CN109647482A - 一种氮掺杂的磷化钴/纳米碳复合材料及其制备方法和应用 - Google Patents

一种氮掺杂的磷化钴/纳米碳复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN109647482A
CN109647482A CN201910027895.0A CN201910027895A CN109647482A CN 109647482 A CN109647482 A CN 109647482A CN 201910027895 A CN201910027895 A CN 201910027895A CN 109647482 A CN109647482 A CN 109647482A
Authority
CN
China
Prior art keywords
preparation
cobalt
doping
nano
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910027895.0A
Other languages
English (en)
Other versions
CN109647482B (zh
Inventor
孙晓毅
王丛森
李娟�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201910027895.0A priority Critical patent/CN109647482B/zh
Publication of CN109647482A publication Critical patent/CN109647482A/zh
Application granted granted Critical
Publication of CN109647482B publication Critical patent/CN109647482B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于产氢材料领域,具体公开了一种氮掺杂的磷化钴/纳米碳复合材料的制备方法,将磷源、钴源、合成凝胶的单体在聚合助剂下聚合,得到双网络水凝胶;所述的磷源为含有膦酸基团的聚合物、含有膦酸基团的单体化合物中的至少一种;双网络水凝胶经冷冻干燥处理,得到干凝胶;干凝胶在保护性气氛、750‑1000℃下煅烧;将煅烧产物与纳米碳材料复合,即得所述的氮掺杂的磷化钴/纳米碳复合材料。该制备方法简单,原料来源广泛,价格低廉,获得氮掺杂的磷化钴/纳米碳材料具有优异的电催化性能,有望应用于工业生产中。

Description

一种氮掺杂的磷化钴/纳米碳复合材料及其制备方法和应用
技术领域
本发明属于电解水制氢领域,涉及一种氮掺杂的磷化钴,特别涉及氮掺杂的磷化钴/碳纳米材料高效析氢复合材料及其制备方法。
背景技术
氢能是一种可再生的新能源,氢经济将会是一个很有前景的解决环境污染、化石燃料的问题的方案。在目前的能源系统中,氢能凭借其高能量密度和环保性,可以作为一种理想的清洁能源来替代石油的作用,其关键是要能够研发出经济高效的氢气生产工艺。目前,已经进行了的电化学水分解制氢可作为下一代能量转换的研究。虽然,贵金属(如Pt,Ir,Pd)催化剂在析氢反应中表现出来低过电位和低Tafel斜率。但是,贵金属的稀缺性和高成本阻碍了其在全球能源中的普遍使用系统。因此,开发具有良好的催化性能和合理的成本的非贵金属电催化剂是非常必要的。近些年,过渡金属磷化物(TMP)特别是磷化钴由于其高活性和低成本而引起了对催化析氢反应(HER)的强烈兴趣。另一方面,碳纳米材料(石墨烯,碳纳米管等)具有高导电性、高比表面积等特性,也引起了人们广泛的关注。将磷化钴与碳纳米材料进行复合会对电催化性能有极大的提高。Liu等人在碳纳米管上修饰CoP纳米颗粒,CoP/CNT复合材料展现了优异的电催化性能(塔菲尔斜率为56mV dec-1,当电流密度为10mA cm-2,其过电位为122mV。Angew.Chem.Int.Ed.2014,53,6710–6714.)。王等人在氧化石墨烯纳米片上修饰CoP纳米颗粒,CoP/RGO复合材料展现了较好HER性能(塔菲尔斜率为76mVdec-1,当电流密度为10mA cm-2,其过电位为168mV。Electrochimica Acta,2018,284,534-541.)。
发明内容
为解决现有磷化钴/纳米碳复合材料制备领域存在产氢性能不理想,制备过程磷用量大、且容易产生磷化氢有毒气体等技术不足,本发明第一目的在于一种氮掺杂的磷化钴/纳米碳复合材料的制备方法,旨在提升制得的材料的产氢性能、稳定性,不仅如此,还避免制备过程人员与环境危害。
本发明第二目的在于,提供了一种采用所述的制备方法制得的氮掺杂的磷化钴/纳米碳复合材料。
本发明第三目的在于,提供了一种所述的氮掺杂的磷化钴/纳米碳复合材料在用作产氢催化材料中的应用。
一种氮掺杂的磷化钴/纳米碳复合材料的制备方法,包括以下步骤:
步骤(1):将磷源、钴源、合成凝胶的单体在聚合助剂下聚合,得到双网络水凝胶;所述的磷源为含有膦酸基团的聚合物、含有膦酸基团的单体化合物中的至少一种;
步骤(2):双网络水凝胶经冷冻干燥处理,得到干凝胶;
步骤(3):干凝胶在保护性气氛、750-1000℃下煅烧;
步骤(4):将煅烧产物与纳米碳材料复合,即得所述的氮掺杂的磷化钴/纳米碳复合材料。
本发明所述的制备方法,采用修饰有膦酸基团聚合物或者带有膦酸基团的单体化合物作为磷源,借助于膦酸基团对钴源的络合以及在后续聚合形成的凝胶之间互穿交联作用,从而获得修饰有膦酸基团以及络合有钴源的双网络水凝胶,对该双网络水凝胶进行冷冻并在保护气氛下煅烧,可以获得优异产氢性能、稳定性的磷化钴/碳原位复合的煅烧产物,将该煅烧产物进一步和纳米碳材料复合,在进一步改善材料产氢性能的前提下,还显著改善材料的稳定性。
本发明所述的制备方法,巧妙地通过修饰的膦酸基团实现了N/P/Co多元素的原位修饰,将该材料进行煅烧,可以获得更优产氢性能、更稳定的材料。
本发明的技术方案,可以直接采用链段上修饰有膦酸基团的聚合物作为磷源,利用修饰基团良好的亲水性以及钴的络合性,使其和凝胶单体聚合形成的凝胶相互交联、缠绕,获得双网络水凝胶;实现钴源、磷源的在凝胶中的原位键合修饰。此外,本发明技术,也可采用带有膦酸基团的单体化合物,通过该单体中的膦酸基团对钴源的络合以及后续单体聚合物相互作用,从而制得原位修饰有钴源、磷源的凝胶。
所述的可聚合基团的有机膦酸化合物的结构式为A为可聚合的基团。优选地,所述的A为乙烯基、丙烯基中的至少一种;优选为乙烯基。
所述的含有膦酸基团的聚合物优选为链段上修饰有膦酸基团的水溶性聚合物。本发明人研究意外发现,采用含有膦酸基团的聚合物作为磷源,可以进一步改善制得的材料形貌,提升材料的稳定性、产氢性能。
进一步优选,所述的磷源为聚乙烯基膦酸。
所述的聚乙烯基膦酸可由乙烯基膦酸采用现有方法聚合得到,也可采用现有商用产品。
合成凝胶的单体可为理论上可以聚合形成水凝胶的任意单体,优选为含有N的单体;进一步优选为丙烯酰胺、N,N-二甲基丙烯酰胺、甲基丙烯酸二甲氨基乙酯、N-异丙基丙烯酰胺中的至少一种。
作为优选,合成凝胶的单体与磷源的质量比例为0.5~2。
作为优选,聚合助剂包括交联剂、引发剂和还原剂。
其中,交联剂为N,N-亚甲基双丙烯酰胺;用量为单体的摩尔数的0.02%~2%;
引发剂为过硫酸铵、过硫酸钾中的至少一种;用量为单体质量的0.02%~5%;
所述还原剂为N,N,N,N,-四甲基乙二胺;用量为引发剂质量的10%~85%。
所述的钴源为Co2+的水溶性盐;例如为Co2+的氯化盐、硝酸盐等;进一步优选为六水合氯化钴。
本发明发现,除创新地通过将磷和钴原位修饰的技术思路来改善材料的产氢、稳定等性能外,进一步控制制备过程中的P/Co的摩尔比,可以进一步改善材料的性能。
磷源、钴源中P/Co的摩尔比为8~0.25:1;优选为2-0.5:1。
步骤(1)聚合反应温度为60-80℃。
本发明中,通过化学交联以及金属离子配位作用,制得所述的双网络的水凝胶。将该双网络水凝胶进行冷冻干燥处理,随后再进行煅烧处理,即可获得所述的N掺杂的磷化钴与凝胶煅烧碳原位复合物(煅烧产物)。煅烧产物中,所述的磷化钴由络合的有机膦与钴源还原得到,磷化钴为CoP、Co2P中的至少一种。凝胶煅烧碳为石墨。
煅烧过程在保护性气氛下进行。所述的保护性气氛例如为氮气或者惰性气体气氛。
研究发现,控制煅烧温度,有助于进一步提升制得的材料的产氢、稳定性等性能。温度低于本发明要求的下限取值或者高于上述的上限取值,均一定程度影响材料的性能。
作为优选,煅烧温度为800~900℃。在优选的温度范围下,有助于进一步提升制得的材料的性能。
作为优选,煅烧时间为0.5-6小时。
本发明通过所述的制备方法,创新地将磷和钴原位修饰在凝胶骨架上,煅烧得到的产物为氮掺杂的磷化钴/碳原位复合材料,该材料具有优异的产氢以及稳定性等性能。将该煅烧产物进一步与纳米碳材料复合,增加了复合材料的接触面积,提高了复合材料的导电性,暴露出更多的活性位点,提高了催化活性。在改善产氢性能的前提下,还可显著改善材料的稳定性。
作为优选,纳米碳材料为碳纳米管、石墨烯基材料中的至少一种。
作为优选,纳米碳材料与煅烧产物的质量比为10~40%。
本发明一种优选的氮掺杂的磷化钴/纳米碳材料高效析氢复合材料及其制备方法,其包括以下步骤:
(1)称取一定质量的聚乙烯基膦酸(PVAP)溶解在去离子水中,一定量的六水合氯化钴,获得混合溶液A;所述的PVAP与六水合氯化钴的P/Co元素摩尔比可以为8-0.25,优选为2-0.5;
(2)向溶液A中分别加入丙烯酰胺单体、交联剂N,N-亚甲基双丙烯酰胺、引发剂过硫酸铵以及还原剂N,N,N,N,-四甲基乙二胺,搅拌至其完全溶解,并加热反应一段时间,得到PVAP-Co2+/PAAm双网络水凝胶;
(3)将PVAP-Co2+/PAAm双网络水凝胶在冷冻干燥机中冷冻干燥得到干凝胶;优选的冷冻干燥时间为12-48小时,进一步优选为24小时;
(4)将干凝胶置于管式炉中,在800-900℃,优选为900℃下煅烧0.5-6小时,进一步优选为2小时,最终可得到氮掺杂的磷化钴,再将获得样品分别用去离子水和乙醇洗涤,并进行真空干燥;
(6)将氮掺杂的磷化钴与碳纳米材料混合,加入一定量的乙醇作为分散剂,超声5-120分钟,优选为60分钟,过滤、烘干,即可获得氮掺杂的磷化钴/碳纳米材料。
本发明还提供了一种采用所述的制备方法制得的氮掺杂的磷化钴/纳米碳复合材料,为氮掺杂的磷化钴/C复合物(煅烧产物)与纳米碳材料的复合材料。
本发明所述的复合材料,N含量为1~5atm%;磷化钴为CoP、Co2P中的至少一种,含量为40~80wt.%。
本发明还提供了一种所述的氮掺杂的磷化钴/纳米碳复合材料的应用,作为析氢材料。
相对现有技术,本发明的技术方案带来的有益效果:
本发明所用金属在地壳中含量高,来源丰富,价格低廉。
本发明所用磷源安全稳定,价格低廉。
本发明的过渡金属磷化物制备方法是由原位络合有Co并原位键合有磷的双网络水凝胶煅烧的。该水凝胶制备简单并具有三维网络结构,经过冷冻干燥和煅烧之后可获得高比表面积、高性能的原位掺氮磷化钴碳复合材料,将该材料在和纳米碳材料复合,在进一步提升产氢性能下,还进一步提升稳定性。
本发明的氮掺杂的磷化钴/碳纳米材料复合材料原料成本低、制备过程简单,安全无毒,有利于大规模生产。
附图说明
【图1】为本发明氮掺杂的磷化钴以及氮掺杂的磷化钴/碳纳米管的XRD图。
【图2】为本发明氮掺杂的CoP的EDS图。
【图3】为本发明氮掺杂的磷化钴以及氮掺杂的磷化钴/碳纳米管复合材料的极化曲线图。
【图4】为本发明氮掺杂的磷化钴以及氮掺杂的磷化钴/碳纳米管的塔菲尔图。
【图5】为本发明氮掺杂的CoP以及氮掺杂的CoP/碳纳米管时间-电流密度曲线图。
具体实施方式
以下实施例旨在说明本发明内容,而不是对本发明权利要求保护范围的进一步限定。
实施例1
步骤(1):聚乙烯基膦酸的合成:根据Millaruelo等人报道的方法合成聚乙烯基膦酸。称取5g乙烯基酸单体和0.15g偶氮二异丁腈置于100ml圆底烧瓶中,再向烧瓶中加入28ml乙酸乙酯作为溶剂,盖上橡胶塞,将体系迅速至于液氮当中,将反应的体系在液氮冷冻的条件下抽真空,升温至常温充干燥氮气,反复操作3~5之后,将反应体系升温至60℃,反应6h。反应结束后,旋干反应溶剂,再加入适量的水溶解样品,再放入水中透析,每隔2h换一次水,透析两天,并冷冻干燥,可获得聚乙烯基膦酸(白色固体)。
步骤(2):水凝胶的制备:
称取0.5g聚乙烯基膦酸,溶于5ml水中,再加入0.55g六水合氯化钴(P/Co比为2:1),0.5g丙烯酰胺单体、7mg交联剂N,N-亚甲基双丙烯酰胺、0.02g引发剂过硫酸铵、20μl还原剂N,N,N,N,-四甲基乙二胺,搅拌至其完全溶解,并于60℃反应2h,得到PVAP-Co2+/PAAm双网络水凝胶。
步骤(3):样品的煅烧:
将步骤(2)中的样品进行冷冻干燥,再依次置于管式炉中,在流动的氩气氛围下于900℃煅烧2小时。反应结束时,将获得的样品依次用纯水和乙醇洗涤三次并于60℃下真空干燥24小时,得到N掺杂CoP/C原位复合产物。获得的样品的XRD谱图如附图1所示,通过与标准图谱的对比,表明我们成功合成了的CoP。CoP的EDS谱图如附图2所以,表明合成的CoP为氮掺杂的。
步骤(4):碳复合:
分别称取200mg步骤(3)中的煅烧产物和20mg碳纳米管(CNTs)盛于35ml离心管中,向其加入20ml乙醇并超声1小时。过滤,于60℃真空干燥24h。获得的氮掺杂磷化钴/碳纳米管复合材料,标记为CoP/CNTs,其XRD图谱如附图1所示,其中碳的结晶峰明显增强。
电催化析氢性能测试:
室温下,0.5M H2SO4作为电解质,在三电极系统中进行电化学测试。Ag/AgCl(4MKCl溶液)电极作为参比电极,玻璃碳和Pt电极用作工作电极和对电极。通常,通过超声处理1小时,将5mg催化剂和50μl Nafion溶液加入到950μl1:4v/v乙醇/水中以获得均匀油墨。然后将13μl分散体加载到直径为5mm的玻璃碳电极上(负载~0.3312mg/cm2)。以5mV s-1的扫描速率获得线性扫描伏安法(LSV)曲线。在过电位为100mV获得时间-电流密度曲线。通过能斯特方程(在0.5M H2SO4中,ERHE=EAg/AgCl+0.0592×pH+0.1976)将电位校准至RHE)。如附图3和附图4所示,碳纳米管不具有催化性能,而CoP(指本案例步骤(3)制得的煅烧产物)和CoP/CNTs(步骤(4)的煅烧产物和碳纳米管的复合材料)展现了较好的催化性能。当电流密度为10mAcm-2,CoP和CoP/CNTs的过电位分别为108mV、142mV,塔菲尔斜率分别为89mV dec-1、85mV dec-1。如附图5所示,CoP/CNTs相较于CoP展现了更好的稳定性。经过22h的电解,CoP的电流密度衰减了3mAcm-2,而CoP/CNTs的电流密度几乎不衰减。
实施例2
和实施例1相比,区别仅在于,步骤(2)中,六水合氯化钴用量为1.1g(P/Co摩尔比为1:1),经步骤(3)煅烧,获得磷化钴/碳原位复合材料,无步骤(4)碳复合。该案例得到的产物的XRD谱图如附图1所示,通过与标准图谱的对比,表明成功制备了Co2P/CoP。当电流密度为10mAcm-2,该材料过电位为151mV,塔菲尔斜率为109mV dec-1
实施例3
和实施例1相比,区别仅在于,步骤(2)中,六水合氯化钴用量为2.2g(P/Co摩尔比为1:2),经步骤(3)煅烧,获得磷化钴/碳原位复合材料,无步骤(4)碳复合。该案例得到的产物的XRD谱图如附图1所示,通过与标准图谱的对比,表明成功制备了Co2P。当电流密度为10mAcm-2,该材料过电位为220mV,塔菲尔斜率为115mV dec-1

Claims (10)

1.一种氮掺杂的磷化钴/纳米碳复合材料的制备方法,其特征在于,包括以下步骤:
步骤(1):将磷源、钴源、合成凝胶的单体在聚合助剂下聚合,得到双网络水凝胶;所述的磷源为含有膦酸基团的聚合物、含有膦酸基团的单体化合物中的至少一种;
步骤(2):双网络水凝胶经冷冻干燥处理,得到干凝胶;
步骤(3):干凝胶在保护性气氛、750-1000℃下煅烧;
步骤(4):将煅烧产物与纳米碳材料复合,即得所述的氮掺杂的磷化钴/纳米碳复合材料。
2.如权利要求1所述的制备方法,其特征在于,所述的磷源为聚乙烯基膦酸。
3.如权利要求1所述的制备方法,其特征在于,所述的钴源为Co2+的水溶性盐。
4.如权利要求1所述的制备方法,其特征在于,磷源、钴源中P/Co的摩尔比为8-0.25:1。
5.如权利要求1所述的制备方法,其特征在于,合成凝胶的单体为丙烯酰胺、N,N-二甲基丙烯酰胺、甲基丙烯酸二甲氨基乙酯、N-异丙基丙烯酰胺中的至少一种。
6.如权利要求1所述的制备方法,其特征在于,合成凝胶的单体与磷源的质量比例为0.5~2。
7.如权利要求1所述的制备方法,其特征在于,聚合助剂包括交联剂、引发剂和还原剂;
其中,交联剂为N,N-亚甲基双丙烯酰胺;用量为单体的摩尔数的0.02%~2%;
引发剂为过硫酸铵、过硫酸钾中的至少一种;用量为单体质量的0.02%~5%;
所述还原剂为N,N,N,N,-四甲基乙二胺;用量为引发剂质量的10%~85%。
8.如权利要求1所述的制备方法,其特征在于,纳米碳材料为碳纳米管、石墨烯基材料中的至少一种;纳米碳材料与煅烧产物的质量比为10%~40%。
9.一种权利要求1~8任一项所述的制备方法制得的氮掺杂的磷化钴/纳米碳复合材料,其特征在于,N含量为1~5atm%;磷化钴为CoP、Co2P中的至少一种,含量为40~80wt.%。
10.一种权利要求9所述的氮掺杂的磷化钴/纳米碳复合材料的应用,其特征在于,作为析氢材料。
CN201910027895.0A 2019-01-11 2019-01-11 一种氮掺杂的磷化钴/纳米碳复合材料及其制备方法和应用 Expired - Fee Related CN109647482B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910027895.0A CN109647482B (zh) 2019-01-11 2019-01-11 一种氮掺杂的磷化钴/纳米碳复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910027895.0A CN109647482B (zh) 2019-01-11 2019-01-11 一种氮掺杂的磷化钴/纳米碳复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109647482A true CN109647482A (zh) 2019-04-19
CN109647482B CN109647482B (zh) 2020-03-31

Family

ID=66119887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910027895.0A Expired - Fee Related CN109647482B (zh) 2019-01-11 2019-01-11 一种氮掺杂的磷化钴/纳米碳复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109647482B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327949A (zh) * 2019-06-19 2019-10-15 西安交通大学 一种碳负载铑/磷化铑纳米复合材料及其制备方法和应用
CN111250119A (zh) * 2020-01-22 2020-06-09 北京大学 一种导电基材表面生长CoPxOy纳米阵列复合材料及其制备和应用
CN112915963A (zh) * 2019-12-06 2021-06-08 四川大学 一种以酵母核酸为磷源和碳源制备磷化钴/生物碳复合材料的方法
CN113134373A (zh) * 2021-04-01 2021-07-20 大连海事大学 一种用于水中磺胺类抗生素高级氧化处理的复合催化剂及其制备方法
CN113258083A (zh) * 2021-03-24 2021-08-13 宁波工程学院 一种CoXP纳米颗粒嵌入氮和磷掺杂碳的双功能催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028427A (zh) * 2011-09-29 2013-04-10 中国石油化工股份有限公司 大孔径炭载磷化物及其制备方法
CN104941674A (zh) * 2015-06-18 2015-09-30 西南大学 一种活性炭上负载磷化钴的催化剂及其制备方法和应用
CN105214699A (zh) * 2015-09-30 2016-01-06 南开大学 一种多孔掺杂碳高分散负载磷化钴材料的制备方法及在电催化析氢中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028427A (zh) * 2011-09-29 2013-04-10 中国石油化工股份有限公司 大孔径炭载磷化物及其制备方法
CN104941674A (zh) * 2015-06-18 2015-09-30 西南大学 一种活性炭上负载磷化钴的催化剂及其制备方法和应用
CN105214699A (zh) * 2015-09-30 2016-01-06 南开大学 一种多孔掺杂碳高分散负载磷化钴材料的制备方法及在电催化析氢中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石晓岗 等: "磷化钴/碳纳米管纳米复合电极材料的电催化制氢性能研究", 《武汉科技大学学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327949A (zh) * 2019-06-19 2019-10-15 西安交通大学 一种碳负载铑/磷化铑纳米复合材料及其制备方法和应用
CN112915963A (zh) * 2019-12-06 2021-06-08 四川大学 一种以酵母核酸为磷源和碳源制备磷化钴/生物碳复合材料的方法
CN111250119A (zh) * 2020-01-22 2020-06-09 北京大学 一种导电基材表面生长CoPxOy纳米阵列复合材料及其制备和应用
CN113258083A (zh) * 2021-03-24 2021-08-13 宁波工程学院 一种CoXP纳米颗粒嵌入氮和磷掺杂碳的双功能催化剂及其制备方法和应用
CN113258083B (zh) * 2021-03-24 2022-09-06 宁波工程学院 一种CoXP纳米颗粒嵌入氮和磷掺杂碳的双功能催化剂及其制备方法和应用
CN113134373A (zh) * 2021-04-01 2021-07-20 大连海事大学 一种用于水中磺胺类抗生素高级氧化处理的复合催化剂及其制备方法
CN113134373B (zh) * 2021-04-01 2023-04-25 大连海事大学 一种用于水中磺胺类抗生素高级氧化处理的复合催化剂及其制备方法

Also Published As

Publication number Publication date
CN109647482B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
CN109647482A (zh) 一种氮掺杂的磷化钴/纳米碳复合材料及其制备方法和应用
Wu et al. A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries
Song et al. Zn3 [Fe (CN) 6] 2 derived Fe/Fe5C2@ N-doped carbon as a highly effective oxygen reduction reaction catalyst for zinc-air battery
Cruz-Navarro et al. Novel applications of metal-organic frameworks (MOFs) as redox-active materials for elaboration of carbon-based electrodes with electroanalytical uses
Cheng et al. Boosting alkaline hydrogen evolution and Zn–H2O cell induced by interfacial electron transfer
Han et al. High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors
Fang et al. Flower-like MoS2 decorated with Cu2O nanoparticles for non-enzymatic amperometric sensing of glucose
Jiang et al. Self-assembly synthesis of cobalt-and nitrogen-coembedded trumpet flower-like porous carbons for catalytic oxygen reduction in alkaline and acidic media
Wang et al. Inorganic–organic hybrid polyoxometalate nanoparticle modified wax impregnated graphite electrode: preparation, electrochemistry and electrocatalysis
Liang et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes
CN109590002B (zh) 一种过渡金属磷化物析氢复合材料及其制备方法和应用
Long et al. MOF-derived 3D leaf-like CuCo oxide arrays as an efficient catalyst for highly sensitive glucose detection
Feng et al. Comparative study of carbon fiber structure on the electrocatalytic performance of ZIF-67
CN105572196B (zh) 镍钴合金/聚吡咯/还原石墨烯纳米复合材料及其应用
Li et al. Three-dimensional hierarchical graphitic carbon encapsulated CoNi alloy/N-doped CNTs/carbon nanofibers as an efficient multifunctional electrocatalyst for high-performance microbial fuel cells
Sun et al. Fe/IRMOF-3 derived porous carbons as non-precious metal electrocatalysts with high activity and stability towards oxygen reduction reaction
Xie et al. Hollow cobalt phosphide with N-doped carbon skeleton as bifunctional electrocatalyst for overall water splitting
Du et al. Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H 2 O 2 detection
CN113718281B (zh) 一种石墨烯量子点/MXene纳米片二维复合材料及其制备方法和应用
CN107829107A (zh) 一种石墨烯/碳纳米管负载单分散金属原子复合催化剂及其制备方法和应用
Li et al. 3D honeycomb nanostructure comprised of mesoporous N-doped carbon nanosheets encapsulating isolated cobalt and vanadium nitride nanoparticles as a highly efficient electrocatalyst for the oxygen reduction reaction
Paudel et al. Multi-interfacial dendritic engineering facilitating congruous intrinsic activity of oxide-carbide/MOF nanostructured multimodal electrocatalyst for hydrogen and oxygen electrocatalysis
Qian et al. Template synthesis of two-dimensional ternary nickel-cobalt-nitrogen co-doped porous carbon film: Promoting the conductivity and more active sites for oxygen reduction
Kaedi et al. Ethanol electrooxidation on high-performance mesoporous ZnFe 2 O 4-supported palladium nanoparticles
Zhang et al. Facile Synthesis of Mesoporous and Thin-Walled Ni–Co Sulfide Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200331

Termination date: 20210111

CF01 Termination of patent right due to non-payment of annual fee