CN109647340B - 一种3R-MoS2/碳布复合材料的制备方法及其应用 - Google Patents

一种3R-MoS2/碳布复合材料的制备方法及其应用 Download PDF

Info

Publication number
CN109647340B
CN109647340B CN201910080289.5A CN201910080289A CN109647340B CN 109647340 B CN109647340 B CN 109647340B CN 201910080289 A CN201910080289 A CN 201910080289A CN 109647340 B CN109647340 B CN 109647340B
Authority
CN
China
Prior art keywords
carbon cloth
mos
composite material
cloth composite
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910080289.5A
Other languages
English (en)
Other versions
CN109647340A (zh
Inventor
柳玉辉
张爽
刘云海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Institute of Technology
Original Assignee
East China Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Institute of Technology filed Critical East China Institute of Technology
Priority to CN201910080289.5A priority Critical patent/CN109647340B/zh
Publication of CN109647340A publication Critical patent/CN109647340A/zh
Application granted granted Critical
Publication of CN109647340B publication Critical patent/CN109647340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0218Compounds of Cr, Mo, W
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0262Compounds of O, S, Se, Te
    • B01J20/0266Compounds of S
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种3R‑MoS2/碳布复合材料的制备方法及其应用,它是要解决现有的水热合成的MoS2纳米片制备过程复杂,对U(VI)的吸附量低、不容易回收的技术问题,本方法:一、将KCl、NaCl、钼盐和硫盐加热熔融,并加入碳布;二、以金属钼为工作电极,钼丝为辅助电极进行恒电流电解,然后将碳布取出,洗涤、烘干,得到3R‑MoS2/碳布复合材料。该复合材料可作为吸附剂、电解水制氢的催化剂或光催化的催化剂。作为吸附剂去除水中U(VI)时,吸吸咐量为170~190mg/g,吸咐平衡时间仅为1分钟,可应用于电解水制氢、吸附和光催化领域。

Description

一种3R-MoS2/碳布复合材料的制备方法及其应用
技术领域
本发明涉及3R-MoS2/碳布复合材料的制备方法及其应用。
背景技术
采矿作业和核燃料循环产生的含U(VI)放射性废水的处理,对核电的可持续发展具有重要意义。为了应对上述问题,寻求一种对放射性核素具有快速有效吸附能力的材料是吸附法去除水溶液中U(VI)的关键。过渡金属硫化物MoS2具有良好的物理化学性能,比表面大、反应活性高和催化性能优异等特性。但国内外对其研究主要集中在电催化和电极材料等方面,而在吸附方面的研究则相对较少。作为一种特殊的层状化合物,MoS2各向异性的性质使得MoS2易于形成离子吸附和运输的二维渗透通道,此外,表面和边缘含有丰富的硫基团,优良的化学和热稳定性,高的分散性以及良好的亲水性等,这些都有利于 MoS2对U(VI)的吸附。《美国化学学会杂志》(Journal of the American Chemical Society) 2013年的第136卷4期的文章《可控合成多氧MoS2纳米薄片对水溶液中铀吸附性能的研究》(Controllable disorder engineering in oxygen-incorporated mos 2ultrathinnanosheets for efficient hydrogen evolution)公开了一种采用水溶液法制备MoS2纳米片的方法,并利用该MoS2纳米片作为吸附剂去除水中U(VI),在pH为5.5条件下2h内达到吸附平衡,二硫化钼对U(VI)的最大吸附量为492.72mg/g。《环境技术与创新》(Environmental Technology&Innovation)2018年的第11卷的文章《pH值、离子强度、接触时间、腐殖酸和温度对二维MoS2纳米片吸咐U(VI)和Th(IV)性能的影响》(Sorptionproperties of U(VI)and Th(IV)on two-dimensional Molybdenum Disulfide(MoS2)nanosheets:Effects of pH,ionic strength,contact time,humic acids andtemperature)一文中也公开了一种MoS2纳米片,但是这种MoS2纳米片的制备过程复杂并且含有杂质,此外,这种粉体材料不容易回收。
发明内容
本发明是要解决现有的水热合成的MoS2纳米片制备过程复杂、不容易回收的技术问题,而提供一种3R-MoS2/碳布复合材料的制备方法及其应用。
本发明的3R-MoS2/碳布复合材料的制备方法,按以下步骤进行:
一、按KCl、NaCl、钼盐和硫盐的质量比为37:30:(4~5):(6~7)加入电解炉的电解槽中,加热熔融,然后再将碳布加入到电解槽中;
二、以金属钼为工作电极,钼丝为辅助电极,在电解温度为657~700℃、电流为0.5~1.0Acm-2的条件下电解0.5~1.0小时,将电解槽内的碳布取出,洗涤、烘干,得到 3R-MoS2/碳布复合材料。
本发明的3R-MoS2/碳布复合材料的应用,是将3R-MoS2/碳布复合材料作为吸附剂、电解水制氢的催化剂或光催化的催化剂。
其中用3R-MoS2/碳布复合材料作为吸附剂去除水中U6+的方法,按以下步骤进行:
将3R-MoS2/碳布复合材料放入pH值为4.5~5.0的含U6+的废水中,搅拌10~15min,然后将3R-MoS2/碳布复合材料过滤出来,完成含U6+的废水的处理。
本发明采用来源广泛的钼盐和硫盐为原料,在熔盐电解条件下反应制备的3R-MoS2/ 碳布复合材料,该复合材料是片状结构斜方六面体对称的3R相MoS2均匀原位生长在碳布上形成的。3R相MoS2颗粒尺寸可控并结晶性好,具有比表面积大、产量大、无杂质的特点,简化了生产工艺和流程。本发明的电解温度是在657~700℃、电流为0.5~1.0Acm-2的条件下电解0.5~1.0小时,对设备要求低,节省能源,降低生产成本。利用一步法制备出的3R-MoS2/碳布复合材料,可应用于电解水制氢、吸附和光催化领域。该材料作为吸附剂去除水中U(VI)时,吸吸咐量为170~190mg/g,吸咐平衡时间仅为1分钟,处理速度快,易于回收。
附图说明
图1是试验1制备的3R-MoS2/碳布复合材料的外貌照片;
图2是试验1制备的3R-MoS2/碳布复合材料的XRD谱图;
图3是试验1制备的3R-MoS2/碳布复合材料的SEM图;
图4是试验1制备的3R-MoS2/碳布复合材料的SEM照片;
图5试验1中图4的EDS框选区域的元素分析结果图;
图6是试验1制备的3R-MoS2/碳布复合材料的拉曼光谱;
图7是试验1制备的3R-MoS2/碳布复合材料的N2吸附脱附曲线;
图8是试验1溶液初始pH值对3R-MoS2/碳布复合材料吸附U6+的影响;
图9是试验1时间对3R-MoS2/碳布复合材料吸附U6+的影响;
图10是试验1中3R-MoS2/碳布复合材料吸附U6+的准二级模拟曲线;
图11是实验2中制备的3R-MoS2/碳布复合材料的SEM图;
图12是实验2中制备的3R-MoS2/碳布复合材料的XRD;
图13是试验2制备的3R-MoS2/碳布复合材料的N2吸附脱附曲线。
具体实施方式
具体实施方式一:本实施方式的3R-MoS2/碳布复合材料的制备方法,按以下步骤进行:
一、按KCl、NaCl、钼盐和硫盐的质量比为37:30:(4~5):(6~7)加入电解炉的电解槽中,加热熔融,然后再将碳布加入到电解槽中;
二、以金属钼为工作电极,钼丝为辅助电极,在电解温度为657~700℃、电流为0.5~1.0Acm-2的条件下电解0.5~1.0小时,将电解槽内的碳布取出,洗涤、烘干,得到 3R-MoS2/碳布复合材料。
具体实施方式二:本实施方式与具体实施方式一不同的是所述的钼盐为 (NH4)6Mo7O24、MoO3或MoO2;其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是所述的硫盐为KSCN、 K2S或Na2S;其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤二中电解温度为670~680℃;其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤二中电流为 0.7Acm-2;其它与具体实施方式一至四之一相同。
具体实施方式六:具体实施方式一制备的3R-MoS2/碳布复合材料的应用,是将3R-MoS2/碳布复合材料作为吸附剂、电解水制氢的催化剂或光催化的催化剂。
具体实施方式七:本实施方式与具体实施方式六不同的是,3R-MoS2/碳布复合材料的应用,是用3R-MoS2/碳布复合材料作为吸附剂去除水中U6+
具体实施方式八:本实施方式与具体实施方式七不同的是,用3R-MoS2/碳布复合材料作为吸附剂去除水中U6+,具体的方法为:将3R-MoS2/碳布复合材料放入pH值为4.5~5.0 的含U6+的废水中,搅拌1~30min,然后将3R-MoS2/碳布复合材料过滤出来,完成含U6+的废水的处理。
用以下的试验验证本发明的有益效果:
试验1:本试验的一种3R-MoS2/碳布复合材料的制备方法,按以下步骤进行:
一、把37克KCl、30克NaCl、6克KSCN、4克(NH4)6Mo7O24加入电解炉的电解槽中,加热至657℃熔融,得到NaCl-KCl-KSCN-(NH4)6Mo7O24电解质体系,然后再将碳布加入到电解槽中;
二、以金属钼为工作电极,钼丝为辅助电极,在电解温度为657℃、电流为0.5Acm-2的条件下电解0.5小时,将电解槽内的碳布取出,用水、乙醇洗涤,25℃干燥1小时,得到3R-MoS2/碳布复合材料。
本试验制备的3R-MoS2/碳布复合材料的外貌如图1所示,图1a为未生长3R-MoS2的外貌图,图1b为生长3R-MoS2的外貌图。对比结果可看,图1b的碳布上有MoS2所产生的金属光泽。
本试验制备的3R-MoS2/碳布复合材料的XRD谱图如图2所示,从图2可以看出, 3R-MoS2的XRD衍射峰强度高,衍射峰尖锐并且半高宽小,表明了3R-MoS2结晶好。
本试验制备的3R-MoS2/碳布复合材料的高倍率扫描电镜照片如图3所示,从图3看出3R-MoS2为片状结构并均匀生长在碳布上。
本试验制备的3R-MoS2/碳布复合材料的EDS照片如图4所示,从图4的EDS框选区域的元素分析结果如图5所示,从图5可以看出Mo和S元素完全符合MoS2化合物比例。
本试验制备的3R-MoS2/碳布复合材料的拉曼光谱如图6所示,拉曼光谱在这里用于进一步分析样品的晶体结构。3R-MoS2的单位晶胞由三层根据斜方六面体对称的,根据对称性,3R-MoS2具有4个拉曼活性的震动模式:E2g 2(32cm-1),E1g(286cm-1),E2g 1(383cm-1) 和A1g(408cm-1),如图6所示,其中E2g 2是属于层间振动模式,在背散射实验中,在垂直于c轴的表面,E1g模式是禁忌的。E2g 1模式是Mo-S键沿层方向的相对振动模式,而 A1g模式是Mo-S键沿垂直于层间方向的相对振动Sm2O2S的荧光激发光谱波长437nm,荧光发射光谱波长649nm。
图7为本试验制备的3R-MoS2/碳布复合材料的N2吸附脱附曲线,从图7可以看出,3R-MoS2/碳布复合材料的N2吸附脱附曲线为Ⅲ型等温线,测得其比表面积为21.9718 m2/g。
本试验制备的3R-MoS2/碳布复合材料中3R-MoS2的纯度较高,干扰杂质很低,适用于工业分析及化学实验。在熔盐电解条件下反应制备3R-MoS2/碳布复合材料,成本低,生产工艺简单,易于回收。
将本试验制备的3R-MoS2/碳布复合材料应用于U6+吸附,具体按以下步骤进行:
准确称取0.01g的3R-MoS2/碳布复合材料置于150mL的锥形瓶中,然后加入50mLpH值为3.0的U6+浓度为50mg L-1的U6+溶液,并将其放入恒温震荡箱中,200rpm下震荡5分钟,取上层清液,并用偶氮砷III的方法测上层清液中U6+的浓度,计算吸附量。然后仅改变pH值重复进行上述的试验,得到吸咐量随pH值的变化关系曲线如图8所示,从图8可以看出,随着pH的增加,吸附剂对U6+的吸附容量都逐渐增大,并且在所研究的pH范围内,当pH=5.0时,吸附剂对U6+的吸附量达到最大,为187.14mg/g。
将本试验制备的3R-MoS2/碳布复合材料应用于U6+吸附,具体按以下步骤进行:
准确称取0.01g的3R-MoS2/碳布复合材料置于150mL的锥形瓶中,然后加入50mLpH值为5.0的U6+浓度为50mg L-1的U6+溶液,并将其放入恒温震荡箱中,200rpm下震荡1分钟,取上层清液,并用偶氮砷III的方法测上层清液中U(VI)的浓度,计算吸附量。然后仅改变震荡时间重复进行上述的试验,得到吸咐量随震荡时间的变化关系曲线如图9 所示,从图9可以看出,3R-MoS2/碳布复合材料吸附剂对U6+的吸附速率都很快,当接触时间为1min时,对U6+的吸附容量就可达到平衡。
为了进一步明确吸附过程中的机理,拟一阶和拟二阶动力学方程,结果表明3R-MoS2/ 碳布复合材料对U6+的吸附过程更符合拟二阶动力学模型,如图10所示。
试验2:本试验的一种3R-MoS2/碳布复合材料的制备方法,按以下步骤进行:
一、把37克KCl、30克NaCl、6克Na2S、4克MoO3加入电解炉的电解槽中,加热至670℃熔融,得到NaCl-KCl-Na2S-MoO3电解质体系,然后再将碳布加入到电解槽中;
二、以金属钼为工作电极,钼丝为辅助电极,在电解温度为670℃、电流为0.7Acm-2的条件下电解1小时,将电解槽内的碳布取出,用水、乙醇洗涤,25℃干燥1小时,得到 3R-MoS2/碳布复合材料。
本试验得到的得到3R-MoS2/碳布复合材料的扫描电镜如图11所示,从图11可以看出,本试验制备的3R-MoS2为片状结构,并均匀生长在碳布上。
本试验得到的得到3R-MoS2/碳布复合材料的XRD照片,如图11所示,从图11可以看出,3R-MoS2的结晶良好。
本试验得到的3R-MoS2/碳布复合材料的N2吸附脱附曲线比表面积如图12,从图12可以看出,3R-MoS2/碳布复合材料的N2吸附脱附曲线为Ⅲ型等温线,测得比表面积20.54774m2/g。
用与试验一相同的方法进行U6+吸附试验,测得3R-MoS2/碳布复合材料的吸咐量为179.79mg/g。吸咐平衡时间是1min。

Claims (5)

1.一种3R-MoS2/碳布复合材料的制备方法,其特征在于该方法按以下步骤进行:
一、按KCl、NaCl、钼盐和硫盐的质量比为37:30:(4~5):(6~7)加入电解炉的电解槽中,加热熔融,然后再将碳布加入到电解槽中;
二、以金属钼为工作电极,钼丝为辅助电极,在电解温度为657~700℃、电流为0.5~1.0Acm-2的条件下电解0.5~1.0小时,将电解槽内的碳布取出,洗涤、烘干,得到3R-MoS2/碳布复合材料。
2.根据权利要求1所述的一种3R-MoS2/碳布复合材料的制备方法,其特征在于所述的钼盐为(NH4)6Mo7O24、MoO3或MoO2
3.根据权利要求1或2所述的一种3R-MoS2/碳布复合材料的制备方法,其特征在于所述的硫盐为KSCN、K2S或Na2S。
4.根据权利要求1或2所述的一种3R-MoS2/碳布复合材料的制备方法,其特征在于步骤二中电解温度为670~680℃。
5.根据权利要求1或2所述的一种3R-MoS2/碳布复合材料的制备方法,其特征在于步骤二中电流为0.7Acm-2
CN201910080289.5A 2019-01-28 2019-01-28 一种3R-MoS2/碳布复合材料的制备方法及其应用 Active CN109647340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910080289.5A CN109647340B (zh) 2019-01-28 2019-01-28 一种3R-MoS2/碳布复合材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910080289.5A CN109647340B (zh) 2019-01-28 2019-01-28 一种3R-MoS2/碳布复合材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109647340A CN109647340A (zh) 2019-04-19
CN109647340B true CN109647340B (zh) 2022-03-04

Family

ID=66120907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910080289.5A Active CN109647340B (zh) 2019-01-28 2019-01-28 一种3R-MoS2/碳布复合材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109647340B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110371934B (zh) * 2019-06-06 2022-07-22 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种碳基硫硒化钼复合材料的制备方法
CN110190271B (zh) * 2019-07-02 2021-07-20 北京化工大学 一种以碳布为基底的锂硫电池正极材料及其制备方法
WO2021059325A1 (ja) * 2019-09-24 2021-04-01 Dic株式会社 硫化モリブデン粉体及びその製造方法
CN111270299B (zh) * 2020-02-12 2021-11-05 东华理工大学 一种利用熔盐电解法生长大面积单晶3R-MoS2薄膜的方法
CN111569911B (zh) * 2020-05-22 2022-04-22 重庆工商大学 一种3r型二硫化钼催化剂的制备方法
CN111558383B (zh) * 2020-05-22 2022-05-06 重庆工商大学 一种过渡金属掺杂3r型二硫化钼催化剂的制备方法
CN112266098B (zh) * 2020-10-12 2023-03-24 东华理工大学 一种利用助剂提升吸咐剂吸附性能的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217567A (zh) * 2015-09-07 2016-01-06 复旦大学 一种二硫化钼纳米片/石墨烯纳米带复合材料及其制备方法
CN106521540A (zh) * 2016-10-25 2017-03-22 柳玉辉 一种共沉积制备类石墨烯花状二硫化钼材料的方法
JP2017176997A (ja) * 2016-03-30 2017-10-05 住友金属鉱山エンジニアリング株式会社 重金属吸着剤、重金属吸着剤の製造方法、重金属の除去方法
CN107442138A (zh) * 2017-06-15 2017-12-08 江苏大学 一种二硫化钼/碳布复合析氢电催化材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217567A (zh) * 2015-09-07 2016-01-06 复旦大学 一种二硫化钼纳米片/石墨烯纳米带复合材料及其制备方法
JP2017176997A (ja) * 2016-03-30 2017-10-05 住友金属鉱山エンジニアリング株式会社 重金属吸着剤、重金属吸着剤の製造方法、重金属の除去方法
CN106521540A (zh) * 2016-10-25 2017-03-22 柳玉辉 一种共沉积制备类石墨烯花状二硫化钼材料的方法
CN107442138A (zh) * 2017-06-15 2017-12-08 江苏大学 一种二硫化钼/碳布复合析氢电催化材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution;Rou Jun Toh,et al.;《ChemComm》;20170227;第53卷;第3056页左栏第1-2段 *
Electrochemical synthesis and tribological properties of flower-like and sheet-like MoS2 in LiCl-KCl-(NH4)6Mo7O24-KSCN melt;Yu-Hui Liu,et al.;《Electrochimica Acta》;20180305;第271卷;第253页左栏第1-2段,第2节 *
Sorption properties of U(VI) and Th(IV) on two-dimensional Molybdenum Disulfide (MoS2) nanosheets: Effects of pH,ionic strength,contact time, humic acids and temperature;Xue Li,et al.;《Environmental Technology & Innovation》;20180630;第11卷;第2.3节及第3.2节 *
过渡金属硫属化合物纳米材料的制备及其电催化析氢性能研究;徐雅飞;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20180215(第2期);第三章第3.2.3节、第3.3.1节及图3.3 *

Also Published As

Publication number Publication date
CN109647340A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
CN109647340B (zh) 一种3R-MoS2/碳布复合材料的制备方法及其应用
Tong et al. Oxygen vacancies confined in Co 3 O 4 quantum dots for promoting oxygen evolution electrocatalysis
Wu et al. Fluorine-doped nickel cobalt oxide spinel as efficiently bifunctional catalyst for overall water splitting
Chen et al. Templated synthesis of cobalt subnanoclusters dispersed N/C nanocages from COFs for highly-efficient oxygen reduction reaction
Xu et al. Nanocrystalline anatase TiO 2: a new anode material for rechargeable sodium ion batteries
Rao et al. Template-free synthesis of coral-like nitrogen-doped carbon dots/Ni3S2/Ni foam composites as highly efficient electrodes for water splitting
Wang et al. Vacancy defects in 2D transition metal dichalcogenide electrocatalysts: From aggregated to atomic configuration
Lu et al. Defect engineering of electrode materials towards superior reaction kinetics for high-performance supercapacitors
Sun et al. A one-pot “shielding-to-etching” strategy to synthesize amorphous MoS 2 modified CoS/Co 0.85 Se heterostructured nanotube arrays for boosted energy-saving H 2 generation
JP2019515417A (ja) 電極
Huang et al. Hierarchical ultrathin-branched CdS nanowire arrays with enhanced photocatalytic performance
CN114395764B (zh) 一种硫边界缺陷二硫化钼在电化学海水提铀中的应用
Li et al. Enhanced water oxidation activity of 3D porous carbon by incorporation of heterogeneous Ni/NiO nanoparticles
Shekhawat et al. MOF-derived porous Fe3O4/RuO2-C composite for efficient alkaline overall water splitting
Zhang et al. Doping engineering of lithium-aluminum layered double hydroxides for high-efficiency lithium extraction from salt lake brines
Zhao et al. Heptanuclear brucite disk with cyanide bridges in a cocrystal and tracking its pyrolysis to an efficient oxygen evolution electrode
Aftab et al. An advanced PdNPs@ MoS 2 nanocomposite for efficient oxygen evolution reaction in alkaline media
Arsalan et al. Surface-assembled Fe-Oxide colloidal nanoparticles for high performance electrocatalytic water oxidation
Tufa et al. Fe‐Based Mesoporous Nanostructures for Electrochemical Conversion and Storage of Energy
Sun et al. Thermodynamics guided ultrafast and continuous preparation of Mo2C nanocrystals for hydrogen evolution electrocatalysis
Gao et al. Biological calcium phosphate nanorods for piezocatalytical extraction of U (VI) from water
Khan et al. Recent advance in MXenes: new horizons in electrocatalysis and environmental remediation technologies
Kumar et al. Nanoarchitectonic Ni-doped edge dislocation defect-rich MoS2 boosting catalytic activity in electrochemical hydrogen production
Liang et al. Sub-3 nm CoO nanoparticles with oxygen vacancy-dependent catalytic activity for the oxygen reduction reaction
Chen et al. Nanodots of transition metal (Mo and W) disulfides grown on NiNi Prussian blue analogue nanoplates for efficient hydrogen production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant