009-05-19 2015-12-01 University Of Florida Research Foundation, Inc. Attitude control system for small satellites
CN101694388B (zh) * 2009-10-19 2011-08-17 航天东方红卫星有限公司 一种敏捷卫星姿态机动确定系统
CN102865866B (zh) * 2012-10-22 2015-01-28 哈尔滨工业大学 基于双星敏感器的卫星姿态确定方法及定姿误差分析方法
CN103708044B (zh) * 2013-12-06 2016-02-10 上海新跃仪表厂 一种用于卫星快速姿态机动的饱和滑模变结构控制方法
CN104281150A (zh) * 2014-09-29 2015-01-14 北京控制工程研究所 一种姿态机动的轨迹规划方法
CN105005312B (zh) * 2015-06-29 2017-11-03 哈尔滨工业大学 一种基于最大角加速度和最大角速度卫星规划轨迹方法
CN105022402B (zh) * 2015-08-20 2017-11-03 哈尔滨工业大学 一种双刚体航天器快速机动的最短时间确定方法
CN106275508B (zh) * 2016-08-15 2019-03-01 上海航天控制技术研究所 一种卫星绕空间轴的最短路径姿态机动控制方法

Also Published As

Publication number Publication date
CN109774977A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN109774977B (zh) 一种基于四元数的时间最优的卫星姿态快速机动方法
Huang et al. The Tianwen-1 guidance, navigation, and control for Mars entry, descent, and landing
Takada et al. Control moment gyro singularity-avoidance steering control based on singular-surface cost function
CN110329550B (zh) 用于敏捷卫星应用的姿态控制
CN111605737B (zh) 一种航天器三超控制多级协同规划与敏捷机动方法
CN109911249B (zh) 低推重比飞行器的星际转移有限推力入轨迭代制导方法
CN110104219A (zh) 一种控制探测器着陆地外天体的方法及装置
CN113341731B (zh) 一种基于序列凸优化的空间机器人轨迹规划方法
CN104960674A (zh) 一种运动目标的指向跟踪控制方法
CN104281150A (zh) 一种姿态机动的轨迹规划方法
CN110658837B (zh) 一种控制力矩陀螺故障情况下的平稳重构方法
CN112061424B (zh) 一种基于融合目标姿态的机动过程能源角动态跟踪方法
Sun et al. Adaptive relative pose control of spacecraft with model couplings and uncertainties
EP1777158A1 (en) A method and system for determining a singularity free momentum path
Wu et al. Cooperative game theory-based optimal angular momentum management of hybrid attitude control actuator
CN109305394B (zh) 航天器近距离交会试验简化方法
Meng et al. A new geometric guidance approach to spacecraft near-distance rendezvous problem
CN110697085B (zh) 一种双sgcmg与磁力矩器组合的卫星控制方法
Das et al. Unwinding-free fast finite-time sliding mode satellite attitude tracking control
Xie et al. Guidance, navigation, and control for spacecraft rendezvous and docking: theory and methods
Jackson et al. Design of a small space robot for on-orbit assembly missions
Huang et al. Orbit raising and de-orbit for coplanar satellite constellations with low-thrust propulsion
Li et al. A novel approach to the 2D differential geometric guidance problem
CN111897355B (zh) 一种卫星姿态机动轨迹规划方法
Baranov et al. Controlling the motion of a spacecraft when approaching a large object of space debris

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230817

Address after: 201306 building C, No. 888, Huanhu West 2nd Road, Lingang New District, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai

Patentee after: Shanghai Zhongkechen New Satellite Technology Co.,Ltd.

Address before: No. 4 Building, 99 Haike Road, Pudong New Area, Shanghai, 201203

Patentee before: SHANGHAI ENGINEERING CENTER FOR MICROSATELLITES

TR01 Transfer of patent right