CN109741933B - 一种超声波辅助的无线充电导磁片制备方法 - Google Patents
一种超声波辅助的无线充电导磁片制备方法 Download PDFInfo
- Publication number
- CN109741933B CN109741933B CN201910145661.6A CN201910145661A CN109741933B CN 109741933 B CN109741933 B CN 109741933B CN 201910145661 A CN201910145661 A CN 201910145661A CN 109741933 B CN109741933 B CN 109741933B
- Authority
- CN
- China
- Prior art keywords
- ultrasonic
- soft magnetic
- conductive sheet
- strip
- magnetic conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Landscapes
- Soft Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
本发明提供了一种超声波辅助的无线充电导磁片制备方法,包括以下步骤:S1热处理:选择合适的软磁合金带材或多种软磁合金带材的组合,并进行热处理;S2贴合:将热处理好的软磁合金带材与双面胶带覆合,制成复合软磁材料;S3超声碎磁:根据导磁片性能需求和碎片尺寸要求,在超声波辅助条件下对带状复合软磁材料进行分段式连续冲压,处理成具有特定尺寸的碎片均匀分布的结构;S4模切成型:选择合适的模切模具,将复合软磁材料切成特定形状的片材。本发明不仅能够快速生产碎片尺寸均匀的导磁片,还可通过调整不同超声波冲压条件来改变碎片的大小,进而满足不同的生产需求。
Description
技术领域
本发明涉及无线充电领域,尤其涉及一种超声波辅助的无线充电导磁片制备方法。
背景技术
随着消费电子产业生物快速发展,电子终端的智能化、小型化、轻量化演变,便携的电子产品对充电方式提出了新的要求。无线充电具有有线充电无法比拟的优势如使用方便、通用性强、无裸露导线安全性高。无线充电技术原理主要是电磁感应式和磁场共振式,电磁感应是在初级线圈施加一定频率的交流电,通过电磁感应在次级线圈中产生一定的电流,从而将能量从传输端转移到接收端,这是目前最为常见的充电解决方案。
作为电磁感应式无线充电,要求发射和接收对位准确,或添加导磁片才能保证一定的传输效率。软磁材料制作成的导磁片,在无线充电系统中起增高感应磁场和屏蔽感应线圈磁场,为防止在其他电子元件和电池中形成涡流损耗或破坏电子产品。对软磁材料性能和产品尺寸、可靠性等对材料要求较高。
非晶、纳米晶具有高饱和磁感、高磁导率、低损耗等优异的磁性能,并且厚度可达十几个微米,是移动终端理想的导磁片材料。目前现有的无线充电导磁片都是采用金属辊碾压、激光切割传统碎磁方式,(如专利CN201280062847.1,CN201710405952.5,CN201510205464.0等),这些碎磁方法使导磁片的破碎尺寸不均匀,不能实现碎片尺寸调控、磁性能调控及制备厚导磁片,影响导磁片的整体效率,同时传统的碎磁方式生产效率低,耗能大,不利于自动化生产。
发明内容
为了解决现有技术中的问题,本发明提供了一种超声波辅助的无线充电导磁片制备方法。
本发明提供了一种超声波辅助的无线充电导磁片制备方法,包括以下步骤:S1热处理:根据导磁片的使用要求选择合适的软磁合金带材或多种软磁合金带材的组合,将带材在其各自合适的条件下进行热处理;S2贴合:将步骤S1中热处理好的软磁合金带材与双面胶带覆合,若导磁片为多层软磁合金带材设计的,还需将多层带材贴合到一起,并保留最外层双面胶的保护膜,制成带状复合软磁材料;S3超声碎磁:根据导磁片性能需求和碎片尺寸要求设置好超声波冲压机的冲压条件,将步骤S2中制得的带状复合软磁材料引至超声波冲压机的工作台上、冲头正下方,在超声波辅助条件下对带状复合软磁材料进行分段式连续冲压,将复合材料内部的整片软磁合金带材处理成具有特定尺寸的碎片均匀分布的结构;S4模切成型:根据导磁片的使用需求,选择合适的模切模具,将步骤S3中制得的带状复合软磁材料切成特定需求形状的复合片材。
作为本发明的进一步改进,所述步骤S1中的软磁合金带材为铁基非晶合金、纳米晶合金或亚纳米合金中的一种或几种。
作为本发明的进一步改进,所述双面胶带的厚度在15μm以下,所述软磁合金带材的厚度在40μm以下。
作为本发明的进一步改进,所述步骤S2中,若软磁合金带材为多种,还需先根据导磁片的性能要求进行软磁合金带材组合方式设计,然后再进行双面胶贴合。
作为本发明的进一步改进,所述步骤S3中所述超声波冲压机的工作台为硬质合金工作台,所述工作台上可根据导磁片性能需求和碎片尺寸要求在工作台与复合材料之间铺设软质塑料或橡胶等介质。
作为本发明的进一步改进,所述步骤S3还包括以下亚步骤:
S3-1:根据导磁片性能需求和碎片尺寸要求设置好超声波冲压机的冲压条件;
S3-2:将步骤S2中制得的带状复合软磁材料引至超声波冲压机的工作台上、冲头正下方,在超声波辅助条件下对冲头下的带状复合软磁材料进行冲压;
S3-3:S3-2步骤完毕后,将复合材料向前平移一个冲压长度的距离,对未冲压部分继续进行超声波辅助的冲压;
S3-4:重复上述S3-3步骤,直到整条复合材料冲压完毕。
作为本发明的进一步改进,步骤S3-1中所述冲压条件可设置为一段或多段冲压程序。
作为本发明的进一步改进,所述冲压条件的每一段冲压程序都包括冲压压力、保压时间、超声波频率等。
作为本发明的进一步改进,根据导磁片的使用要求,对模切成型好的导磁片进行包边和封装处理。
本发明的优点和有益效果是:
(1)利用超声波对无线充电导磁片进行碎磁,不仅能够使碎片的尺寸更均匀,且导磁性能更均匀,一致性好。
(2)超声波碎磁能量强,可以进行厚片的碎磁处理,并且还可以通过调整冲压条件来改变导磁片碎片的尺寸进而达到调整磁性能的目的。
综上所述,本发明的无线充电导磁片制备方法不仅可以使碎片尺寸均匀,工艺简单可控,还可以根据使用需求改变碎片大小,进而对导磁片的磁性能进行调控,这在无线充电领域有着良好的应用前景。
附图说明
图1是两层软磁合金带材贴合两层双面胶带并碎磁的装置示意图。
图2是本发明一种超声波辅助的无线充电导磁片制备方法的碎磁装置示意图。
图3是本发明一种超声波辅助的无线充电导磁片制备方法的导磁片结构示意图。
其中,1a、1b为软磁合金带材;10a、10b为软磁合金带材输送辊;101a、101b为双面胶带输送辊;101c为双面胶带脱膜辊;102a、102b为压力辊;13为带状复合软磁材料;104为复合软磁材料收卷辊;2a、2b,12为双面胶带;3为双面胶带保护膜;4为碎磁装置;11为超声冲头;14为工作台。
具体实施例
下面结合附图与具体实施例对本发明做进一步详细说明。
图1所示为双层软磁合金带材1a、1b与两层双面胶带2a、2b进行贴合,形成具有双层软磁合金带材和双层双面胶的复合软磁材料,并对复合软磁材料进行碎磁处理的一种装置示意图。为简洁明了,支撑各旋转辊的钢架、平台及控制驱动装置未在图中绘制。在整个贴合过程中,带材输送辊10a和10b、双面胶带输送辊101a和101b、双面胶带脱膜辊101c、压力辊102a和102b以及复合软磁材料收卷辊104按图中箭头方向转动,碎磁装置4如图示箭头。根据导磁片性能需求和碎片尺寸要求设置好超声波冲压机的冲压条件,将贴合好的复合软磁材料进行碎磁处理,可将其中的软磁合金带材处理成特定尺寸和形状的碎片均匀分布的结构。也可根据导磁片的使用性能要求,不进行碎磁处理。在本发明中,可根据复合软磁材料中带材层数的设计,相应增添带材输送辊和双面胶带输送辊(及其相应的双面胶带脱膜辊)的对数。
实施例1
软磁合金带材为Fe78Si9B13非晶合金带材1a、1b。带材厚度为20μm,宽度为60mm;双面胶带厚度为5μm,宽度为65mm。
将非晶合金带材1a、1b在热处理炉中375℃下保温90min。按图2所示,将热处理后的非晶合金带材1a、1b、双面胶带2a、2b分别安装在相应的输送辊上,启动装置进行贴合和碎磁。非晶合金带材1a、1b、双面胶带2a、2b在压力辊102a、102b中间经加压贴合之后形成复合软磁材料13,从压力辊102a、102b中间输送出来。根据导磁片性能需求和碎片尺寸要求,设置好超声波冲压机的冲压压力为100N,其他冲压条件见表1,将制得的带状复合软磁材料13引至超声波冲压机的工作台14上、超声冲头11正下方(如图2),在超声波辅助条件下对带状复合软磁材料13进行分段式连续冲压,将复合材料向前平移一个冲压长度的距离,对未冲压部分继续进行超声波辅助的冲压,将复合软磁材料13内部的整片软磁合金带材处理成具有特定尺寸的碎片均匀分布的结构(如图3),经碎磁处理后的复合软磁材料13由收卷辊104将其收卷。
根据导磁片的使用要求,选择合适的模切模具,将碎磁后的带状复合软磁材料13切成若干55*30的复合片材,并对导磁片进行包边和封装处理。利用阻抗分析仪测试不同碎磁条件和碎磁程度(即不同碎片尺寸)的导磁片在100kHz下的磁导率,列于表1中。
由表1可见,通过超声波冲压条件的设置,将复合软磁材料进行不同程度的碎磁处理,可有效地调控导磁片的软磁性能:未碎磁处理的导磁片在100kHz下的磁导率约为7000,当碎片平均尺寸为较大的4mm时,磁导率已明显下降;而且随着碎片平均尺寸的减小,磁芯的磁导率呈现连续下降趋势。这正是由于磁芯内部碎片化程度不断提升,并且碎片之间实现良好绝缘的缘故,这也会使导磁片涡流损耗的大幅降低,提高充电效率。
实施例2
软磁合金带材为Fe73.5Si13.5B9Nb3Cu1纳米晶合金带材1a、1b,带材厚度为20μm,宽度为60mm;双面胶厚度为5μm,宽度为65mm。
将纳米晶合金带材1a、1b置于热处理炉中,在540℃下保温110min后降温、出炉得到所需的合金带材1a、1b。将软磁合金带材1a、1b与双面胶带2a、2b贴合并碎磁形成复合软磁带材13,再将复合软磁材料13模切成55*30的若干复合片材,并对导磁片进行包边和封装处理,并对不同碎磁条件及碎磁程度的导磁片进行磁导率测量,见表1所述,具体的装置此处不再赘述。
由表1中数据可见,本实施例中采用纳米晶合金带材制备而成的导磁片,其磁导率随碎片尺寸的变化趋势与实施例1一致,同样可推测,本实施例的磁芯在高频下的损耗也将随碎片尺寸的下降而呈现显著下降,即通过合适的碎磁处理可使涡流损耗大幅降低,提高充电效率。
表1本发明各实施例中不同碎磁条件、不同碎片尺寸下导磁片的磁导率数值
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
Claims (9)
1.一种超声波辅助的无线充电导磁片制备方法,其特征在于,适用于一超声波冲压机对贴覆有双面胶带的软磁合金带材进行冲压,所述超声波冲压机包括一工作台和一超声冲头,所述超声冲头设置在所述工作台的上方并指向所述工作台;所述超声冲头用于对所述软磁合金带材具有所述双面胶带的一侧进行冲压,所述无线充电导磁片制备方法具体包括以下步骤:
S1:热处理:根据导磁片的使用要求选择合适的软磁合金带材或多种软磁合金带材的组合,将带材在其各自合适的条件下进行热处理;
S2:贴合:将步骤S1中热处理好的软磁合金带材多层与多层双面胶带贴合到一起,并保留最外层双面胶的保护膜,制成带状复合软磁材料;
S3:超声碎磁:根据导磁片性能需求和碎片尺寸要求设置好超声波冲压机的冲压条件,将步骤S2中制得的带状复合软磁材料引至超声波冲压机的工作台上、冲头正下方,在超声波辅助条件下对带状复合软磁材料进行分段式连续冲压,将复合材料内部的整片软磁合金带材处理成具有特定尺寸的碎片均匀分布的结构;
所述特定尺寸在0.8mm~4mm之间;
所述分段式连续冲压包括:当完成对所述带状复合软磁材料位于所述超声冲头下方的部分进行冲压后,将所述带状复合软磁材料向前平移一个冲压长度的距离,对未冲压部分继续进行超声波辅助的冲压;
S4:模切成型:根据导磁片的使用需求,选择合适的模切模具,将步骤S3中制得的带状复合软磁材料切成所需形状的复合片材。
2.根据权利要求1所述的一种超声波辅助的无线充电导磁片制备方法,其特征在于,所述步骤S1中的软磁合金带材为铁基非晶合金、纳米晶合金或亚纳米合金中的一种或几种。
3.根据权利要求1所述的一种超声波辅助的无线充电导磁片制备方法,其特征在于,所述双面胶带的厚度在15μm以下,所述软磁合金带材的厚度在40μm以下。
4.根据权利要求1所述的一种超声波辅助的无线充电导磁片制备方法,其特征在于,所述步骤S2中,若软磁合金带材为多种,还需先根据导磁片的性能要求进行软磁合金带材组合方式设计,然后再进行双面胶贴合。
5.根据权利要求1所述的一种超声波辅助的无线充电导磁片制备方法,其特征在于,步骤S3中所述超声波冲压机的工作台为硬质合金工作台,所述工作台上可根据导磁片性能需求和碎片尺寸要求在工作台与复合材料之间铺设软质塑料或橡胶。
6.根据权利要求1所述的一种超声波辅助的无线充电导磁片制备方法,其特征在于,所述步骤S3还包括以下步骤:
S3-1:根据导磁片性能需求和碎片尺寸要求设置好超声波冲压机的冲压条件;
S3-2:将步骤S2中制得的带状复合软磁材料引至超声波冲压机的工作台上、冲头正下方,在超声波辅助条件下对冲头下的带状复合软磁材料进行冲压;
S3-3:S3-2步骤完毕后,将复合材料向前平移一个冲压长度的距离,对未冲压部分继续进行超声波辅助的冲压;
S3-4:重复上述S3-3步骤,直到整条复合材料冲压完毕。
7.根据权利要求6所述的一种超声波辅助的无线充电导磁片制备方法,其特征在于:步骤S3-1中所述冲压条件可设置为一段或多段冲压程序。
8.根据权利要求6或7所述的一种超声波辅助的无线充电导磁片制备方法,其特征在于:所述冲压条件的每一段冲压程序都包括冲压压力、保压时间、超声波频率和振幅。
9.根据权利要求1所述的一种超声波辅助的无线充电导磁片制备方法,其特征在于:根据导磁片的使用要求,对模切成型好的导磁片进行包边和封装处理。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910092199 | 2019-01-30 | ||
CN2019100921998 | 2019-01-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109741933A CN109741933A (zh) | 2019-05-10 |
CN109741933B true CN109741933B (zh) | 2022-11-18 |
Family
ID=66368496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910145661.6A Active CN109741933B (zh) | 2019-01-30 | 2019-02-27 | 一种超声波辅助的无线充电导磁片制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109741933B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110154372A (zh) * | 2019-05-24 | 2019-08-23 | 苏州安洁科技股份有限公司 | 纳米晶模切包边工艺及设备 |
CN115334864A (zh) * | 2022-09-01 | 2022-11-11 | 宁波中益赛威材料科技有限公司 | 一种电磁屏蔽复合材料及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008021991A (ja) * | 2006-06-16 | 2008-01-31 | Nitta Ind Corp | 磁性シート、これを用いたアンテナ装置および電子情報伝達装置 |
WO2017061773A1 (ko) * | 2015-10-05 | 2017-04-13 | 주식회사 아모그린텍 | 자성시트, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기 |
CN109109426A (zh) * | 2018-06-27 | 2019-01-01 | 横店集团东磁股份有限公司 | 一种无线充电纳米晶屏蔽片的表面处理方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW336901B (en) * | 1995-12-08 | 1998-07-21 | Kawasaki Steel Co | Manufacturing method and apparatus for non-crystalline metal tapes |
KR101952359B1 (ko) * | 2014-09-29 | 2019-02-26 | 엘지이노텍 주식회사 | 복합자성시트 및 이를 포함하는 무선충전모듈 |
CN104439258A (zh) * | 2014-11-27 | 2015-03-25 | 北京科技大学 | 一种钕铁硼永磁合金粉末的制备方法 |
KR102389704B1 (ko) * | 2015-08-12 | 2022-04-25 | 삼성전자주식회사 | 무선 전력 송수신 도전성 패턴을 구비한 전자 장치 |
CN108122669B (zh) * | 2017-11-14 | 2019-12-24 | 上海量子绘景电子股份有限公司 | 一种电磁屏蔽用磁材的加工处理方法 |
CN109094165B (zh) * | 2018-06-27 | 2019-12-17 | 横店集团东磁股份有限公司 | 一种无线充电用纳米晶磁片的制备方法 |
CN109102998B (zh) * | 2018-07-26 | 2020-12-01 | 领胜城科技(江苏)有限公司 | 一种软磁片及其制备方法和用途 |
CN109243755B (zh) * | 2018-10-12 | 2020-02-21 | 苏州世诺新材料科技有限公司 | 一种宽频段复合隔磁片及其制备方法 |
-
2019
- 2019-02-27 CN CN201910145661.6A patent/CN109741933B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008021991A (ja) * | 2006-06-16 | 2008-01-31 | Nitta Ind Corp | 磁性シート、これを用いたアンテナ装置および電子情報伝達装置 |
WO2017061773A1 (ko) * | 2015-10-05 | 2017-04-13 | 주식회사 아모그린텍 | 자성시트, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기 |
CN109109426A (zh) * | 2018-06-27 | 2019-01-01 | 横店集团东磁股份有限公司 | 一种无线充电纳米晶屏蔽片的表面处理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109741933A (zh) | 2019-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113748473B (zh) | 带有树脂膜的纳米结晶合金薄带的制造方法 | |
CN105632678B (zh) | 一种非接触式充电用柔性导磁薄片及其制备方法 | |
CN110098043B (zh) | 一种可控的阵列式无线充电导磁片制备方法 | |
CN109094165B (zh) | 一种无线充电用纳米晶磁片的制备方法 | |
CN108430204B (zh) | 隔磁材料及其制备方法和应用 | |
CN109102998B (zh) | 一种软磁片及其制备方法和用途 | |
CN109741933B (zh) | 一种超声波辅助的无线充电导磁片制备方法 | |
CN108430203A (zh) | 一种电磁屏蔽片及其制备方法 | |
KR20200032991A (ko) | 자기장 차폐시트, 자기장 차폐시트의 제조방법, 이를 이용한 안테나 모듈 및 휴대용 전자기기 | |
JP2011134959A (ja) | 磁性シート | |
KR20150037089A (ko) | 전극 가이드를 포함하는 라미네이션 장치 | |
EP3989247A1 (en) | Magnetic field shielding sheet and manufacturing method therefor | |
CN109003792B (zh) | 一种软磁片及其制备方法和用途 | |
CN108045063A (zh) | 一种无线充电用电磁屏蔽片的制备方法 | |
CN108481877B (zh) | 电磁屏蔽用磁材的碎化处理工艺 | |
CN110323055B (zh) | 一种纳米晶产品的制备装置以及制备方法 | |
KR20200032620A (ko) | 자기장 차폐시트 제조방법 및 이에 의해 제조된 자기장 차폐시트 | |
CN109671549A (zh) | 无线充电器用导磁片及其制备方法 | |
CN113692208A (zh) | 一种无线充电纳米晶隔磁片 | |
CN110972458A (zh) | 一种无线充电屏蔽片的制备方法及屏蔽片 | |
JP2018014220A (ja) | 電極製造設備及び電極製造方法 | |
CN114683352A (zh) | 一种组合刀模及其使用方法 | |
CN109712775A (zh) | 无线充电器用导磁片的制备方法 | |
JP7357392B2 (ja) | 磁場遮蔽シートおよびこの製造方法 | |
CN111564304B (zh) | 一种超薄高稳定性磁片制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |