CN109243755B - 一种宽频段复合隔磁片及其制备方法 - Google Patents

一种宽频段复合隔磁片及其制备方法 Download PDF

Info

Publication number
CN109243755B
CN109243755B CN201811190876.1A CN201811190876A CN109243755B CN 109243755 B CN109243755 B CN 109243755B CN 201811190876 A CN201811190876 A CN 201811190876A CN 109243755 B CN109243755 B CN 109243755B
Authority
CN
China
Prior art keywords
sheet
frequency
preparing
wide
composite magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811190876.1A
Other languages
English (en)
Other versions
CN109243755A (zh
Inventor
顾正青
韩朝庆
计建荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Mstar Technology Ltd Suzhou
Original Assignee
New Mstar Technology Ltd Suzhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Mstar Technology Ltd Suzhou filed Critical New Mstar Technology Ltd Suzhou
Priority to CN201811190876.1A priority Critical patent/CN109243755B/zh
Publication of CN109243755A publication Critical patent/CN109243755A/zh
Application granted granted Critical
Publication of CN109243755B publication Critical patent/CN109243755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Hard Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种宽频段复合隔磁片及其制备方法,宽频段复合隔磁片具有纳米晶薄片与Y2Co17‑xMx薄片多层交替结构;主要工艺步骤纳米晶薄片制备、Y2Co17‑xMx薄片制备、复合隔磁片制备。本发明的隔磁片截止频率高于8GHz,起始磁导率大于20,可以同时兼容KHz到GHz的无线应用。

Description

一种宽频段复合隔磁片及其制备方法
技术领域
本发明涉及一种宽频段复合隔磁片及其制备方法,属于电子元器件新材料新工艺领域。
背景技术
随着电子技术快速发展,电子产品的功能越来越强大,为了解决电子产品的续航问题,无线充电近年来作为一种新型的技术,得到了广泛的关注。按照工作频率来分,无线充电可以分为电磁感应式(<300KHz)、磁共振式(6.78MHz)和无线电波式(GHz)。
目前商业化应用的为电磁感应式,其存在充电距离小的问题。而无线电波式由于其可以不受充电位置的限制,必将成为未来无线充电的主流方式。同时电子器件工作的频率越来越高,功率越来越大,集成度越来越高,使得器件之间的电磁干扰愈发明显。为了防止无线充电时其他电子器件受到充电电波的干扰,需要能够工作在GHz的隔磁片将需要保护的电子器件隔离起来。
目前来说应用于无线充电的隔磁片主要是采用非晶纳米晶磁片或者铁氧体磁片,其截止频率在MHz,针对300KHz以下的频率具有很好的隔磁作用,但是在频率提高到GHz的时候,由于超过其截止频率,将无法实现隔磁作用。
目前来说能够在GHz实现隔磁作用的材料有微波铁氧体和Ce2Fe17N。前者由于其饱和磁化强度太低,达到相同的隔磁作用,需要更重的铁氧体材料,并且其低频性能很差,后者由于N原子以间隙原子的形式存在于空位中,高温下很容易释放出来,高温稳定性很差,并且其制备工艺是采用熔炼、破碎制粉、粉末渗氮的方法,工艺过程复杂,且只能通过和其他有机物复合成片材使用,导致其磁导率只有2-5,使用时厚度很厚,不利于设备的轻薄化,小型化。
发明内容
本发明的目的是针对上述现有隔磁片存在的使用频率过低的问题,提供一种宽频段复合隔磁片及其制备方法。
一般的2:17相金属间化合物具有易磁化轴,为单轴各向异性,其截止频率虽然很高(40G以上),但是由于磁导率很低(小于1),对弱磁场的响应很弱,无法应用在隔磁、导磁等微电子领域。本发明利用Cu、Ni、Mn、Fe替代2:17相中部分过渡族原子,使材料具有易磁化面,呈现出面各向异性,可以通过替代原子的含量调节其磁性能,从而使其具有优异可控的软磁性能,并且高温下不易分解,具有很好的温度稳定性。
本发明提供了一种宽频段复合隔磁片,具有纳米晶薄片与Y2Co17-xMx薄片多层交替结构,其中M=Cu、Ni、Mn、Fe,0.1≤x≤2;以及层与层之间通过双面胶粘连。
进一步地,本发明提供的频段复合隔磁片截止频率高于8GHz,起始磁导率大于20。
作为本技术方案的优选方案,所述双面胶厚度为2-5μm;纳米晶薄片单层厚度为15-22μm;Y2Co17-xMx薄片单层厚度为10-25μm。
此外,本发明还公开了该宽频段复合隔磁片的制备方法,步骤如下。
(1)纳米晶薄片的制备,采用快淬法,制备纳米晶薄片。
(2)Y2Co17-xMx薄片的制备,先将Y、Co、M(M=Cu、Ni、Mn、Fe)按照配比熔炼成母合金,在保护气氛下进行均化处理,然后通过轧制或者快淬法制备Y2Co17-xMx薄片。
(3)复合隔磁片的制备,将纳米晶薄片和Y2Co17-xMx薄片通过超薄双面胶贴合成多层交替结构,然后碎片。
作为上述制备方法的优选方案,所述保护气氛为氮气、氩气或者真空度大于10- 6torr。
作为上述制备方法的优选方案,所述的均化处理温度为700-1000℃,时间为96-240h。
作为上述制备方法的优选方案,所述的多层交替结构中,层数不少于3层,且最外侧两层为Y2Co17-xMx薄片。
具体实施例
下面结合具体实例对本发明做进一步说明,但本发明并不仅仅局限于以下实施例。
实施例1。
采用快淬法,制备18μm纳米晶薄片;将Y、Co、Mn按照原子配比Y2Co16Mn0.1熔炼成母合金,在氮气气氛下进行700℃均化处理240h,然后通过轧制制备成10μm的薄片;将纳米晶薄片和Y2Co16Mn0.1薄片通过超薄双面胶贴合成多层交替结构,然后碎片。
通过矢量网络分析仪测试,其截止频率为8.5GHz,起始磁导率可以达到22。
实施例2。
采用快淬法,制备20μm纳米晶薄片;将Y、Co、Cu按照原子配比Y2Co15.5Cu1.5熔炼成母合金,在氮气气氛下进行850℃均化处理140h,然后通过轧制制备成15μm的薄片;将纳米晶薄片和Y2Co15.5Cu1.5薄片通过超薄双面胶贴合成多层交替结构,然后碎片。
通过矢量网络分析仪测试,其截止频率为9.2GHz,起始磁导率可以达到26。
实施例3。
采用快淬法,制备15μm纳米晶薄片;将Y、Co、Ni按照原子配比Y2Co15Ni2熔炼成母合金,在氮气气氛下进行1000℃均化处理100h,然后通过快淬法制备成20μm的薄片;将纳米晶薄片和Y2Co15Ni2薄片通过超薄双面胶贴合成多层交替结构,然后碎片。
通过矢量网络分析仪测试,其截止频率为10.1GHz,起始磁导率可以达到23。
实施例4。
采用快淬法,制备18μm纳米晶薄片;将Y、Co、Fe按照原子配比Y2Co15Fe1熔炼成母合金,在真空下进行980℃均化处理120h,然后通过快淬法制备成18μm的薄片;将纳米晶薄片和Y2Co15 Fe1薄片通过超薄双面胶贴合成多层交替结构,然后碎片。
通过矢量网络分析仪测试,其截止频率为12GHz,起始磁导率可以达到25。
以上所述仅为本发明较优的实施例,并非因此限制本发明的保护范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (5)

1.一种宽频段复合隔磁片,其特征在于:
具有纳米晶薄片与Y2Co17-xMx薄片多层交替结构,其中M=Cu、Ni、Mn、Fe,0.1≤x≤2;
以及层与层之间通过双面胶粘连;
所述隔磁片截止频率高于8GHz,起始磁导率大于20;
所述纳米晶薄片通过快淬法制的;
所述Y2Co17-xMx薄片通过轧制或者快淬法制的;
所述的多层交替结构中,层数不少于3层,且最外侧两层为Y2Co17-xMx薄片;
所述宽频段复合隔磁片应用于无线充电接收端。
2.根据权利要求1所述的一种宽频段复合隔磁片,其特征在于:双面胶厚度为2-5μm;纳米晶薄片单层厚度为15-22μm;Y2Co17-xMx薄片单层厚度为10-25μm。
3.一种如权利要求1-2之一所述宽频段复合隔磁片的制备方法,其特征在于其步骤包括:
1)纳米晶薄片的制备,采用快淬法,制备纳米晶薄片;
2)Y2Co17-xMx薄片的制备,先将Y、Co、M(M=Cu、Ni、Mn、Fe)按照配比熔炼成母合金,在保护气氛下进行均化处理,然后通过轧制或者快淬法制备Y2Co17-xMx薄片;
3)复合隔磁片的制备,将纳米晶薄片和Y2Co17-xMx薄片通过超薄双面胶贴合成多层交替结构,然后碎片。
4.根据权利要求3所述的一种宽频段复合隔磁片的制备方法,其特征在于:所述保护气氛为氮气、氩气或者真空度大于10-6torr。
5.根据权利要求3所述的一种宽频段复合隔磁片的制备方法,其特征在于:所述的均化处理温度为700-1000℃,时间为96-240h。
CN201811190876.1A 2018-10-12 2018-10-12 一种宽频段复合隔磁片及其制备方法 Active CN109243755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811190876.1A CN109243755B (zh) 2018-10-12 2018-10-12 一种宽频段复合隔磁片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811190876.1A CN109243755B (zh) 2018-10-12 2018-10-12 一种宽频段复合隔磁片及其制备方法

Publications (2)

Publication Number Publication Date
CN109243755A CN109243755A (zh) 2019-01-18
CN109243755B true CN109243755B (zh) 2020-02-21

Family

ID=65053394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811190876.1A Active CN109243755B (zh) 2018-10-12 2018-10-12 一种宽频段复合隔磁片及其制备方法

Country Status (1)

Country Link
CN (1) CN109243755B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098043B (zh) * 2019-01-30 2022-11-22 宁波中科毕普拉斯新材料科技有限公司 一种可控的阵列式无线充电导磁片制备方法
CN109741933B (zh) * 2019-01-30 2022-11-18 宁波中科毕普拉斯新材料科技有限公司 一种超声波辅助的无线充电导磁片制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835610A (zh) * 2014-07-04 2015-08-12 兰州大学 一种沿c晶面断裂的片状高频软磁微粉及其制备和应用
CN105336465A (zh) * 2015-10-27 2016-02-17 安泰科技股份有限公司 一种无线充电和近场通讯用复合导磁片及其制备方法
CN108597793A (zh) * 2018-04-27 2018-09-28 苏州威斯东山电子技术有限公司 一种具有层叠结构的高性能高频率响应度的复合磁性材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3090128B2 (ja) * 1998-08-28 2000-09-18 日本電気株式会社 垂直磁気記録媒体
CN107474618B (zh) * 2017-08-25 2019-10-15 中国科学院宁波材料技术与工程研究所 一种高温电磁波吸收剂、吸波涂层及其制备方法
CN107785668B (zh) * 2017-09-26 2020-05-12 中国科学院宁波材料技术与工程研究所 一种毫米波电磁波吸收材料及其制备方法和应用
CN108347871A (zh) * 2018-01-25 2018-07-31 宁波大学 一种超微胶囊材料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835610A (zh) * 2014-07-04 2015-08-12 兰州大学 一种沿c晶面断裂的片状高频软磁微粉及其制备和应用
CN105336465A (zh) * 2015-10-27 2016-02-17 安泰科技股份有限公司 一种无线充电和近场通讯用复合导磁片及其制备方法
CN108597793A (zh) * 2018-04-27 2018-09-28 苏州威斯东山电子技术有限公司 一种具有层叠结构的高性能高频率响应度的复合磁性材料

Also Published As

Publication number Publication date
CN109243755A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
CN101299365B (zh) 芯壳型磁性粒子和高频磁性材料
Nakamura et al. Control of high-frequency permeability in polycrystalline (Ba, Co)-Z-type hexagonal ferrite
Sugimoto et al. GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen
Wu et al. Pr3+-substituted W-type barium ferrite: preparation and electromagnetic properties
US10513760B2 (en) Method for producing magnetic material
Kazantseva et al. Magnetic behaviour of composites containing polyaniline-coated manganese–zinc ferrite
US9362033B2 (en) Magnetic material, method for producing magnetic material, and inductor element
Jacobo et al. Sr hexaferrite/Ni ferrite nanocomposites: Magnetic behavior and microwave absorbing properties in the X-band
CN100518480C (zh) 一种稀土铁基吸波材料及其制备方法
KR20130096187A (ko) 연자성 분말, 그 제조 방법, 및 이를 이용한 노이즈 억제 시트와 그 제조 방법
Lee et al. Low-loss Z-type hexaferrite (Ba3Co2Fe24O41) for GHz antenna applications
Koga et al. Preparation of substituted barium ferrite BaFe12− x (Ti0. 5Co0. 5) xO19 by citrate precursor method and compositional dependence of their magnetic properties
Qiao et al. Magnetic and microwave absorption properties of La-Nd-Fe alloys
Goel et al. Effect of neodymium doping on microwave absorption property of barium hexaferrite in X-band
CN109243755B (zh) 一种宽频段复合隔磁片及其制备方法
Afghahi et al. Novel approach for designing a thin and broadband microwave absorber in Ku band based on substituted M-hexaferrites
Chen et al. Low-temperature sintering of M-type barium ferrite with BaCu (B2O5) additive
JP6632702B2 (ja) Fe−Co合金粉末の製造方法
Cho et al. The effect of Zn and Ni substitution on magnetic and microwave absorbing properties of Co2W hexagonal ferrites
CN104134513A (zh) 软磁复合薄膜和制造方法及其在电子设备中的应用
Park et al. Fabrication and properties of Z-type Sr3Co2− xZnxFe24O41 hexaferrites and their composites with epoxy
Kaur et al. Microwave absorption behavior and electromagnetic properties of Ni-Zr doped La-Sr hexagonal ferrite synthesized by auto-combustion method
JP2014192327A (ja) 近傍界用電波吸収シートおよびその製造方法
Hu et al. Microwave absorbing properties of Y2Fe16Si micropowders with broad bandwidth and strong absorption
Poorbafrani et al. Structural, magnetic and electromagnetic wave absorption properties of SrFe 12 O 19/ZnO nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant