CN109689202A - 用于蓄积天然气或甲烷的块状多孔碳材料及其生产方法 - Google Patents

用于蓄积天然气或甲烷的块状多孔碳材料及其生产方法 Download PDF

Info

Publication number
CN109689202A
CN109689202A CN201780038228.1A CN201780038228A CN109689202A CN 109689202 A CN109689202 A CN 109689202A CN 201780038228 A CN201780038228 A CN 201780038228A CN 109689202 A CN109689202 A CN 109689202A
Authority
CN
China
Prior art keywords
natural gas
methane
carbon materials
nanometer
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780038228.1A
Other languages
English (en)
Other versions
CN109689202B (zh
Inventor
阿纳托利·阿列克谢耶维奇·福姆金
阿斯兰·尤苏波维奇·齐瓦泽
奥列格·叶夫根尼耶维奇·阿克休京
亚历山大·加夫里洛维奇·伊什科夫
叶夫根尼·米哈伊洛维奇·斯特里热诺夫
安德烈·维亚切斯拉沃维奇·什科林
伊利亚·叶夫根尼耶维奇·缅希科夫
亚历山大·奥努夫里耶维奇·舍夫琴科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GAZPROM AOOT
Original Assignee
GAZPROM AOOT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GAZPROM AOOT filed Critical GAZPROM AOOT
Publication of CN109689202A publication Critical patent/CN109689202A/zh
Application granted granted Critical
Publication of CN109689202B publication Critical patent/CN109689202B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/007Use of gas-solvents or gas-sorbents in vessels for hydrocarbon gases, such as methane or natural gas, propane, butane or mixtures thereof [LPG]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本发明涉及一种用于储存、分配和运输天然气或甲烷的活性炭材料。所要求保护的发明的技术成果包括:增加储存系统的每单位体积的材料所储存的天然气的量、增加吸附材料的堆积密度,以及增加吸附材料在专用便携式吸附器中的封装密度,从而使储存系统被填充至高达其容量的95%以上,同时保持扩散性能。所要求保护的发明的技术成果是通过形成具有如下许多技术特性的块状纳米多孔碳材料来实现的:大于600kg/m3的高堆积密度;呈立方体、矩形棱柱、圆柱体、三维扇体或四面体形式的特殊的块体形状;材料中的平均有效孔宽度和纳米孔体积的最佳组合,其使大量气体能够被该材料储存,并允许该材料在专用便携式吸附器中最密实地封装。

Description

用于蓄积天然气或甲烷的块状多孔碳材料及其生产方法
本组发明涉及活性炭材料及其生产方法,其中该活性碳材料具有先进的纳米孔系统,并且在需要时可以形成特定形状的块体,以实现该材料在用于储存、分配和输送天然气或甲烷的专用可拆卸的吸附器中最密实地封装。
目前,在用于储存天然气和甲烷的非传统方法中,最有前景的是吸附法,因为不需要维持在这样的储存系统中的任何特殊的气候条件。此外,新开发的合成纳米多孔材料的方法提供了吸附剂的生产,该吸附剂在分配给消费者的天然气的量方面比现有的加压天然气储存系统(呈压缩形式)具有竞争性。
在现有的用于蓄积天然气/甲烷的吸附剂中,纳米多孔碳吸附剂是最有前景的。这由它们的吸附性决定:它们具有扩大的孔隙率,并且在对气体蓄积最具吸附活性的孔中具有0.5~1.0cm3/g的相对较大的纳米孔体积。大多数碳吸附剂的平均有效纳米孔尺寸为1~2nm以上,这可以在室温下为碳纳米材料提供良好的扩散性能,以吸附天然气/甲烷。吸附-解吸过程是可逆的。碳吸附剂的高堆积密度降低了储存系统中的气相体积,因此增加了蓄积气体的堆积密度。
大多数碳吸附剂具有相对较低的气体吸附热以及材料本身的高热容量,这可以减小由于环境温度变化造成的储存系统的温度变化。碳吸附剂具有疏水性,这降低了对天然气含水量的要求。
碳吸附剂的多孔结构具有充分的强度和稳定性;它们能够抵抗循环载荷力。
可以通过使用专用吸附器来扩大基于碳材料的吸附气体端子的实现,该吸附器的整个体积充满了吸附材料的特定块体。由于除去了气相寄生体积并且使用高容量的碳材料,这样的方法可以提高吸附端子的效率。
通常,如下生产多孔碳材料:将固体有机材料热解(碳化),然后用蒸汽和/或二氧化碳和/或空气氧进行物理活化,或者用有机酸进行化学活化,其中固体有机材料包括各种类型的煤、泥煤、石油残余物、各种坚果壳、木材废料和生物质废料(Fenelonov V.B.,多孔碳,新西伯利亚,1995年,第513页(Fenelonov V.B.Porous Carbon.-Novosibirsk,1995,513p.))。
还已知纳米结构化的微孔碳材料(专利RU2307704,于2007年10月10日公开),其是纳米结构化的蜂窝状系统,该系统由通过尺寸为1~2nm的1个或2个石墨状的单层颗粒形成的蜂窝(cell)组成,比表面积为SBET=3170~3450m2/g,总孔体积为V=1.77~2.97cm3/g,微孔体积为W0=1.48~1.87cm3/g,并且总孔体积具有特征性尺寸分布。为了制备该材料,将稻壳在550℃的温度下在由施加在γ-Al2O3上的CuO+MgO+Cr2O3(10~15重量%)组成的催化剂沸腾床中碳化。将产物与KOH溶液混合,蒸发水,然后将产物置于700℃的活化反应器中。根据本申请,由于大的孔体积和高的比表面积,该材料对甲烷和氢的吸附容量值高。然而,在最有效的气体蓄积是特有的高达7MPa的压力范围中,大的孔体积并不一定是气体蓄积量的指标,但是蓄积的气体吸附能与孔体积的比率是关键因素。在第一近似中,可以将根据BET得到的蓄积的气体比容对比表面积SBET的依赖性视为该比率对任何材料的天然气蓄积能力的影响的评价标准。在SBET≈1500m2/g实现最大值之后,吸附蓄积效率随着碳吸附剂的比表面积SBET的增加而降低;因此,这样的材料不能储存大量天然气/甲烷。当甲烷的最具吸附活性的孔(d=0.5~1.5nm)的比例不超过总体积的23.7%时,宽的孔径分布也是材料的缺点。此外,该材料以限定其低体积重量和高粉尘形成的粉末形式存在,这可以显著地增大使用该材料的蓄积系统的火灾。
已知基于具有高微孔活性炭的高效吸附剂(专利RU2378046,于2010年1月10日公开),该高微孔活性炭是离散颗粒形式的碳材料,优选为球形,该高微孔活性炭具有高微孔性并且由以下参数表征:通过Gurvich方法确定的总孔体积至少为0.7cm3/g,其中以下的微孔部分占总孔体积的至少70%,平均孔径最大为并且比表面积SBET至少为1500m2/g。还已知基于呈活性炭的离散颗粒形式的高多孔活性炭的高效吸附剂,该高多孔活性炭的特征在于中孔和大孔(RU2426591),其中直径大于的孔(即,中孔和大孔)占总孔体积的至少55%,其中,吸附剂的特征在于孔径分布中心测量值超过并且由BET法得到的比表面积至少为1250m2/g。用于获得这样的材料的方法包括碳化和随后活化苯乙烯和二乙烯基苯(2~10重量%)的胶状硫化共聚物,主要是呈球形颗粒形式的硫化的二乙烯基苯交联的聚苯乙烯。这些材料(聚合的碳吸附剂)的特征在于它们的表面结构,其中,由于它们的结构中的化学键合的氢原子(H)和硫原子(S),与被吸附的物质分子相互作用时产生主要吸附场的碳原子的特定丰度显著低于任何碳吸附剂(作为活性炭)。这导致吸附能力降低,包括对甲烷的吸附能力。此外,对于蓄积天然气/甲烷,这些材料具有太宽的孔(至少),该孔限定了低的甲烷吸附能,因此也限定了低的储存的天然气/甲烷的比容。要求保护的堆积密度值在250~750kg/m3的范围内,并且考虑到要求保护的材料是球形颗粒,在粒度分布窄的情况下,堆积密度值不能超过≈400kg/m3;为了增大堆积密度,只能使粒径分布变宽并增加尺寸小于200μm的颗粒部分,其实际上变成煤尘。因此,这样的材料的堆积密度低,并且其增大会损害吸附系统的操作安全性。
与本发明在内容和所实现的结果方面最相似的是碳材料(专利RU2446098,于2012年3月27日公开),该碳材料是形成后经微结构化的微孔碳吸附剂,该微孔碳吸附剂是通过木质纤维素材料(灰分含量为8~20重量%)的下述阶段制成的:碳化、在碳酸钠或碳酸钾和/或氢氧化钠或氢氧化钾的存在下进行碱活化、洗涤、与粘合材料混合以及成型(挤出)。在催化剂或惰性载体的沸腾床中,在400~800℃下并且以等于0.8~3.0的空气氧与木质纤维素材料的碳的摩尔比进行碳化1~60秒。在600~1000℃下在惰性或还原性气氛中进行碱活化;活化之后用酸溶液和蒸馏水进行产物洗涤;使用改性淀粉、高岭土或聚氨酯胶黏剂进行成型;在50~200℃下干燥1~48小时,如果需要,在600~1000℃下煅烧0.5~5小时。通过手动或使用具有尺寸为3~10mm的模槽的挤出机进行成型。粘合剂与碳材料的重量比为0.5~50:1;取一定量的溶剂以获得最佳的模塑稠度。成型后的干燥在50~200℃下进行3~48小时。制得的材料的比表面积为1560~2550m2/g,其总孔体积为1.0~1.5cm3/g,并且其微孔体积为0.6~1.3cm3/g。该材料具有大比表面积和对各种吸附物的高吸附容量值。
该发明的缺点是对天然气/甲烷的吸附能量低,这是由吸附剂的达到的宽纳米孔决定的,而需要的是(对甲烷最具吸附活性的孔)[Anuchin K.M.,FomkinA.A.,Korotych A.P.,Tolmachev A.M.甲烷的吸附浓度。吸附物密度对活性炭的狭缝状微孔宽度的依赖性(Anuchin K.M.,Fomkin A.A.,Korotych A.P.,TolmachevA.M.Adsorptive Concentration of Methane.Dependence of Adsorbate Density onWidth of Slit Micropores in Activated Carbons.)//表面物理和化学及材料保护,2014年第50卷第2期第156-160页(Surface Physics and Chemistry,and MaterialProtection.2014,v.50,No.2,p.156-160)]。尽管作者没有给出有关微孔尺寸分布的数据,但是存在相对较大的孔宽度的间接证明;在材料的成型阶段中,大部分孔被粘合剂堵塞:在成型阶段之前V=2.2cm3/g,V微孔=1.9cm3/g;而在成型阶段之后,V=1.0~1.5cm3/g,V微孔=0.6~1.3cm3/g。此外,作者没有给出有关成型的碳材料的堆积密度和硬度的数据,这使得无法评估其操作性能。
本组发明的目的在于开发一种块状纳米多孔碳材料,其具有高的堆积密度(超过600m3/kg)、用于天然气/甲烷蓄积而言最佳的的平均有效纳米孔宽度(直径)和超过V微孔=0.5cm3/g的纳米孔体积。
本组发明的技术成果包括:增加储存系统的每单位体积的材料所蓄积的天然气/甲烷的量、将吸附材料的堆积密度增加至高达600m3/g,以及增加吸附材料在专用便携式吸附器中的封装密度,从而使储存系统被填充至高达95%以上,同时保持扩散性能。
本发明的技术成果的实现在于,用于蓄积天然气/甲烷的块状纳米多孔碳材料具有不小于0.5cm3/g的纳米孔体积、的平均有效纳米孔宽度以及不小于600kg/m3的表观堆积密度。
特别地,用于蓄积天然气/甲烷的块状纳米多孔碳材料是形成为立方体或平行六面体或圆柱体或球扇形或四面体的块体。
本发明的技术成果的实现在于:生产用于蓄积天然气或甲烷的块状纳米多孔碳材料的方法使用从经碳化和活化的有机来源的固体原料获得的纳米多孔碳材料,将其粉碎至700~1000μm的平均粒度,向粉碎后的材料中加入量为3~12重量%的聚合物粘合剂和量为5~80重量%的蒸馏水,混合,在150kgf/cm2至3000kgf/cm2的压力下进行成型,随后将成型的块体在110~150℃的温度下干燥3~48小时。
胶乳或聚乙酸乙烯酯可用作聚合物粘合剂。使用压力机或挤出机进行成型。
生产的块状纳米多孔碳材料具有立方体或平行六面体或圆柱体或球扇形或四面体的块体形状;堆积(表观)密度超过600m3/kg,平均有效纳米孔宽度(直径)纳米孔体积超过V微孔=0.5cm3/g。纳米孔体积和平均有效纳米孔宽度的测量通过在200℃下将材料初步再生至0.1Pa的压力之后执行的在77K下的标准氮蒸气等温线来进行。多孔结构参数的确定通过标准的BET技术[Brunauer S.气体和蒸气的吸附,莫斯科,世界文学出版社,1948年,第1卷,第781页(Brunauer S.Adsorption of Gases and Vapours.Moscow,World Literature Publishers,1948,v.1,781p.)]并根据微孔体积填充理论[DubininM.M.吸附和孔隙率,莫斯科,VAHZ,1976年(Dubinin M.M.Adsorption andPorosity.Moscow,V AHZ,1976)]来进行。材料的堆积(表观)密度的确定根据GOST R 55959“活性炭”中提出的技术(用于确定堆积密度的标准技术(Standard Technique forDetermination of Bulk Density)——用于预定体积的采样技术除外)来进行。采样通过随机选择材料块体来进行。材料体积的确定是通过根据GOST 166使用测径规测量材料的参数和/或通过根据GOST427使用测量尺测量材料的参数并通过适当的公式进行体积计算来进行的。
以下实施例说明了本组发明的内容。
实施例1
将由经碳化和活化的椰壳得到的颗粒状纳米多孔碳材料AS-1粉碎至800~1000μm的粒度,取总重量≈230g的样品,向其中加入12重量%的胶乳和60重量%的蒸馏水,将其混合、置于压力机下方并在300kgf/cm2的压力下保持10分钟,将其取出并置于温度为130℃的干燥室中12小时。所得材料的纳米孔体积为0.61cm3/g,其平均有效孔宽度为并且其堆积(表观)密度为638kg/m3。在7MPa的压力和20℃的温度下在标定试样中蓄积的天然气的量为每升吸附材料164.5升CH4。这种甲烷蓄积量对应于以克数量获得的实验室碳吸附剂。吸附材料块体的“半有效”时间或吸附预定量的天然气的一半时间为0.35秒(在校准测试中为0.33秒),这可以表明吸附材料的多孔结构对储存系统的气动(扩散)特性没有显著影响。
实施例2
它与实施例1的不同之处在于,向粉碎的纳米多孔材料中加入6重量%的胶乳和25重量%的蒸馏水。所得材料的纳米孔体积为0.60cm3/g,其平均有效孔宽度为并且其堆积(表观)密度为623kg/m3。在7MPa的压力和20℃的温度下在标定试样中蓄积的天然气的量为每升吸附材料161.3升CH4。吸附材料块体的“半有效”时间为0.34秒。
实施例3
它与实施例1的不同之处在于,将由经碳化和活化的黑煤获得的、样品重量为325g的纳米多孔材料AP-2用作原料,向其中加入6重量%的胶乳和25重量%的蒸馏水。所得材料的纳米孔体积为0.50cm3/g,其平均有效孔宽度为并且其堆积(表观)密度为703kg/m3。在7MPa的压力和20℃的温度下在标定试样中蓄积的天然气的量为每升吸附材料162.1升CH4。吸附材料块体的“半有效”时间为0.37秒。
实施例4
将由经碳化和活化的无烟煤获得的粉末状纳米多孔碳材料粉碎至700~900μm的粒度,取总重量≈14.1g的样品,向其中加入3重量%的胶乳和5重量%的蒸馏水,将其混合、置于压力机下方并在3000kgf/cm2的压力下保持20分钟,将其取出并置于温度为150℃的干燥室中3小时。所得材料的纳米孔体积为0.5cm3/g,其平均有效孔宽度为并且其堆积(表观)密度为980kg/m3。在10MPa的压力和20℃的温度下在标定试样中蓄积的天然气的量为每升吸附材料218.5升CH4。吸附材料块体的“半有效”时间或吸附规定量的天然气的一半时间为0.4秒。
实施例5
将由经碳化和活化的泥煤获得的粉末状纳米多孔碳材料粉碎至700~1000μm的粒度,取总重量≈370g的样品,向其中加入12重量%的胶乳和80重量%的蒸馏水,将其混合、置于压力机下方并在150kgf/cm2的压力下保持30分钟,将其取出并置于温度为110℃的干燥室中48小时。所得材料的纳米孔体积为0.54cm3/g,其平均有效孔宽度为并且其堆积(表观)密度为600kg/m3。在10MPa的压力和20℃的温度下在标定试样中蓄积的甲烷的量为每升吸附材料160.0升CH4。吸附材料块体的“半有效”时间或吸附预定量的甲烷的一半时间为0.37秒。
在不脱离本组发明的范围的情况下,还可以实现本发明的许多其他实施方式。
本组发明的优点如下。从给出的描述和实施例可以看出,本发明的材料具有高堆积密度和最佳的孔结构,从而解决天然气/甲烷蓄积的问题。所获得的材料可用作储存、分配和运输系统中天然气/甲烷的高效蓄积器。

Claims (5)

1.一种用于蓄积天然气或甲烷的块状纳米多孔碳材料,其特征在于下述参数:不小于0.5cm3/g的纳米孔体积、的平均有效纳米孔宽度以及不小于600kg/m3的表观堆积密度。
2.根据权利要求1所述的材料,其特征在于,所述材料是形成为立方体或平行六面体或圆柱体或球扇形或四面体的块体。
3.一种生产用于蓄积天然气或甲烷的块状纳米多孔碳材料的方法,其特征在于,将从经碳化和活化的有机来源的固体原料获得的纳米多孔碳材料粉碎至700~1000μm的平均粒度,向粉碎后的材料中加入3~12重量%的聚合物粘合剂和5~80重量%的蒸馏水、混合、在150kgf/cm2至3000kgf/cm2的压力下进行成型,随后将成型的块体在110~150℃的温度下干燥3~48小时。
4.根据权利要求3所述的方法,其特征在于,将胶乳或聚乙酸乙烯酯用作聚合物粘合剂。
5.根据权利要求3或4所述的方法,其特征在于,使用压力机或挤出机进行成型。
CN201780038228.1A 2016-06-22 2017-06-14 用于蓄积天然气或甲烷的块状多孔碳材料及其生产方法 Active CN109689202B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2016124918A RU2625671C1 (ru) 2016-06-22 2016-06-22 Блочный нанопористый углеродный материал для аккумулирования природного газа, метана и способ его получения
RU2016124918 2016-06-22
PCT/RU2017/000412 WO2017222420A2 (ru) 2016-06-22 2017-06-14 Блочный нанопористый углеродный материал для аккумулирования природного газа, метана и способ его получения

Publications (2)

Publication Number Publication Date
CN109689202A true CN109689202A (zh) 2019-04-26
CN109689202B CN109689202B (zh) 2022-04-01

Family

ID=59495402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780038228.1A Active CN109689202B (zh) 2016-06-22 2017-06-14 用于蓄积天然气或甲烷的块状多孔碳材料及其生产方法

Country Status (5)

Country Link
JP (1) JP6972455B2 (zh)
CN (1) CN109689202B (zh)
DE (1) DE112017003150T5 (zh)
RU (1) RU2625671C1 (zh)
WO (1) WO2017222420A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2701908C2 (ru) * 2017-12-25 2019-10-02 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (Институт катализа СО РАН, ИК СО РАН) Способ получения углеродного материала
RU2744400C2 (ru) * 2018-12-24 2021-03-09 Публичное акционерное общество "Газпром" Блочный микропористый углеродный адсорбент и способ его получения
RU2736586C1 (ru) * 2019-07-09 2020-11-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Формованный наноструктурированный микропористый углеродный сорбент и способ его получения
CN111686735A (zh) * 2020-06-30 2020-09-22 中国石油大学(华东) 一种载体煤改性制备高分散型煤/重油加氢共炼催化剂

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001714A1 (en) * 1992-07-01 1994-01-20 Allied-Signal Inc. Storage of natural gas
EP1064996A1 (en) * 1998-02-17 2001-01-03 Kanebo, Ltd. Activated carbon for adsorption and storage of gaseous compound
CN101150965A (zh) * 2005-03-29 2008-03-26 英美烟草(投资)有限公司 多孔碳材料以及掺入这种材料的吸烟制品和为此的烟雾过滤器
CN101948106A (zh) * 2010-09-28 2011-01-19 华东理工大学 一种高比表面积块体多孔炭的制备方法
US20130190542A1 (en) * 2006-11-08 2013-07-25 The Curators Of The University Of Missouri High surface area carbon and process for its production
CN103449400A (zh) * 2013-08-02 2013-12-18 杭州师范大学 一种工业生产高堆积密度的有序介孔碳材料的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999330A (en) * 1988-03-22 1991-03-12 Universite Du Quebec A Trois-Rivieres High-density adsorbent and method of producing same
RU2151737C1 (ru) * 1997-05-30 2000-06-27 Акционерное общество закрытого типа "Карбид" Способ получения пористого углеродного изделия и пористое углеродное изделие, полученное этим способом
DE102006010636A1 (de) * 2005-12-19 2007-06-21 BLüCHER GMBH Sorptionsspeichereinheit für Gase
RU2311227C1 (ru) * 2006-02-09 2007-11-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Способ получения наноструктурированного углеродного материала с высокой удельной поверхностью и микропористостью
RU2307704C1 (ru) * 2006-02-09 2007-10-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Наноструктурированный микропористый углеродный материал
DE202006016898U1 (de) 2006-10-12 2007-11-22 BLüCHER GMBH Hochleistungsadsorbentien auf der Basis von Aktivkohle mit hoher Mikroporosität
DE102007050971B4 (de) 2007-03-14 2014-12-31 BLüCHER GMBH Verfahren zur Herstellung von Hochleistungsadsorbentien auf der Basis von Aktivkohle mit hoher Meso- und Makroporosität, Hochleistungsadsorbentien und deren Verwendung
FR2946894B1 (fr) * 2009-06-22 2012-09-14 Inst Francais Du Petrole Procede de separation de co2 par adsorption modulee en pression sur un solide carbone poreux
RU2446098C1 (ru) 2010-08-30 2012-03-27 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Углеродный материал
RU2550176C2 (ru) * 2013-05-06 2015-05-10 Юрий Филиппович Гайворонский Графеновая пемза, способы ее изготовления и активации

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001714A1 (en) * 1992-07-01 1994-01-20 Allied-Signal Inc. Storage of natural gas
EP1064996A1 (en) * 1998-02-17 2001-01-03 Kanebo, Ltd. Activated carbon for adsorption and storage of gaseous compound
CN101150965A (zh) * 2005-03-29 2008-03-26 英美烟草(投资)有限公司 多孔碳材料以及掺入这种材料的吸烟制品和为此的烟雾过滤器
US20130190542A1 (en) * 2006-11-08 2013-07-25 The Curators Of The University Of Missouri High surface area carbon and process for its production
CN101948106A (zh) * 2010-09-28 2011-01-19 华东理工大学 一种高比表面积块体多孔炭的制备方法
CN103449400A (zh) * 2013-08-02 2013-12-18 杭州师范大学 一种工业生产高堆积密度的有序介孔碳材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.S. BALATHANIGAIMANI ET AL.: ""Adsorption of methane on novel corn grain-based carbon monoliths"", 《MICROPOROUS AND MESOPOROUS MATERIALS》 *

Also Published As

Publication number Publication date
WO2017222420A3 (ru) 2018-02-08
CN109689202B (zh) 2022-04-01
JP2019521837A (ja) 2019-08-08
DE112017003150T5 (de) 2019-05-29
WO2017222420A2 (ru) 2017-12-28
JP6972455B2 (ja) 2021-11-24
RU2625671C1 (ru) 2017-07-18

Similar Documents

Publication Publication Date Title
Huang et al. Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance
CN109689202A (zh) 用于蓄积天然气或甲烷的块状多孔碳材料及其生产方法
Boujibar et al. CO2 capture using N-containing nanoporous activated carbon obtained from argan fruit shells
US20230321629A1 (en) Carbon-based compositions with highly efficient volumetric gas sorption
CN106660009B (zh) 来自天然碳水化合物的微孔碳吸附剂
Srinivas et al. Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties
Zhao et al. Nano-CaCO 3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities
Sing Adsorption by active carbons
CA2728649C (en) Porous carbon material and a method of production thereof
DE102006010636A1 (de) Sorptionsspeichereinheit für Gase
Sun et al. Natural gas storage with activated carbon from a bituminous coal
Taer et al. Preparation of binderless activated carbon monolith from pre-carbonization rubber wood sawdust by controlling of carbonization and activation condition
JP2007084361A (ja) 水素吸蔵方法及び水素吸蔵体
Piña-Salazar et al. Unusual hygroscopic nature of nanodiamonds in comparison with well-known porous materials
Zhou et al. Carbon-based CO2 adsorbents
Wang Post-combustion carbon dioxide capture materials
Li et al. Hydrogen adsorption with micro-structure deformation in nanoporous carbon under ultra-high pressure
JP5021409B2 (ja) メタン吸着剤またはその製造方法
Gadiou et al. The influence of microporosity on the hydrogen storage capacity of ordered mesoporous carbons
Solar et al. Natural gas storage in microporous carbon obtained from waste of the olive oil production
Zaini et al. Effects of different physical activation agents on adsorbent pore development and methane uptake
RU2782932C1 (ru) Блочный композитный материал для аккумулирования газов и способ его получения
Quinn et al. Carbons suitable for medium pressure (6.9 MPa) methane storage
Tung et al. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk
EP4337378A1 (en) Block composite material for gas accumulation and method of production thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant