CN109686592B - 白玉菇状二硒化镍纳米阵列电极材料及其制备方法 - Google Patents

白玉菇状二硒化镍纳米阵列电极材料及其制备方法 Download PDF

Info

Publication number
CN109686592B
CN109686592B CN201910007392.7A CN201910007392A CN109686592B CN 109686592 B CN109686592 B CN 109686592B CN 201910007392 A CN201910007392 A CN 201910007392A CN 109686592 B CN109686592 B CN 109686592B
Authority
CN
China
Prior art keywords
nickel
white beech
beech mushroom
nano array
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910007392.7A
Other languages
English (en)
Other versions
CN109686592A (zh
Inventor
杜卫民
顾永攀
曹智
魏少红
邓德华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Jiuzhou Longteng Scientific And Technological Achievement Transformation Co ltd
Original Assignee
Anyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anyang Normal University filed Critical Anyang Normal University
Priority to CN201910007392.7A priority Critical patent/CN109686592B/zh
Publication of CN109686592A publication Critical patent/CN109686592A/zh
Application granted granted Critical
Publication of CN109686592B publication Critical patent/CN109686592B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种白玉菇状二硒化镍纳米阵列电极材料及其制备方法,属于超级电容器电极材料制备技术领域。具体包括步骤:将一定量的硒粉和氢氧化钠溶液混合,在带有对位聚苯内衬的反应釜中水热处理配制成反应溶液;反应溶液自然冷却后,再将预处理的泡沫镍放入其中,进行二次水热处理。控制反应温度及时间,即可获得白玉菇状二硒化镍纳米阵列。所得电极材料具有优异的电化学性能,在电流密度为1.0A/g时的比电容可达到2357 F/g,即使在电流密度达到5 A/g时,其比电容仍可达到1290 F/g。

Description

白玉菇状二硒化镍纳米阵列电极材料及其制备方法
技术领域
本发明属于超级电容器电极材料制备技术领域,具体涉及一种白玉菇状二硒化镍纳米阵列电极材料及其制备方法。
背景技术
在众多的能量储存装置中,超级电容器由于其高的功率密度,快速的充放电过程和良好的循环稳定性等特性,已经成为最有前景的能量储存装置之一。然而,由于缺乏有效和低成本的合成方法来制备高性能的电极材料,超级电容器的实际应用受到限制。因此,许多研究者致力于开发理想的电极材料。在当前的超级电容器电极材料中(碳材料、导电聚合物和过渡金属化合物),过渡金属化合物纳米材料已经成为研究热点,因为它们不仅能像碳基材料一样在电极表面储存电荷,自身还能够参与到丰富的电化学法拉第反应中。然而,过渡金属化合物(如:氧化物,硫化物,氢氧化物)的导电性通常较差,这增加了材料的薄层电阻和电荷转移电阻,导致其在大电流密度下较大的内阻和较差的倍率性能。因此,设计拥有良好导电性的电极材料成为构建超级电容器的首要任务。
由于镍的电子构型(3d84s2)及其与Se元素相类似的电负性(Ni:χ=1.9,Se:χ=2.4),镍和硒可以形成多种类型的硒化物。其中的NiSe2,NiSe,Ni0.85Se以及Ni3Se2是其在室温下的稳定相。这些硒化镍内在的金属性使其具有较高的电导率,所以,硒化镍是一种非常适用于超级电容器的电极材料。另外,将活性材料直接构建在集流体上,形成有序的纳米阵列,这样不仅可以省去传统的电极制备过程,同时缩短了离子扩散路径,扩大了电极材料与电解液接触面积。而且,阵列结构还可以避免电极材料在法拉第反应中发生团聚,提高活性材料在集流体上的负载量。因此,具有纳米阵列结构的硒化镍有望成为超级电容器方面极具应用前景的电极材料。目前为止,只有少量关于硒化镍纳米阵列用作超级电容器电极材料的报导,例如,NiSe纳米线阵列在5Ag-1时,比电容为1790F g-1;(Ni,Co)0.85Se纳米管阵列在4mA cm-2时,面电容达到了2.33F cm-2;(Ni,Co)0.85Se//多孔石墨烯不对称超级电容器在体积功率密度为10.76mW cm-3时,体积能量密度达到2.85mWh cm-3。这些研究工作表明,开发一种简单、低成本的方法制备适用于超级电容器的硒化镍纳米阵列结构具有非常重要的现实意义。
发明内容
针对现有技术的不足,本发明目的在于提供一种白玉菇状二硒化镍纳米阵列电极材料及其制备方法。
为实现本发明目的,在本发明的技术方案中,以预处理过的泡沫镍为镍源,以Se粉为硒源,采用两步水热法制备白玉菇状二硒化镍纳米阵列。
其制备方法为:首先将Se粉和NaOH溶液混合,水热处理制备反应溶液。再将处理过的泡沫镍放入其中,进行二次水热处理。控制反应温度及时间,即可得到适用于超级电容器的白玉菇状二硒化镍纳米阵列材料。具体通过以下步骤实现:
1)泡沫镍的预处理:市售泡沫镍的厚度为1.5mm,面密度为280-420g/m2,孔径为0.2-0.6mm。将其剪成一定尺寸,用盐酸超声处理,去除表面的氧化物。再用无水乙醇、去离子水交替清洗,真空干燥备用即可。
2)反应溶液的制备:将一定量的Se粉和NaOH溶液混合,在反应釜中200℃-220℃水热处理,配制成反应溶液;其中所用反应釜为带有对位聚苯内衬的反应釜,NaOH溶液的浓度为0.05~0.15mol/L,NaOH和Se粉的摩尔比为10~20:1。
3)白玉菇状二硒化镍纳米阵列的合成:待步骤(2)中得到的反应溶液自然冷却后,再将预处理的泡沫镍放入其中,在200-220℃条件下进行二次水热处理,反应结束后,反应釜自然冷却,将泡沫镍经洗涤,真空干燥,即可获得白玉菇状二硒化镍纳米阵列。
电化学性能测试:将获得的白玉菇状二硒化镍纳米阵列直接用作超级电容器电极,在三电极系统中测试其电化学性能。铂电极和饱和甘汞电极(SCE)分别用作对电极和参比电极,电解质为3.0mol/L KOH溶液。循环伏安在电化学工作站(CHI660E,上海辰华)测试。恒电流充放电在Arbin电化学仪器上完成。
本发明方法中,所述的镍源为泡沫镍,所述的硒源为Se粉。
本发明优点和创新点如下:
①由于本发明采用了常见的泡沫镍、硒粉、氢氧化钠为原料,原料便宜、成本低、操作简单、效率高,且能很好地获得白玉菇状二硒化镍纳米阵列,所得白玉菇状二硒化镍高度约为500纳米,直径约为50纳米,无杂质,纯度高。
②有序的白玉菇状二硒化镍纳米阵列直接生长在镍泡沫上,不仅省略了传统的电极制备工艺,同时也缩短了离子扩散路径,避免了充放电过程中的活性物质聚集。其次,白玉菇状二硒化镍的顶部相互连接,形成一个较高的比表面积。大的表面积和多维分层结构可以提供更多的离子吸附的活性位点。这些特殊的结构特点使得白玉菇状二硒化镍纳米阵列更加适用于超级电容器的应用。
③所得白玉菇状二硒化镍纳米阵列电极材料具有优异的电化学性能,在电流密度为1.0A/g时的比电容可达到2357F/g,即使在电流密度达到5A/g时,其比电容仍可达到1290F/g。
附图说明
图1为本发明实施例1所得的白玉菇状二硒化镍纳米阵列的X射线衍射图谱。
图2为本发明实施例1泡沫镍上剥离下来的产物的能量散射X射线衍射图。
图3为本发明实施例2所得白玉菇状二硒化镍纳米阵列的不同放大倍数的扫描电镜照片。
图4为基于本发明实施例3所得白玉菇状二硒化镍纳米阵列电极在不同扫速下的循环伏安图。
图5为基于本发明实施例3所得白玉菇状二硒化镍纳米阵列不同电流密度下的恒电流充放电图。
具体实施方式
为对本发明进行更好地说明,举实施案例如下,如下实施案例是对本发明的进一步说明,而不限制本发明的范围。
实施例1
①将市售的泡沫镍剪成1×4cm的尺寸,用3mol/L的盐酸超声处理30分钟,去除表面的氧化物。再用无水乙醇、去离子水交替清洗,真空干燥备用。
②将0.10mmol的Se粉加入到18mL浓度为0.07mol/L的NaOH溶液中,室温下超声10min。将混合溶液转移至容积为25mL的带有对位聚苯内衬的反应釜中,在220℃下水热处理24h,获得浓度均一的反应溶液。
③待步骤②中的获得的反应溶液自然冷却后,再将预处理的泡沫镍放入其中,在220℃下水热处理12h。反应后自然冷却到室温后,用无水乙醇、去离子水洗涤数次该样品,之后真空干燥,即可获得白玉菇状二硒化镍纳米阵列。
所得白玉菇状二硒化镍纳米阵列的X射线衍射图谱如附图1所示。由图可见所有衍射峰完全符合标准立方的NiSe2结构(JPCDS NO.65-1843),没有探测到其它杂质或有机物的峰,表明产物的纯净结晶。附图2是泡沫镍上剥离下来的产物的能量散射X射线衍射图,其中的C元素来自于固定样品的导电胶,O来自于样品台。根据测试数据可知,产物中Ni和Se的原子比接近于1:2,这和其化学式十分吻合。
实施例2
①将市售的泡沫镍剪成1×4cm的尺寸,用3mol/L的盐酸超声处理30分钟,去除表面的氧化物。再用无水乙醇、去离子水交替清洗,真空干燥备用。
②将0.12mmol的Se粉加入到18mL浓度为0.1mol/L的NaOH溶液中,室温下超声10min。将混合溶液转移至容积为25mL的带有对位聚苯内衬的反应釜中,在220℃下水热处理36h,获得浓度均一的反应溶液。
③待步骤②中的反应溶液自然冷却后,再将预处理的泡沫镍放入其中,在200℃下水热24h。反应自然冷却到室温后,用无水乙醇、去离子水洗涤数次该样品,之后真空干燥,即可获得白玉菇状二硒化镍纳米阵列。
附图3是所得白玉菇状二硒化镍纳米阵列的不同放大倍数的扫描电镜照片。由图3a可见,所得产物为具有白玉菇状的纳米阵列结构,其高度约为500纳米,直径约为50纳米。有序的白玉菇状二硒化镍纳米阵列直接生长在镍泡沫上,不仅省略了传统的电极制备工艺,同时也缩短了离子扩散路径,避免了充放电过程中的活性物质聚集。其次,白玉菇状二硒化镍的顶部相互连接,形成一个较高的比表面积。大的表面积和多维分层结构可以提供更多的离子吸附的活性位点。这些特殊的结构特点使得白玉菇状二硒化镍纳米阵列更加适用于超级电容器的应用。图3b表明泡沫镍的表面全部被白玉菇状的纳米阵列覆盖,表明该方法可以大规模合成该阵列结构。
实施例3
①将市售的泡沫镍剪成1×4cm的尺寸,用3mol/L的盐酸超声处理30分钟,去除表面的氧化物。再用无水乙醇、去离子水交替清洗,真空干燥备用。
②将0.2mmol的Se粉加入到18mL浓度为0.12mol/L的NaOH溶液中,室温下超声10min。将混合溶液转移至容积为25mL的带有对位聚苯内衬的反应釜中,在220℃下水热处理24h,获得浓度均一的反应溶液。
③待步骤②中的反应溶液自然冷却后,再将预处理的泡沫镍放入其中,在200℃下水热处理16h。反应自然冷却到室温后,用无水乙醇、去离子水洗涤数次该样品,之后真空干燥,即可获得白玉菇状二硒化镍纳米阵列。
将所得白玉菇状二硒化镍纳米阵列直接用作超级电容器工作电极,并测试其电化学性质。图4是基于本发明二硒化镍纳米阵列的超级电容器电极在不同扫速下的循环伏安图,由图可知,该电极表现出一对明显的氧化还原峰,这表明二硒化镍纳米阵列材料是一种典型的赝电容材料。图5是该电极在不同电流密度下的恒电流充放电图,可以发现,每一条充放电曲线都有一个平台,再次证实了其赝电容材料的特性,按照比电容的计算公式:C=I×Δt/(m×ΔV),其中C(F/g)是比电容,I(A)是放电电流,Δt(s)是放电时间,ΔV(V)是电压窗,m(g)是电极上的活性物质质量,可以得出该白玉菇状二硒化镍纳米阵列电极在电流密度为1,2,3,4和5A/g时,其比电容分别2357,1860,1663,1443,1290F/g。显示出优异的超电容特性。
实施例4
①将市售的泡沫镍剪成1×4cm的尺寸,用3mol/L的盐酸超声处理30分钟,去除表面的氧化物。再用无水乙醇、去离子水交替清洗,真空干燥备用。
②将0.09mmol的Se粉加入到18mL浓度为0.05mol/L的NaOH溶液中,室温下超声10min。将混合溶液转移至容积为25mL的带有对位聚苯内衬的反应釜中,在220℃下水热处理24h,获得浓度均一的反应溶液。
③待步骤②中的反应溶液自然冷却后,再将预处理的泡沫镍放入其中,在200℃下水热24h。反应自然冷却到室温后,用无水乙醇、去离子水洗涤数次该样品,之后真空干燥,即可获得白玉菇状二硒化镍纳米阵列。

Claims (3)

1.白玉菇状二硒化镍纳米阵列电极材料的制备方法,其特征在于,通过以下步骤实现:
1)反应溶液的制备:将Se粉和NaOH溶液混合,在反应釜中200℃-220℃水热处理,配制成反应溶液;
2)白玉菇状二硒化镍纳米阵列的合成:在步骤(1)中得到的反应溶液中加入预处理的泡沫镍,在200-220℃条件下进行二次水热处理,反应结束后,反应釜自然冷却,将泡沫镍经洗涤,真空干燥,得白玉菇状二硒化镍纳米阵列;
所用反应釜为带有对位聚苯内衬的反应釜,NaOH溶液的浓度为0.05 ~ 0.15 mol/L,NaOH和Se粉摩尔比为10~ 20:1。
2.白玉菇状二硒化镍纳米阵列电极材料,其特征在于,通过权利要求1所述方法制备而成。
3.如权利要求2所述白玉菇状二硒化镍纳米阵列电极材料,其特征在于,其高度为500纳米,直径为50纳米。
CN201910007392.7A 2019-01-04 2019-01-04 白玉菇状二硒化镍纳米阵列电极材料及其制备方法 Active CN109686592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910007392.7A CN109686592B (zh) 2019-01-04 2019-01-04 白玉菇状二硒化镍纳米阵列电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910007392.7A CN109686592B (zh) 2019-01-04 2019-01-04 白玉菇状二硒化镍纳米阵列电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109686592A CN109686592A (zh) 2019-04-26
CN109686592B true CN109686592B (zh) 2020-10-02

Family

ID=66192085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910007392.7A Active CN109686592B (zh) 2019-01-04 2019-01-04 白玉菇状二硒化镍纳米阵列电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109686592B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079846A (zh) * 2019-05-17 2019-08-02 陕西科技大学 具有不同形貌的硒化镍/镍基电极材料的电沉积制备方法
CN110391088B (zh) * 2019-08-22 2020-10-30 青岛科技大学 一种镍基超级电容器电极材料的制备方法
CN112064060B (zh) * 2020-09-21 2021-06-15 陕西科技大学 一种硒化镍/镍铁基底材料及其制备方法和应用
CN112614992B (zh) * 2020-12-10 2022-08-16 三峡大学 一种水系锌镍电池镍复合正极材料及其制备方法
CN114724866A (zh) * 2022-03-11 2022-07-08 上海健康医学院 一种无粘接剂的钒掺杂硒化镍纳米阵列材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057501A (zh) * 2016-08-11 2016-10-26 浙江大学 一种用于超级电容器的Ni(OH)2/NiSe纳米棒材料及其制备方法
KR20170133176A (ko) * 2016-05-25 2017-12-05 재단법인대구경북과학기술원 알칼리성 물 전기 분해를 위한 고내구성 비귀금속 전기화학 촉매의 감소를 위한 광범위한 물의 산화
CN107818873A (zh) * 2017-10-10 2018-03-20 安阳师范学院 蜂窝状硒化镍纳米片阵列电极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170133176A (ko) * 2016-05-25 2017-12-05 재단법인대구경북과학기술원 알칼리성 물 전기 분해를 위한 고내구성 비귀금속 전기화학 촉매의 감소를 위한 광범위한 물의 산화
CN106057501A (zh) * 2016-08-11 2016-10-26 浙江大学 一种用于超级电容器的Ni(OH)2/NiSe纳米棒材料及其制备方法
CN107818873A (zh) * 2017-10-10 2018-03-20 安阳师范学院 蜂窝状硒化镍纳米片阵列电极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于硒化镍复合体系柔性超级电容器电极材料及器件研究;唐中华;《中国优秀硕士学位论文全文数据库(电子期刊)工程科技Ⅱ辑》;20180228;第二章 *

Also Published As

Publication number Publication date
CN109686592A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
CN109686592B (zh) 白玉菇状二硒化镍纳米阵列电极材料及其制备方法
CN108346522B (zh) 一种四氧化三钴分级结构纳米阵列材料、制备方法及其应用
CN107785181B (zh) 一种超级电容器电极材料及其制备方法
Li et al. A novel hierarchical core-shell structure of NiCo2O4@ NiCo-LDH nanoarrays for higher-performance flexible all-solid-state supercapacitor electrode materials
CN111540610B (zh) 一种用于超级电容器的电极材料及其制备方法和用途
CN107275105A (zh) 超级电容器电极材料及其制备方法
Ye et al. In-situ growth of Se-doped NiTe on nickel foam as positive electrode material for high-performance asymmetric supercapacitor
CN103762090B (zh) 一种自集流超级电容器电极材料及其制备方法
CN113012944B (zh) 一种四硫化二钴合镍@镍钒双金属氢氧化物复合材料的制备方法及应用
CN110838411A (zh) 一种碳布负载层状六方相三氧化钨超级电容器电极材料及其制备方法
CN110697782A (zh) 一种Co3S4@MoS2核壳结构纳米片阵列材料的制备方法及其应用
Barkhordari et al. Facile synthesis of ZnMn 2 O 4 nanosheets via cathodic electrodeposition: characterization and supercapacitor behavior studies
CN104167298A (zh) 一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法
CN108281292B (zh) 一种Ni-Co-S纳米针阵列的制备方法及其应用
CN106710891B (zh) 一种NiCo2O4/活性炭复合材料的制备方法
CN112467077A (zh) 有效增强多种过渡金属氧化物储电性能的普适性电化学改性制备方法
CN110739159B (zh) 一种超级电容器用纳米线状二氧化锰/石墨烯气凝胶复合材料的制备方法
CN114927357B (zh) 一种CoNi复合硫化物电极材料及其制备方法
CN108640167B (zh) 一种二维纳米片的制备方法
CN114105224B (zh) 一种氢氧化镍/碳纳米管复合纳米片的制备方法及应用
CN114300276B (zh) 一种Ni-Fe-S@NiCo2O4@NF复合材料及其制备方法与应用
CN110571060A (zh) 一种二氧化钒/泡沫镍一体化电极的制备方法
CN115547697A (zh) 一种具有超高比容量的锌钴双金属氢氧化物电极材料及其制备方法
CN112429706B (zh) 镍硫硒三元化合物纳米棒阵列电极材料及其制备方法
CN109273275B (zh) 三氧化二钒负载纳米镍、制备方法及其制备的电极材料和超级电容器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220622

Address after: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd.

Address before: 436 Xiange Avenue, Anyang City, Henan Province

Patentee before: ANYANG NORMAL University

TR01 Transfer of patent right