CN109690291A - 用于表面等离子体共振分析的阶梯式合并注入 - Google Patents

用于表面等离子体共振分析的阶梯式合并注入 Download PDF

Info

Publication number
CN109690291A
CN109690291A CN201780053405.3A CN201780053405A CN109690291A CN 109690291 A CN109690291 A CN 109690291A CN 201780053405 A CN201780053405 A CN 201780053405A CN 109690291 A CN109690291 A CN 109690291A
Authority
CN
China
Prior art keywords
concentration
solvent
compound
flow
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780053405.3A
Other languages
English (en)
Other versions
CN109690291B (zh
Inventor
H.伯林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cytiva Sweden AB
Original Assignee
GE Healthcare Bio Sciences AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Healthcare Bio Sciences AB filed Critical GE Healthcare Bio Sciences AB
Publication of CN109690291A publication Critical patent/CN109690291A/zh
Application granted granted Critical
Publication of CN109690291B publication Critical patent/CN109690291B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N2001/2893Preparing calibration standards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type
    • G01N2021/7763Sample through flow

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种用于产生SPR分析的校正曲线的数据的装置(60)和方法,其将多个不同浓度的溶剂或其它化合物提供给SPR芯片的参考表面和活性表面。浓度由两个泵(79,77)在线混合,一个连接到第一浓度的溶剂或其它化合物的来源(73),而另一个连接到第二个不同浓度的溶剂或化合物的来源(71)。两种不同浓度的溶剂或化合物的混合可以在流体混合器(75)中发生,并可通过调节泵(79,77)的相对速度改变离开流体混合器(75)的混合物中溶剂或化合物的浓度。在混合液体的注入过程中,可以调整溶剂或化合物混合物的浓度,以提供绘制溶剂校正曲线所需的不同浓度。

Description

用于表面等离子体共振分析的阶梯式合并注入
发明背景
表面等离子体共振分析是一类可以使用非侵入性、无标记的技术实时监测分子相互作用的分析系统,所述技术响应在分子与表面结合或从表面分离时传感器表面的分子浓度的变化。检测原理是基于表面等离子体共振(SPR),其对距离传感器表面约150 nm内的折射率的变化敏感。为了研究两个结合配偶体之间的相互作用,一个配偶体附着在表面上,而另一个配偶体在连续的样品溶液流中通过该表面。SPR响应与接近表面的质量浓度变化成正比。
SPR系统可被用来研究有关几乎任何种类的分子的相互作用,从有机药物候选物到蛋白质、核酸、糖蛋白和甚至病毒和全细胞。由于响应是质量浓度变化的量度,所以每摩尔单位的相互作用物的响应与分子量成比例(较小的分子给出较低的摩尔响应)。检测原理不要求任何相互作用物被标记,而且可以对复杂的混合物,如细胞培养上清液或细胞提取物以及纯化的相互作用物进行测量。在复杂样品基质中监测的相互作用物的身份通过附着在表面的配偶体的相互作用特异性确定。
SPR系统监视两个分子之间的相互作用,其中一个分子附着在传感器表面(如图1中的5所示),而另一个游离在溶液中。以下术语在基于SPR的分析的背景中在下文中使用:
• 附着(直接或间接)在表面的相互作用配偶体被称为“配体” (如在图1a)和1b)中的参考数字3所示)。在药物的发现和开发工作中,配体有时被称为目标分子。
注释:此处所用的术语“配体”与亲和色谱法背景中使用的术语相似,并不意味着表面-附着的分子是细胞受体的配体。
• 配体可以通过使用化学偶联试剂进行共价固定,或通过与固定的捕获分子(如图1b)中的参考数字7所示)的高亲和力结合来捕获而连接到表面上。
• “分析物”是在溶液中在配体上通过的相互作用配偶体(如图1a)-1c)中的参考数字1所示)。
• 在间接分析形式下,分析物使用第二检测分子来检测,该第二检测分子既可以与溶液中的分析物结合,也可以与传感器表面上的配体结合。观察到的响应源自检测分子与配体的结合:样品中分析物的存在抑制了这种结合,因此响应与分析物的量成反比关系。
• 通过以严格控制的方式在表面上注入样品执行分析。样品在称为“运行缓冲液”的连续缓冲液流中携带。
• 响应以共振单位(RU)测量。响应与表面上的生物分子的浓度成正比。
• “传感图”是响应对时间的作图,显示了相互作用的进展(图2)。在分析过程中,这条曲线直接显示在计算机屏幕上。
• “报告点”记录了在短时间窗口内平均的在特定的时间在传感图上的响应,以及传感图在窗口内的斜率。响应可以是绝对的(高于检测器确定的固定零水平),也可以相对于另一个指定报告点的响应(图2)。
• “再生”是在分析循环后在不损坏配体的情况下从表面去除结合的分析物的过程,为新的循环作准备。
• SPR检测监测接近表面的折射率变化,并且运行缓冲液和注入的样品之间的折射率差异将被记录为注入开始和结束时响应的快速位移。这被称为“主体折射率效应”或“主体位移”。
SPR系统中的响应与表面上质量浓度的变化直接相关,因此摩尔响应(即对给定数量的分子的响应)与所涉及的分子的大小成比例。给定的响应代表小分子的摩尔浓度比大分子的摩尔浓度更高:相反,如果分子是小的,那么给定数量的与表面结合的分子将产生较低的响应。无论氨基酸组成和序列如何,对于蛋白质而言,响应与表面浓度之间的关系基本上是恒定的,并且对于大多数其它生物大分子来说是相似的。
SPR系统中的“传感器芯片”可以由镀有一薄层金的载玻片组成。这些组件,连同用于在光学系统中安装传感器芯片的对接系统,是产生SPR信号所必需的。为了对要研究的分子相互作用提供一个合适的环境,金表面由连接层和(对于大多数传感器芯片类型)修饰的葡聚糖的基质覆盖。正是表面基质决定了传感器芯片关于配体附着和分子相互作用的性质。芯片包括含配体的活性表面(如图1a)和1b)中的参考数字5所示)和不含配体或含与活性表面上的配体相似但不与分析物结合的配体的参考表面(在图1c)中的参考数字9所示)。因此,参考表面对分子的存在没有响应,这些分子与活性表面上的配体发生反应。来自参考表面的信号给出对照响应,表示来自活性表面的响应的信号可以对其进行比较。
一般来说,SPR系统与大多数用于生物学研究的缓冲物质是相容的。然而,在药物开发工作中特别相关的许多低分子量有机化合物,在水性缓冲液中是微溶的,需要添加有机溶剂。二甲亚砜(DMSO)是常用的。通常,SPR系统可与包含至多10% DMSO的缓冲液一起使用。然而,有机溶剂显著促进样品和缓冲液的主体折射率:1% DMSO为响应水平贡献约1200RU。来自低分子量分析物(其通常需要有机溶剂来维持溶解度)的预期响应可能低到10-20RU或更少。因此,对于有机溶剂浓度的任何变化,准确地补偿测量的响应是至关重要的。对于不同浓度的溶剂效应的影响,调整测量的样品响应的程序被称为溶剂校正。
这些程序特别适合与需要将有机溶剂(通常是二甲亚砜,DMSO)包括在缓冲液中以保持分析物溶解度的小有机分析物一起使用。
对于这些目的,当样品之间的主体位移的差异可能具有与来自分析物结合的预期响应相同(或更大)的数量级时,简单地减去参考响应是不够准确的。对此的一个理由是样品所能接触到的溶液体积在参考表面和活性表面上将有不同,除非这两个表面具有相同的附着蛋白质浓度。由于配体分子排除的体积,在活性表面上的主体位移将小于参考表面(如图3中的响应(RU)对时间(t)的作图所示),其中参考数字31表示参考表面(33)上的响应,参考数字35表示活性表面(37)上的响应,和参考数字39表示由于参考表面上被排除的体积响应而引起的响应差异。
除了在溶剂校正中涉及的排除体积之外,还有在本讨论范围之外的其它因素,因此溶剂校正本质上是一种经验程序。
在通常与低分子量分析物(例如药物候选物)一起使用的3种情况的组合下,溶剂校正是必要的:
• 预期的分析物响应低,
• 配体是以高密度固定在表面上的大分子,
• 与测量的结合响应相比,主体响应高。
在药物发现和开发工作中,分析物通常是小分子,其给出相应低的响应值(通常为大约10-50 RU或更低)。高水平的固定化配体(数千RU)被用来最大化分析物响应,增强上述排除的体积效应。样品通常包括DMSO以保持溶解度,导致高主体响应。DMSO浓度相差1% (百分点),对应的响应差为约1200 RU,使得在制备不同样品时不可避免的DMSO浓度的小变化容易导致与预期的样品响应相同数量级的主体响应变化。
溶剂校正值通过以下步骤来确定:准备一系列DMSO浓度,例如8个不同的浓度,进行8次不同的注入,其中每次注入包括在参考表面和活性表面上注入空白样品的步骤,所述空白样品各自包含不同浓度的DMSO的不同之一,并且将来自活性表面的参考-减去的响应对来自参考表面的相对响应作图。对于作为参考响应的函数的溶剂效应,这创建了称为溶剂校正曲线的校准曲线,校正曲线的实例在图4中显示。校正曲线的产生和使用在本领域是众所周知的,因此未被详细描述。校正曲线可被用来调整每一个样品测量,其根据参考表面上的响应对溶剂效应进行补偿(见图5)。
目前制作溶剂校正曲线的方法的一个问题是,必须为每一对参考表面和活性表面制作溶剂校正曲线,这是耗时的。在每次注入不同浓度的DMSO之间将单个浓度连接到系统所花费的时间被浪费,和整个程序是耗时的且容易出错。例如,不同浓度的DMSO的制备中可能出现的移液误差可能给溶剂校正曲线增加显著的误差。DMSO是吸湿性的,在开放的容器中长期储存所制备浓度的DMSO将导致DMSO浓度的变化,随后导致校准曲线中的误差。
此外,重要的是在样品和运行缓冲液中争取完全相同的DMSO浓度,并尽量减少样品间DMSO含量的变化。为了达到这一目的,在准备样品以供需要进行溶剂校正的分析时,通常需要:
• 使用精心设计的缓冲液制备和样品稀释方案,以确保DMSO浓度一致。储存在DMSO中的样品应以提供与运行缓冲液中相同最终DMSO浓度的方式稀释。
• 在制备后直接用箔覆盖样品板,以避免DMSO浓度因蒸发和吸收空气中的水而发生变化,因为DMSO具有吸湿性。这样的制备是费时和昂贵的。
发明简述
至少现有技术的一些问题可以通过提供用于以不同比例在线混合仅两种不同的溶液的混合系统来解决,所述溶液含有不同量的有机溶剂(如DMSO)或其它化合物。混合系统可以包括一个用于从第一批量供应中泵送在缓冲溶液中第一浓度的有机溶剂(例如,1%体积的有机溶剂)的泵,和一个用于从第二批量供应中泵送在缓冲溶液中第二浓度的有机溶剂(例如,10%体积的有机溶剂)的泵。泵可以将流体泵送到流体混合器中,在那里它们完全混合在一起。通过改变泵的相对流速,有可能在离开混合区的液体中获得不同浓度的有机溶剂。例如,如果第一浓度的有机溶剂的流速为x ml/分钟和第二浓度的有机溶剂的流速为0,则离开流体混合器的浓度将为1 %。如果第一浓度的有机溶剂的流速为x/2 ml/分钟和第二浓度的有机溶剂的流速也为x/2 ml/分钟,则离开流体混合器的浓度将为5.5 %。如果第一浓度的有机溶剂的流速为0 ml/分钟和第二浓度的有机溶剂的流速为x ml/分钟,则离开流体混合器的浓度将为10 %。然后可将混合的液体在活性表面和参考表面上注入,并检测响应。
因为通过改变泵的相对流速,几乎可以瞬间改变有机溶剂的浓度,所以在程序中节省了时间。此外,操作人员只需准备两个批量供应(即包含不同浓度的缓冲溶液和有机溶剂的两个批量供应),而不是8个不同浓度的有机溶剂和缓冲溶液。然后,可以通过进行一次注入,具有例如8个步骤,各自包含在注入过程中形成的不同浓度的有机溶剂,而不是用8个先前制备的不同浓度的有机溶剂进行8次不同的注入,制作校正曲线。
附图简述
图1a)示意地显示了活性表面,配体直接附着于表面。
图1b)示意地显示了活性表面,配体通过捕获分子间接地附着于表面。
图1c)示意地显示了没有任何配体附着于其上的参考表面。
图2显示了传感图的实例。
图3示意地显示了参考表面上的响应和活性表面上的响应之间的差异。
图4显示了校正曲线,其包括当在传感器芯片中一对活性表面和参考表面上提供不同浓度的有机溶液时所得到的响应绘图。
图5显示如何将校正曲线应用于在检测过程中获得的响应。
图6示意地显示了用于执行本发明的流体混合器回路。
图7显示了用于根据现有技术获取校正曲线的数据的运行与根据本发明的方法获取校正曲线的数据的运行之间的比较。
发明详述
图6示意地显示了用于产生不同浓度的溶剂(例如,有机溶剂如DMSO)的装置(60)的简化实施方案,其适合于为分析装置,特别是SPR分析装置产生校正曲线。从现有技术已知的一些为制备装置以供使用所必需的特性,例如,导向活性表面以为其提供配体的配体入口(62),和/或运行该装置所必需的特性,例如为装置提供运行缓冲液的运行缓冲液入口(64),以虚线表示,而为了便于理解附图,省略了必要的阀门、泵和控制系统。分析装置包括具有参考表面(63)的流动池(61)和具有活性表面(67)的第二流动池(65),其中活性表面包括一定量的配体(69),而参考表面包括较少量的配体或不含配体。在本发明的该实施方案中,流动池是串联的,其中参考表面(63)在活性表面(67)的上游,但在本发明的另一实施方案中,所述表面串联排列,其中活性表面在参考表面的上游。在本发明的进一步的实施方案中,两个表面平行排列。
在本发明的每一个实施方案中,流动池与包含第一浓度(X1)的溶剂(例如DMSO)或其它化合物的液体第一来源(71)和包含第二浓度(X2)的同一溶剂或同一其它化合物的液体第二来源(73)液体流通。在下文中为了简洁起见,本发明将以溶剂或化合物为DMSO的实例加以说明,但可以用任何其它化合物替代DMSO。优选地,溶剂的一个浓度,例如,第一浓度(X1)是要使用的溶剂(或化合物)的最低浓度,例如1 %体积DMSO;第二浓度(X2)是要使用的溶剂的最高浓度,例如10%体积DMSO。
流体混合器(75)设置在液体供应和流动池之间的通道中。流体混合器具有至少两个入口(76a, 76b),第一入口(76a)可连接至第一来源和第二入口(76b)可连接至第二来源。流体混合器具有至少一个用于混合的液体的出口(78),其可连接到流动池。流体混合器适用于确保液体在经由用于混合的液体的一个或多个出口(78)离开流体混合器之前被混合。流体混合器可以是混合器室和/或混合器通道(74)的形式,或者包含混合器室和/或混合器通道(74),其经排列以使两种液体混合,例如通过提供搅拌手段或例如通过产生湍流。产生的混合流体随后可以在活性表面和参考表面的每一个上注入。
第一泵(77)在流动池的下游提供,用于将流体从流体混合器(75)抽送到流动池上。提供第二泵(79)以将流体从液体第二来源经由第二入口(76b)泵送到混合室。当第一泵被激活以提供x ml/分钟的流动,而第二泵被关闭时,只有来自第一来源的流体才能通过流体混合器流向流动池,并且它将以由第一泵决定的流速(即x ml/分钟)来流动。按类似的方式,当第一泵被激活以提供x ml/分钟的流动,而第二泵被激活以提供x ml/分钟的相同流速时,只有来自第二来源的流体才会通过流体混合器流向流动池。
因此,有可能通过改变第一泵和第二泵的相对速度,在X1和X2之间提供任何浓度的溶剂。例如,如果第一泵的速度保持不变,那么提高第二泵的速度将导致离开流体混合器的流体中溶剂浓度的增加,因为来自第一来源的浓度较低溶剂的流动将随着来自第二来源的浓度较高溶剂的流动增加而减少。这种安排提供了一种简单的方法来控制进入流体混合器的液体的比例,同时保持通过混合器的恒定液体流速。
在本发明的可供选择的实施方案(未示出)中,有两个泵,但这两个泵都在混合室的上游。第一泵连接液体第一来源与混合室的第一入口,而第二泵连接液体第二来源与混合室的第二入口。因此,流入混合室的每一种液体的比例将与每台泵的流速成比例。
图7显示了传感图,其比较了根据现有技术方法用于收集用于制作校正曲线的数据的运行和使用根据本发明的方法执行的用于收集适合于产生校正曲线的数据的运行,在后者中运行在图6所示类型的装置中的参考单元和活性单元上执行。
为了更清楚地比较图中的运行,在开始时,使用最高浓度的DMSO (如参考数字83所示)进行现有技术类型的运行,而在根据本发明的运行中,在开始时使用最低浓度的DMSO(如参考数字95所示)。在按照现有技术方法执行的第一运行(用曲线81示出)中,制备了含不同浓度的DMSO的8种溶液。这些被轮流连接到导向具有参考表面的流动池和具有活性表面的流动池的入口的流动通道。每种溶液被允许流动,直到达到稳定的响应并记录下来,然后断开连接,和连接下一种溶液并注入流动池。在每次注入含DMSO的液体之间向流动池中注入运行缓冲液(例如,如参考数字85所示)。因此,不混合含有DMSO的8种不同的溶液。在其中不同液体供给必须手动连接和分离的这个实例中,为校正曲线提供8次读数的总时间为约1100秒,即超过18分钟。
在根据本发明的方法进行的用于产生制作校正曲线的数据的第二运行(用曲线93示出)中,制备了第一溶液,该溶液包括预期用于分析的最低浓度(X1)的溶剂(或化合物),并将包含该第一溶液的容器连接到混合器的第一入口(76a)。制备了第二溶液,其含有预期用于分析的最高浓度(X2)的溶剂(或化合物),并将含有该第二溶液的容器连接到流体混合器(75)的第二入口(76b)。
流动池下游的泵(77)被激活,第二泵(79)被关闭。这导致只包含最低浓度的溶剂的溶液通过所述流体入口流入流体混合器,随后通过流体混合器的出口流到活性表面和参考表面(如参考数字95所示),并记录了响应曲线中的相应步骤。然后,在保持第一泵的流速的同时,以低流速激活第二泵。这允许第二浓度的溶剂流向所述流体混合器(如97所示),同时降低第一浓度流向流体混合器的流速,从而实现新混合浓度的溶剂,其离开流体混合器并在参考表面和活性表面上通过。记录来自参考表面和活性表面的对这种新浓度的响应。提高第二泵的流速,并对新浓度的溶剂的响应读数。重复这个程序,直到第一泵和第二泵的流速相同,从而只有含最高浓度的溶剂的第二溶液被注入到流动池中,如99所示。如从图中可以看出的,这个过程花费了大约230秒,因此比手动注入显著更快。该方法允许快速制备多种不同浓度的溶剂或化合物,并随后注入分析装置。
使用根据本发明的装置和方法,对可以产生的溶剂或化合物的不同浓度的数量没有限制。优选地,使用的浓度数量等于8,如现有技术中常用的。然而,由于根据本发明的方法和装置允许比现有技术更快地产生校正曲线,为了使校正曲线更精确,记录更多数量的不同浓度的溶剂或化合物的响应可能是优选的,例如总共16个浓度,或甚至32个不同浓度。由于每个浓度可以快速混合和注入,本发明的方法和装置允许操作者在短得多的时间内,以与现有技术相同的精度(即8个数据点),在为校正曲线产生数据之间进行选择,或产生更多的数据(即与溶剂或化合物的更多浓度,例如16或32个不同浓度有关的数据),以便在节省时间的同时获得更高的精度。
本公开内容的上述描述是为了说明的目的而提供的,并且本领域的技术人员将理解,在不改变本公开内容的概念和基本特征的情况下,可以作出各种改变和修改。因此,很明显,上述实施方案在所有方面都是说明性的,并不限制本公开内容。
本公开内容的范围由以下权利要求书而非实施方案的详细描述定义。应该理解,从权利要求书的含义和范围及其等同内容构思的所有修改和实施方案都包括在本公开内容的范围内。

Claims (10)

1.一种产生用于分析装置对溶剂或化合物的响应的校正曲线的数据的方法,所述分析装置例如表面等离子体共振装置,其包括具有参考表面(63)的第一流动池和具有活性表面的第二流动池,其中活性表面包括一定量的配体和参考表面包括较少量的配体或不含配体,该方法包括以下步骤:
a) 提供包含第一浓度(X1)的溶剂或化合物的液体来源,
b) 提供包含第二浓度(X2)的溶剂或化合物的液体来源,
c) 提供流体混合器,用于混合包含第一浓度的溶剂或化合物的液体与包含第二浓度的溶剂或化合物的液体,
d) 提供使第一浓度的溶剂或化合物通过所述流体混合器流向活性表面和参考表面的第一泵,和使第二浓度的溶剂或化合物通过所述流体混合器流向活性表面和参考表面的第二泵,
e) 控制所述第一和第二泵中的一个或多个泵的泵送速率,以在所述活性表面和参考表面上产生来自流体混合器的液体流,其中来自流体混合器的液体包含第一混合浓度的溶剂或化合物,
f) 测量和记录所述活性表面和所述参考表面对所述第一混合浓度的溶剂或化合物的相对响应,
g) 控制所述第一和第二泵中的一个或多个泵的泵送速率,以在所述活性表面和参考表面上产生液体流,所述液体流包含另外混合浓度的溶剂或化合物,
h) 测量和记录所述活性表面和所述参考表面对所述另外混合浓度的溶剂或化合物的相对响应,和
i) 重复步骤g)和h) N次,其中N是大于或等于零。
2.依据权利要求1的方法,其特征在于N是少于或等于31。
3.依据权利要求1的方法,其特征在于N是少于或等于15。
4.依据权利要求1的方法,其特征在于N是少于或等于7。
5.依据前述权利要求的任一项的方法,其特征在于,在步骤d)中,所述泵中的一个在所述流体混合器的下游提供,而另一个所述泵在所述流体混合器的上游提供。
6.依据权利要求1-4的任一项的方法,其特征在于,在步骤d)中,这两个所述泵都在所述流体混合器的上游提供。
7.一种流体混合器,其提供不同浓度的溶剂或化合物,用于为包括具有参考表面的流动池和具有活性表面的第二流动池的分析装置制作校正曲线,其中活性表面包括一定量的配体,和参考表面包括较少量的配体或不含配体,特征在于:
流体混合器包括用于混合液体的混合室或通道,其中混合室或通道具有至少两个入口,其中第一入口可连接到包含第一浓度(X1)的溶剂或化合物的第一液体来源,和第二入口可连接到包含第二浓度(X2)的溶剂或化合物的第二液体来源,
混合室或通道具有至少一个用于混合的液体的出口,该出口可连接到流动池,
流体混合器可连接到至少两个泵,其中第一泵适用于控制第一浓度的溶剂或化合物流向混合器室或通道的第一入口,和第二泵适用于控制第二浓度的溶剂或化合物流向混合器室或通道的第二入口。
8.一种流体混合回路,其特征在于回路包括依据权利要求7的流体混合器和至少两个泵。
9.依据权利要求8的流体混合器回路,其中所述泵中的一个在混合室或通道的上游提供,和所述泵的另一个在所述混合室或通道的下游提供。
10.依据权利要求8的流体混合器回路,其中两个所述泵都在混合室或通道的上游提供。
CN201780053405.3A 2016-09-01 2017-08-30 用于表面等离子体共振分析的阶梯式合并注入 Active CN109690291B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1614773.8A GB201614773D0 (en) 2016-09-01 2016-09-01 Stepped merged injection for surface plasmon resonance assays
GB1614773.8 2016-09-01
PCT/US2017/049353 WO2018045017A1 (en) 2016-09-01 2017-08-30 Stepped merged injection for surface plasmon resonance assays

Publications (2)

Publication Number Publication Date
CN109690291A true CN109690291A (zh) 2019-04-26
CN109690291B CN109690291B (zh) 2022-12-27

Family

ID=57139963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780053405.3A Active CN109690291B (zh) 2016-09-01 2017-08-30 用于表面等离子体共振分析的阶梯式合并注入

Country Status (6)

Country Link
US (1) US20190234943A1 (zh)
EP (1) EP3507590B1 (zh)
JP (1) JP7109848B2 (zh)
CN (1) CN109690291B (zh)
GB (1) GB201614773D0 (zh)
WO (1) WO2018045017A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112683857B (zh) * 2021-01-06 2022-10-14 上海药明生物医药有限公司 一种通过评估分析物的溶剂效应对亲和力实验的影响来指导spr检测前处理的方法
WO2023053585A1 (ja) * 2021-09-30 2023-04-06 富士フイルム株式会社 学習用データの取得方法、学習用データ取得システム、ソフトセンサの構築方法、ソフトセンサ、学習用データ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130252846A1 (en) * 2010-11-30 2013-09-26 Ge Healthcare Bio-Sciences Ab Screening method
WO2016066591A1 (en) * 2014-10-30 2016-05-06 Ge Healthcare Bio-Sciences Ab Method to determine solvent correction curves

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040004717A1 (en) * 1996-11-13 2004-01-08 Reed Wayne F. Automatic mixing and dilution methods and apparatus for online characterization of equilibrium and non-equilibrium properties of solutions containing polymers and/or colloids
US6731100B1 (en) * 1997-05-05 2004-05-04 Chemometec A/S Method and a system for determination of somatic cells in milk
JP4607684B2 (ja) * 2005-06-29 2011-01-05 富士フイルム株式会社 流路ブロック、センサユニット、及び全反射減衰を利用した測定装置
US20130157251A1 (en) * 2010-01-13 2013-06-20 John Gerard Quinn In situ-dilution method and system for measuring molecular and chemical interactions
JP2011214862A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 分析装置および方法
EP2656048B1 (en) * 2010-12-23 2020-11-25 Molecular Devices, LLC Dispersion injection methods for biosensing applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130252846A1 (en) * 2010-11-30 2013-09-26 Ge Healthcare Bio-Sciences Ab Screening method
WO2016066591A1 (en) * 2014-10-30 2016-05-06 Ge Healthcare Bio-Sciences Ab Method to determine solvent correction curves

Also Published As

Publication number Publication date
EP3507590A1 (en) 2019-07-10
CN109690291B (zh) 2022-12-27
US20190234943A1 (en) 2019-08-01
EP3507590B1 (en) 2021-06-02
JP7109848B2 (ja) 2022-08-01
WO2018045017A1 (en) 2018-03-08
GB201614773D0 (en) 2016-10-19
JP2019530860A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
Haidekker et al. A novel approach to blood plasma viscosity measurement using fluorescent molecular rotors
Espinosa et al. Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile− water mobile phases
Gerritzen et al. High throughput nanoparticle tracking analysis for monitoring outer membrane vesicle production
Attri et al. New methods for measuring macromolecular interactions in solution via static light scattering: basic methodology and application to nonassociating and self-associating proteins
CN104215752B (zh) 自动确定至少两个不同过程参数的装置
CN109690291A (zh) 用于表面等离子体共振分析的阶梯式合并注入
CN104297352A (zh) 一种曲伏前列素含量及有关物质的分析方法
Bessemans et al. Automated gravimetric calibration to optimize the accuracy and precision of TECAN freedom EVO liquid handler
CN104232077B (zh) 基于胆固醇修饰的单芘荧光探针及其合成方法和应用
Medeiros et al. Multicommutated generation of concentration gradients in a flow-batch system for metronidazole spectrophotometric determination in drugs
CN110133169A (zh) 一种采用液质联用检测人血浆中呋塞米的方法及应用
CN107110842A (zh) 确定溶剂校正曲线的方法
CN108008135A (zh) 一种载脂蛋白b测定试剂盒
CN105758972B (zh) 一种测定帕利哌酮缓释片中有关物质的方法
CN103512974A (zh) 用hplc快速测定饲用金霉素及其杂质含量的方法
CN103454268B (zh) 一种基于点击反应的还原糖定量检测方法
CN103792302B (zh) 一种检测化妆品中杜鹃醇的方法
CN106018601B (zh) 一种测定帕利哌酮原料中有关物质的方法
CN105866268A (zh) 一种同时测定滴眼液中多种抑菌剂的检测方法
CN103823071B (zh) “磁珠‑糖化血红蛋白‑二茂铁硼酸”复合物及其应用
Quadri et al. Review on stability indicating assay methods (SIAMs)
CN107941966A (zh) 一种基于顶空气相色谱测量瓜尔胶分子量的方法
CN106290683B (zh) 一种检测金霉素发酵液中单质糖浓度的方法
CN219015985U (zh) 血液分析仪
CN106290600B (zh) 一种用液相色谱法分离康尼替尼及有关物质的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: uppsala

Applicant after: Stoivan Sweden Ltd.

Address before: uppsala

Applicant before: GE HEALTHCARE BIO-SCIENCES AB

GR01 Patent grant
GR01 Patent grant