CN109675064A - 用于诊疗一体化的铁-没食子酸配位聚合物及其制备方法和应用 - Google Patents
用于诊疗一体化的铁-没食子酸配位聚合物及其制备方法和应用 Download PDFInfo
- Publication number
- CN109675064A CN109675064A CN201811505427.1A CN201811505427A CN109675064A CN 109675064 A CN109675064 A CN 109675064A CN 201811505427 A CN201811505427 A CN 201811505427A CN 109675064 A CN109675064 A CN 109675064A
- Authority
- CN
- China
- Prior art keywords
- gallic acid
- iron
- coordination polymer
- acid
- diagnosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1827—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
- A61K49/1851—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
- A61K49/1857—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/192—Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0052—Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/085—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier conjugated systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
- A61K9/5153—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Nanotechnology (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本发明公开了一种由磁共振成像介导的光热与化疗联合治疗的铁‑没食子酸配位聚合物及其制备方法和应用。通过将Fe3+与没食子酸配位,使配位聚合物产生基于Fe3+的T1成像效果,可以准确获得肿瘤空间位置及大小信息;配位聚合物在近红外区有较高吸收满足光热治疗材料光吸收性质的基本要求;并且,该配位聚合物具有明显的酸敏感释放特性,释放的没食子酸可诱导多种肿瘤细胞凋亡,与光热治疗相结合,可有效杀死肿瘤细胞。将该配位聚合物应用于制剂领域,可实现磁共振成像介导的光热、化疗联合治疗的诊疗一体化功能。
Description
技术领域
本发明属于纳米材料和药物制剂技术领域,具体涉及一种由磁共振成像介导的光热与化疗联合治疗的铁-没食子酸配位聚合物及其制备方法和应用。
背景技术
恶性肿瘤是当前严重威胁人类生命健康的重大疾病之一。随着纳米科技和材料的发展,集肿瘤诊断和治疗于一身的诊疗一体化纳米粒显示出良好的临床应用潜能。在肿瘤的临床监测方面,磁共振成像目前应用越来越广泛,其具有成像范围大、多方位成像、分辨率高且定性诊断准确率高等优点,给肿瘤的高效治疗提供可视化的指导。目前,诊疗纳米医学材料大多是通过同时包载或连接诊断分子、药物分子的方式实现诊疗一体化,这样会增加稳定性和药代动力学的风险。因此,将诊断和治疗有机的结合在一起,制备具有固有成像能力和治疗能力的纳米医学材料是非常重要的。近年来,配位聚合物化学、纳米科技、材料学的发展日新月异,为制备具有特定结构以及预期功能的配位聚合物材料提供了科学的理论依据,同时也为药物的包载与递送、生物成像、诊疗一体化等相关领域提供了新的思路和理念。配位聚合物中金属元素和有机配体的选择非常广泛,使其组成、结构及性能具有可设计性。
配位聚合物是指由可以提供孤对电子或不定域电子的有机配体和可以接受电子的金属离子或金属簇通过配位键形成的无机-有机杂化化合物。配位聚合物在空间上呈现无限网络状结构,配位聚合物的金属离子、有机配体之间通过配位相互作用和一些弱作用力,如氢键、π-π堆积、范德华力,自组装形成小的结构单元,然后这些结构单元通过上述作用力进一步组装成配位聚合物。构建配位聚合物的有机配体和金属元素的选择非常广泛,并且兼具无机物和有机物的优良性质,如多孔性、比表面积大、可修饰、良好的热稳定性等。近年来,配位聚合物已经成为配位化学、材料化学和生命科学等领域的前沿方向之一。由于其高度的可调性和多功能性,在药物递送、生物成像等方面展示出不可估量的应用前景,成为生物医学领域新兴的研究热点。由于人体环境的特殊性,要求配位聚合物具有良好的生物相容性、在生理环境中优异的稳定性以及抵抗体内竞争配体的性能。因此,发展生物相容性好、功能多样、高效低毒的配位聚合物成为现阶段的研究趋势。
没食子酸又名五倍子酸、棓酸,化学名为3,4,5-三羟基苯甲酸,是一种天然多酚类化合物,广泛存在于葡萄、茶叶、何首乌、山茱萸等多种植物中,已有大量文献报道没食子酸的抗肿瘤作用,可诱导多种肿瘤细胞凋亡。由于没食子酸丰富的酚羟基基团可与金属离子发生较强的配位作用,通过有机溶剂沉淀法,使没食子酸与Fe3+形成稳定的铁-没食子酸配位聚合物。在已有配位聚合物的应用中,配位聚合物的功能比较单一,理想的磁共振成像效果又要求比较复杂的反应条件,难以形成结构简单的多功能配位聚合物。
发明内容
本发明的目的是提供一种具有磁共振成像功能及光热和化疗联合治疗效果的铁-没食子酸配位聚合物。通过设计并制备多功能性的铁-没食子酸配位聚合物,并选择合适的制剂负载,实现磁共振成像功能和联合治疗效果的诊疗一体化。
用于诊疗一体化的铁-没食子酸配位聚合物,铁离子和没食子酸的摩尔比为1:10-10:1。
铁离子与没食子酸的酚羟基或羰基形成配位键,若铁离子和没食子酸的摩尔比过小,配位键则不能形成;若摩尔比过大,配位键的稳定性会受到破坏,因此,铁离子和没食子酸的摩尔比为1:10-10:1,优选为1:2-2:1。
上述铁-没食子酸配位聚合物的制备方法,是将铁离子溶液滴入没食子酸溶液中,搅拌反应后再加入沉淀剂进行沉淀,去除沉淀剂,干燥,得到铁-没食子酸配位聚合物。
进一步地,所述铁离子溶液和没食子酸溶液是采用强极性溶剂配制;所述沉淀剂为中等极性、弱极性或非极性溶剂。
进一步地,所述铁离子溶液是采用三价铁盐配制。三价铁盐可以是氯化铁、硫酸铁或硝酸铁等水溶性三价铁盐。
进一步地,所述铁离子溶液中铁离子的浓度为20-100 mg/mL,没食子酸溶液中没食子酸的浓度为10-60 mg/mL。
进一步地,所述搅拌反应的条件为20-30℃、10-120min。
用于诊疗一体化的铁-没食子酸配位聚合物纳米制剂,包括铁-没食子酸配位聚合物和纳米载体,所述纳米载体可以是聚合物胶束、脂质体或纳米复合物。
由于铁-没食子酸配位聚合物是油溶性的,所以纳米载体应具备两亲性,比如聚合物胶束、脂质体或纳米复合物等,亲油端可有效包载铁-没食子酸配位聚合物,实现靶向递送。为了实现较好的载药效果,纳米制剂的载药量为0.5%-20%,优选为1%-5%。
进一步地,所述聚合物胶束采用的两亲性嵌段共聚物,亲水链选自聚乙二醇、聚乙烯醚、聚乙烯醇、聚乙烯亚胺或聚乙烯吡咯烷酮中的一种或几种的混合物,疏水链选自聚乳酸乙醇酸、聚环氧丙烷、聚苯乙烯、聚硅氧烷、聚丁二烯、聚甲基丙烯酸甲酯、聚丙烯酸甲酯或聚丙烯酸丁酯中的一种或几种的混合物。
进一步地,所述脂质体采用的磷脂材料选自大豆磷脂、蛋黄卵磷脂、氢化大豆卵磷脂、DPPC-PEG化磷脂或合成磷脂中的一种或几种的混合物。
进一步地,所述纳米复合物采用的复合材料为修饰有脂溶性小分子的亲水性高分子材料,所述脂溶性小分子选自胆固醇、甘油、小分子脂肪酸、胆酸、C8-C18长链烷烃或疏水性药物,亲水性高分子材料选自糊精、透明质酸、硫酸软骨素、葡聚糖、直链淀粉、支链淀粉、果胶质、海藻酸或壳聚糖。
用于诊疗一体化的铁-没食子酸配位聚合物纳米粒,包括铁-没食子酸配位聚合物和包覆铁-没食子酸配位聚合物的两亲性嵌段共聚物,两者的质量比为1:10-1:50;所述两亲性嵌段共聚物为单甲氧基聚乙二醇聚乳酸乙醇酸二嵌段共聚物。
进一步地,所述单甲氧基聚乙二醇聚乳酸乙醇酸二嵌段共聚物中,单甲氧基聚乙二醇的分子量为1000~20000 Da,聚乳酸乙醇酸的比例为75:25~50:50。
在本发明中,以简单的反应条件制备了具备磁共振成像、光热治疗及化疗等多重功能的铁-没食子酸配位聚合物,Fe3+与没食子酸配位,使配位聚合物产生基于Fe3+的T1成像效果,可以准确获得肿瘤空间位置及大小信息;配位聚合物在近红外区有较高吸收满足光热治疗材料光吸收性质的基本要求;并且,该配位聚合物具有明显的酸敏感释放特性,释放的没食子酸可诱导多种肿瘤细胞凋亡,与光热治疗相结合,可有效杀死肿瘤细胞。
将该配位聚合物包载于聚合物胶束内形成纳米粒,明显提高肿瘤内滞留和蓄积,增强肿瘤部位磁共振成像信号,显著提高治疗效果。
附图说明
图1为实施例1中铁-没食子酸配位聚合物的制备示意图。
图2为实施例1中铁-没食子酸配位聚合物的X射线光电子能谱分析图。
图3为实施例1中铁-没食子酸配位聚合物的傅氏转换红外线光谱分析图。
图4为实施例1中铁-没食子酸配位聚合物的粉末X射线衍射分析图。
图5为实施例2中铁-没食子酸配位聚合物纳米粒的粒径分布及透射电镜图。
图6为实施例2中铁-没食子酸配位聚合物纳米粒的体外升温曲线图。
图7为实施例2中铁-没食子酸配位聚合物纳米粒的体外磁共振成像图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案做进一步说明。
本发明提供了一种具有磁共振成像功能及光热和化疗联合治疗的诊疗一体化铁-没食子酸配位聚合物,并将其应用于纳米制剂中,以同时实现对肿瘤的诊断和治疗。
在本发明的一个实施例中,三价铁盐选用六水合氯化铁,包覆材料选用单甲氧基聚乙二醇聚乳酸乙醇酸二嵌段共聚物(mPEG-PLGA,单甲氧基聚乙二醇的分子量为2000 Da,聚乳酸乙醇酸的比例为50:50),将铁-没食子酸形成配位聚合物包载于mPEG-PLGA胶束内,从而制备出具有磁共振成像功能和联合治疗效果的诊疗一体化配位聚合物纳米粒。
实施例1
铁-没食子酸形成配位聚合物的合成
步骤1,取0.3 mmol六水合氯化铁和0.3 mmol 没食子酸分别加入2毫升离心管中,分别加入1.5 mL乙醇得到六水合氯化铁乙醇溶液和没食子酸乙醇溶液。
步骤2,将步骤1获得的六水合氯化铁乙醇溶液滴入装有没食子酸乙醇溶液的100mL圆底烧瓶中,室温下磁力搅拌反应20分钟,形成六水合氯化铁及没食子酸混合溶液。
步骤3,将步骤2获得的六水合氯化铁及没食子酸混合溶液,在剧烈搅拌下加入30mL乙酸乙酯,室温下继续磁力搅拌12小时。
步骤4,将步骤3获得的混合溶剂用旋转蒸发仪除去有机溶剂,乙酸乙酯洗涤两遍,然后在真空干燥箱中干燥过夜,得到紫黑色固体即铁-没食子酸配位聚合物。
图1为铁-没食子酸配位聚合物的制备及结构的示意图。
图2为铁-没食子酸配位聚合物的X射线光电子能谱分析图。
图3为铁-没食子酸配位聚合物的傅氏转换红外线光谱分析图。
图4为铁-没食子酸配位聚合物的粉末X射线衍射分析图。结果证明本实例制备合成的产物为铁-没食子酸配位聚合物。
实施例2
铁-没食子酸形成配位聚合物纳米粒的制备
步骤1,将6 mg实施例1获得的铁-没食子酸配位聚合物溶解于2 mL N,N-二甲基甲酰胺中,超声溶解,得到铁-没食子酸配位聚合物溶液。
步骤2,将120 mg mPEG-PLGA加入到步骤1获得的铁-没食子酸配位聚合物溶液中,超声溶解,得到铁-没食子酸配位聚合物以及mPEG-PLGA的混合有机溶液。
步骤3,将步骤2获得的铁-没食子酸配位聚合物以及mPEG-PLGA的混合有机溶液逐滴加入4 mL水溶液中,并在滴加的过程中不断搅拌,全部滴完后再搅拌15~30分钟,制备得到铁-没食子酸配位聚合物纳米粒粗品溶液。
步骤4,将步骤3获得的铁-没食子酸配位聚合物纳米粒溶液用分子量为3500的透析袋透析5小时,每隔2小时换一次去离子水,除去多余的配位聚合物,得到铁-没食子酸配位聚合物纳米粒溶液。
图5为铁-没食子酸配位聚合物纳米粒于动态光散射仪测定粒径分布及透射电镜下观察粒子的形貌特征。由图中可看出所述制备的聚合物纳米粒是平均粒径为110纳米的球形粒子。
图6为铁-没食子酸配位聚合物纳米粒的体外升温曲线图。以Fe3+浓度计算,配置不同浓度纳米粒溶液,采用808 nm、1.6 W/cm2的激光器照射6 min,每隔10 s对记录一次溶液温度,由图中可看出所述制备的纳米粒在激光为1.6 W/cm2的功率下可迅速升温,具有良好的光照升温效果。
图7为铁-没食子酸配位聚合物纳米粒的体外磁共振成像图。将浓度为0.04 mM、0.02 mM、0.01 mM及0.005 mM的Fe-GA@PEG-PLGA溶液置于2.0 mL离心管中(以Fe3+浓度计算),在7.0 T MRI扫描仪上扫描得到T1磁共振图像,通过1/T1与Fe3+浓度的拟合曲线得到纳米粒弛豫速率r1为10.46 mM-1s-1,具有优异的T1成像效果,可作为高效的T1造影剂。
Claims (10)
1.用于诊疗一体化的铁-没食子酸配位聚合物,其中,铁离子和没食子酸的摩尔比为1:10-10:1。
2.权利要求1所述的铁-没食子酸配位聚合物的制备方法,其特征在于:将铁离子溶液滴入没食子酸溶液中,搅拌反应后再加入沉淀剂进行沉淀,去除沉淀剂,干燥,即可得到铁-没食子酸配位聚合物。
3.根据权利要求2所述的铁-没食子酸配位聚合物的制备方法,其特征在于:所述铁离子溶液和没食子酸溶液是采用强极性溶剂配制,所述沉淀剂为中等极性、弱极性或非极性溶剂;所述铁离子溶液是采用三价铁盐配制。
4.根据权利要求2所述的铁-没食子酸配位聚合物的制备方法,其特征在于:所述铁离子溶液中铁离子的浓度为20-100 mg/mL,没食子酸溶液中没食子酸的浓度为10-60 mg/mL。
5.根据权利要求2所述的铁-没食子酸配位聚合物的制备方法,其特征在于:所述搅拌反应的条件为20-30℃、10-120min。
6.用于诊疗一体化的铁-没食子酸配位聚合物纳米制剂,其特征在于:包括铁-没食子酸配位聚合物和纳米载体,所述纳米载体可以是聚合物胶束、脂质体、纳米复合物。
7.根据权利要求6所述的纳米制剂,其特征在于:所述聚合物胶束采用的两亲性嵌段共聚物,亲水链选自聚乙二醇、聚乙烯醚、聚乙烯醇、聚乙烯亚胺或聚乙烯吡咯烷酮中的一种或几种的混合物,疏水链选自聚乳酸乙醇酸、聚环氧丙烷、聚苯乙烯、聚硅氧烷、聚丁二烯、聚甲基丙烯酸甲酯、聚丙烯酸甲酯或聚丙烯酸丁酯中的一种或几种的混合物。
8.根据权利要求6所述的纳米制剂,其特征在于:所述脂质体采用的磷脂材料选自大豆磷脂、蛋黄卵磷脂、氢化大豆卵磷脂、DPPC-PEG化磷脂或合成磷脂中的一种或几种的混合物。
9.根据权利要求6所述的纳米制剂,其特征在于:所述纳米复合物采用的复合材料为修饰有脂溶性小分子的亲水性高分子材料,所述脂溶性小分子选自胆固醇、甘油、小分子脂肪酸、胆酸、C8-C18长链烷烃或疏水性药物,亲水性高分子材料选自糊精、透明质酸、硫酸软骨素、葡聚糖、直链淀粉、支链淀粉、果胶质、海藻酸或壳聚糖。
10.用于诊疗一体化的铁-没食子酸配位聚合物纳米粒,包括铁-没食子酸配位聚合物和包覆铁-没食子酸配位聚合物的两亲性嵌段共聚物,两者的质量比为1:10-1:50;所述两亲性嵌段共聚物为单甲氧基聚乙二醇聚乳酸乙醇酸二嵌段共聚物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811505427.1A CN109675064B (zh) | 2018-12-10 | 2018-12-10 | 用于诊疗一体化的铁-没食子酸配位聚合物及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811505427.1A CN109675064B (zh) | 2018-12-10 | 2018-12-10 | 用于诊疗一体化的铁-没食子酸配位聚合物及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109675064A true CN109675064A (zh) | 2019-04-26 |
CN109675064B CN109675064B (zh) | 2021-09-28 |
Family
ID=66187233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811505427.1A Active CN109675064B (zh) | 2018-12-10 | 2018-12-10 | 用于诊疗一体化的铁-没食子酸配位聚合物及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109675064B (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110251457A (zh) * | 2019-08-14 | 2019-09-20 | 合肥工业大学 | 一种具有强粘附与止血功能的抗肿瘤缓释植入剂及其制备方法 |
CN110575545A (zh) * | 2019-08-12 | 2019-12-17 | 湖北大学 | 具有电荷翻转能力的氧化应激性药物系统及其制备方法 |
CN111407746A (zh) * | 2020-04-02 | 2020-07-14 | 山东大学齐鲁医院 | GA/Fe2+纳米颗粒、其复合纳米颗粒、制备和应用 |
CN112773731A (zh) * | 2021-01-09 | 2021-05-11 | 中新国际联合研究院 | 一种纳米包裹技术的基质及其制备方法 |
CN113289014A (zh) * | 2021-05-10 | 2021-08-24 | 上海交通大学 | 超小粒径的两性离子聚肽/没食子酸/铁配位纳米粒子及其制备方法与应用 |
CN115282275A (zh) * | 2022-08-04 | 2022-11-04 | 东北农业大学 | 治疗mrsa感染温敏脂质体及其制备方法 |
CN115594841A (zh) * | 2022-10-09 | 2023-01-13 | 四川大学(Cn) | 没食子酸-聚赖氨酸螯合剂及其制备方法与应用 |
CN116570733B (zh) * | 2023-07-13 | 2023-10-13 | 四川大学华西医院 | 一种具有多功能的核壳壳结构药物胶束及其制备方法 |
EP4058190A4 (en) * | 2019-11-14 | 2023-12-13 | Board of Regents, The University of Texas System | COMPOSITIONS AND METHODS FOR THE CONTROLLED DELIVERY AND PROTECTION OF THERAPEUTICS |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104815341A (zh) * | 2015-03-27 | 2015-08-05 | 浙江大学 | 靶向聚合物胶束磁性纳米粒及制备和应用 |
US20150297720A1 (en) * | 2012-01-26 | 2015-10-22 | Sbi Pharmaceuticals Co., Ltd. | Photodynamic diagnostic agent and photobleaching inhibitor |
CN105288624A (zh) * | 2015-12-02 | 2016-02-03 | 中国科学院长春应用化学研究所 | 一种同时用于核磁成像和光热治疗的配位聚合物纳米点及其制备方法 |
WO2017203437A1 (en) * | 2016-05-23 | 2017-11-30 | Ineb - Instituto Nacional De Engenharia Biomédica | Biodegradable dendritic structure, methods and uses thereof |
CN107441513A (zh) * | 2017-09-30 | 2017-12-08 | 中国科学院长春应用化学研究所 | 一种基于多酚的配位聚合物纳米颗粒及其制备方法 |
KR20180080785A (ko) * | 2017-01-05 | 2018-07-13 | 성균관대학교산학협력단 | 금 나노클러스터 함유 양친성 고분자 나노조립체 기반 광열 및 광역학 치료용 약물 전달체 및 이의 제조 방법 |
-
2018
- 2018-12-10 CN CN201811505427.1A patent/CN109675064B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150297720A1 (en) * | 2012-01-26 | 2015-10-22 | Sbi Pharmaceuticals Co., Ltd. | Photodynamic diagnostic agent and photobleaching inhibitor |
CN104815341A (zh) * | 2015-03-27 | 2015-08-05 | 浙江大学 | 靶向聚合物胶束磁性纳米粒及制备和应用 |
CN105288624A (zh) * | 2015-12-02 | 2016-02-03 | 中国科学院长春应用化学研究所 | 一种同时用于核磁成像和光热治疗的配位聚合物纳米点及其制备方法 |
WO2017203437A1 (en) * | 2016-05-23 | 2017-11-30 | Ineb - Instituto Nacional De Engenharia Biomédica | Biodegradable dendritic structure, methods and uses thereof |
KR20180080785A (ko) * | 2017-01-05 | 2018-07-13 | 성균관대학교산학협력단 | 금 나노클러스터 함유 양친성 고분자 나노조립체 기반 광열 및 광역학 치료용 약물 전달체 및 이의 제조 방법 |
CN107441513A (zh) * | 2017-09-30 | 2017-12-08 | 中国科学院长春应用化学研究所 | 一种基于多酚的配位聚合物纳米颗粒及其制备方法 |
Non-Patent Citations (2)
Title |
---|
LEI CHEN ET AL: "Biodegradable Nanoagents with Short Biological Half-Life for SPECT/PAI/MRI Multimodality Imaging and PTT Therapy of Tumors", 《SMALL》 * |
邢磊: "配位聚合物纳米颗粒pH响应性药物释放体系", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110575545B (zh) * | 2019-08-12 | 2022-10-14 | 湖北大学 | 具有电荷翻转能力的氧化应激性药物系统及其制备方法 |
CN110575545A (zh) * | 2019-08-12 | 2019-12-17 | 湖北大学 | 具有电荷翻转能力的氧化应激性药物系统及其制备方法 |
CN110251457A (zh) * | 2019-08-14 | 2019-09-20 | 合肥工业大学 | 一种具有强粘附与止血功能的抗肿瘤缓释植入剂及其制备方法 |
EP4058190A4 (en) * | 2019-11-14 | 2023-12-13 | Board of Regents, The University of Texas System | COMPOSITIONS AND METHODS FOR THE CONTROLLED DELIVERY AND PROTECTION OF THERAPEUTICS |
CN111407746A (zh) * | 2020-04-02 | 2020-07-14 | 山东大学齐鲁医院 | GA/Fe2+纳米颗粒、其复合纳米颗粒、制备和应用 |
CN111407746B (zh) * | 2020-04-02 | 2022-04-22 | 山东大学齐鲁医院 | GA/Fe2+纳米颗粒、其复合纳米颗粒、制备和应用 |
CN112773731A (zh) * | 2021-01-09 | 2021-05-11 | 中新国际联合研究院 | 一种纳米包裹技术的基质及其制备方法 |
CN113289014B (zh) * | 2021-05-10 | 2022-05-17 | 上海交通大学 | 超小粒径的两性离子聚肽/没食子酸/铁配位纳米粒子及其制备方法与应用 |
CN113289014A (zh) * | 2021-05-10 | 2021-08-24 | 上海交通大学 | 超小粒径的两性离子聚肽/没食子酸/铁配位纳米粒子及其制备方法与应用 |
CN115282275A (zh) * | 2022-08-04 | 2022-11-04 | 东北农业大学 | 治疗mrsa感染温敏脂质体及其制备方法 |
CN115282275B (zh) * | 2022-08-04 | 2024-01-09 | 东北农业大学 | 治疗mrsa感染温敏脂质体及其制备方法 |
CN115594841A (zh) * | 2022-10-09 | 2023-01-13 | 四川大学(Cn) | 没食子酸-聚赖氨酸螯合剂及其制备方法与应用 |
CN115594841B (zh) * | 2022-10-09 | 2024-06-04 | 四川大学 | 没食子酸-聚赖氨酸螯合剂及其制备方法与应用 |
CN116570733B (zh) * | 2023-07-13 | 2023-10-13 | 四川大学华西医院 | 一种具有多功能的核壳壳结构药物胶束及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109675064B (zh) | 2021-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109675064A (zh) | 用于诊疗一体化的铁-没食子酸配位聚合物及其制备方法和应用 | |
Zhang et al. | Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy | |
Sun et al. | In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy | |
Yang et al. | Two-dimensional magnetic WS2@ Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer | |
Cheng et al. | Polydopamine-coated manganese carbonate nanoparticles for amplified magnetic resonance imaging-guided photothermal therapy | |
Dai et al. | Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation | |
Wu et al. | Gadolinium-chelate functionalized bismuth nanotheranostic agent for in vivo MRI/CT/PAI imaging-guided photothermal cancer therapy | |
Yang et al. | Nanoscale metal–organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy | |
Tian et al. | Poly (acrylic acid) bridged gadolinium metal–organic framework–gold nanoparticle composites as contrast agents for computed tomography and magnetic resonance bimodal imaging | |
Zou et al. | Design and synthesis of a lead sulfide based nanotheranostic agent for computer tomography/magnetic resonance dual-mode-bioimaging-guided photothermal therapy | |
Zeng et al. | pH-responsive Fe (III)-gallic acid nanoparticles for in vivo photoacoustic imaging-guided photothermal therapy | |
Feng et al. | Au/polypyrrole@ Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study | |
Wang et al. | Opportunities and challenges of fluorescent carbon dots in translational optical imaging | |
Liu et al. | Long-circulating Gd2O3: Yb3+, Er3+ up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging | |
Hong et al. | Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs | |
Liu et al. | Photosensitizer loaded PEG-MoS 2–Au hybrids for CT/NIRF imaging-guided stepwise photothermal and photodynamic therapy | |
Ren et al. | Near-infrared fluorescent carbon dots encapsulated liposomes as multifunctional nano-carrier and tracer of the anticancer agent cinobufagin in vivo and in vitro | |
Song et al. | Facile synthesis of gold nanospheres modified by positively charged mesoporous silica, loaded with near-infrared fluorescent dye, for in vivo X-ray computed tomography and fluorescence dual mode imaging | |
Dong et al. | PEGylated GdF3: Fe Nanoparticles as Multimodal T 1/T 2-Weighted MRI and X-ray CT Imaging Contrast Agents | |
KR101074026B1 (ko) | 근적외선 형광체가 결합된 양친성 히알루론산 복합체 나노입자를 포함하는 암 진단용 조영제 | |
Jing et al. | Multifunctional nanoflowers for simultaneous multimodal imaging and high-sensitivity chemo-photothermal treatment | |
Ge et al. | Up-conversion Y2O3: Yb3+, Er3+ hollow spherical drug carrier with improved degradability for cancer treatment | |
Liu et al. | Fluorescence-enhanced covalent organic framework nanosystem for tumor imaging and photothermal therapy | |
Feng et al. | Surfactant-free aqueous synthesis of novel Ba2GdF7: Yb3+, Er3+@ PEG upconversion nanoparticles for in vivo trimodality imaging | |
Li et al. | Polyethylene glycol-modified cobalt sulfide nanosheets for high-performance photothermal conversion and photoacoustic/magnetic resonance imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |