CN109638167A - 一种8-羟基喹啉金属配合物钙钛矿型太阳能电池及其制备方法 - Google Patents

一种8-羟基喹啉金属配合物钙钛矿型太阳能电池及其制备方法 Download PDF

Info

Publication number
CN109638167A
CN109638167A CN201910032401.8A CN201910032401A CN109638167A CN 109638167 A CN109638167 A CN 109638167A CN 201910032401 A CN201910032401 A CN 201910032401A CN 109638167 A CN109638167 A CN 109638167A
Authority
CN
China
Prior art keywords
metal complex
hydroxyquinoline
solar battery
preparation
type solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910032401.8A
Other languages
English (en)
Other versions
CN109638167B (zh
Inventor
范建东
李闻哲
刘锟
刘鹏
龙毅
尹航
麦耀华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201910032401.8A priority Critical patent/CN109638167B/zh
Publication of CN109638167A publication Critical patent/CN109638167A/zh
Application granted granted Critical
Publication of CN109638167B publication Critical patent/CN109638167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种掺杂8‑羟基喹啉金属配合物钙钛矿型太阳能电池及其制备方法,该8‑羟基喹啉金属配合物钙钛矿型太阳能电池,包括自下而上依次层叠设置的FTO层、空穴传输层、钙钛矿层、电子传输层、BCP层和电极,所述钙钛矿层为经过掺杂8‑羟基喹啉金属配合物得到的钙钛矿层,所述掺杂后的钙钛矿层材料为Cs0.17(NH2CH=NH2)0.83PbI3和CH3NH3PbI3中的至少一种。该太阳能电池掺杂材料价格低廉,操作方法简便,容易控制;它增大了器件的短路电流、填充因子和开路电压,为钙钛矿太阳能电池的稳定性和转化效率的研究提供了新的思路。

Description

一种8-羟基喹啉金属配合物钙钛矿型太阳能电池及其制备 方法
技术领域
本发明属于钙钛矿太阳能电池领域,具体涉及一种8-羟基喹啉金属配合物钙钛矿型太阳能电池及其制备方法。
背景技术
21世纪以后,经济和社会快速发展,人类对能源的需求越来越大。然而,传统的化石燃料(煤、石油、天然气)正因不断大量消耗而日趋枯竭,能源问题日益成为制约人类社会发展的瓶颈。可再生新能源的开发有助于缓解世界能源和环境的压力,而太阳能是资源量最大、分布最为广泛的绿色可再生能源。越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。
太阳能电池可以把光能直接转化为电能,太阳能电池的开发是利用太阳能最有效的途径之一。太阳能电池体积小,移动方便,使用起来不受地域的限制。既可以把太阳能电池做成大规模的发电站,实现并网发电,又可以很方便地用较少的电池组件给偏远地区用户提供生活电能,或者给移动通讯设备提供电力保障。目前,在市场上占据主导地位的太阳能电池主要是单晶硅和多晶硅太阳能电池,这两种电池的生产技术比较成熟,电池的光电转换效率较高,稳定性好(使用寿命都在15年以上)。但是,硅系太阳能电池对原材料要求苛刻,纯度一般要在99.9999%以上,而且制作工艺复杂,成本高居不下,发电成本较高,无法实现超大规模实用化。
发明内容
本发明的目的在于提供一种8-羟基喹啉金属配合物钙钛矿型太阳能电池,另一目的是提供8-羟基喹啉金属配合物钙钛矿型太阳能电池制备方法,通过向钙钛矿掺杂8-羟基喹啉金属配合物提高钙钛矿型太阳能电池的效率和稳定性。
一种8-羟基喹啉金属配合物钙钛矿型太阳能电池,包括自下而上依次层叠设置的FTO层、空穴传输层、钙钛矿层、电子传输层、BCP层和电极;所述钙钛矿层为经过掺杂8-羟基喹啉金属配合物得到的钙钛矿层,所述掺杂后的钙钛矿层材料为Cs0.17(NH2CH=NH2)0.83PbI3和CH3NH3PbI3中的至少一种。
进一步地,所述8-羟基喹啉金属配合物为8-羟基喹啉-镓、8-羟基喹啉-铜、8-羟基喹啉-镁和8-羟基喹啉-铝中的任意一种。
进一步地,所述电子传输层的材料是PCBM。
进一步地,所述电极的材料是金和银中的其中一种。
进一步地,所述BCP层材料是2,9-二甲基-4,7-二苯基-1,10-菲啰啉。
进一步地,所述FTO层厚度为450nm,空穴传输层(NiOX)厚度为10-50nm、钙钛矿层厚度为300-400nm、电子传输层(PCBM)厚度为50-100nm、BCP层厚度为为6nm以及电极的厚度为120nm。
一种8-羟基喹啉金属配合物钙钛矿型太阳能电池制备方法,所述方法包括钙钛矿层的制备,所述钙钛矿层的制备包括如下步骤:
1)钙钛矿前驱体溶液的制备:将前驱体PbI2、NH2CH=NH2I和CsI溶解在γ-丁内酯与二甲基亚砜混合的溶液中,混合均匀,得到前驱体溶液;
2)添加8-羟基喹啉金属配合物到所述钙钛矿前驱体溶液中,混合均匀;
3)将步骤2)所得溶液过滤,将滤液旋涂于空穴传输层(NiOX)上,并在结束前5s-40s滴加氯苯,制得涂层薄膜;
4)最后将步骤3)中涂层薄膜在90℃-120℃的热板上加热30min-60min后,得到掺杂8-羟基喹啉金属配合物的钙钛矿层。
进一步地,所述钙钛矿前驱体溶液的制备方法为:将前驱体PbI2、NH2CH=NH2I和CsI按照摩尔比为1.1:1:0.1的比例配置,称取1.5mol前驱体溶解在1L以γ-丁内酯与二甲基亚砜体积比为7:3的溶液中,混合均匀,得到浓度为1.5mol/L的前驱体溶液。
进一步地,所述添加8-羟基喹啉金属配合物到钙钛矿前驱体溶液中直至质量浓度为0.001-100mg/mL。
进一步地,步骤3)中溶液过滤,所述过滤使用的滤头孔径为10-440nm。
进一步地,所述过滤使用的滤头孔径为220nm。
进一步地,所述步骤3)中在优选为结束前10s滴加300μL氯苯。
进一步地,所述旋涂中,旋涂转速为2000-6000rpm,旋涂时间为15s-60s。
进一步地,旋涂转速优选为4000rpm,旋涂时间优选为30s。
上述8-羟基喹啉金属配合物钙钛矿型太阳能电池中,电子传输层、金或银电极和BCP层的制备方法均为常规方法,可按照现有制备方法制备而得。
可参照如下文献:
In situ induced core/shell stabilized hybrid perovskites via gallium(III)acetylacetonate intermediate towards highly efficient and stable solarcells.Energy Environ.Sci.,2018,11,286.
电池结构中,钙钛矿材料本身的结构尤为重要,钙钛矿中产生的电子空穴对,能否有效分离和传输对器件转化效率具有重大影响。除此之外,器件稳定性也收到钙钛矿层薄膜结构的影响。通过掺杂方法改变和优化钙钛矿薄膜材料本身结构是提高器件效率和稳定性的主要手段之一。
8-羟基喹啉金属配合物是优良的发光材料和电子给体和传输材料,掺杂在钙钛矿溶液中,会填充于钙钛矿的晶界处弥补钙钛矿材料电子传输能力低的缺陷。羟基喹啉化合物在钙钛矿成膜过程中优先析出的组分作为晶种诱导钙钛矿均相成核,提高晶粒的均匀程度;溶解的组分通过分子自组装得到纳米尺度分散的颗粒分布于钙钛矿晶界处,起到等离子共振的作用,增强光吸收强度,器件的短路电流有了显著提高因此提高了钙钛矿太阳能的转化效率。
与现有技术相比,本发明具有以下优点及有益效果:
(1)通过对钙钛矿层进行掺杂,最终实现器件转化效率的提高。
(2)该类掺杂材料价格低廉,操作方法简便,容易控制,同时该类修饰材料为钙钛矿太阳能电池的稳定性和转化效率的研究提供了新的思路。
(3)通过掺杂,器件的电流和开压都得到了明显提升,大大提高了电池的性能。
附图说明
图1为电池结构图。
图2为对比例1中的对照电池和实施例1(8-羟基喹啉-镓)、实施例2(8-羟基喹啉-铜)、实施例3(8-羟基喹啉-镁)和实施例4(8-羟基喹啉-铝)的钙钛矿太阳能电池及其掺杂器件的J-V曲线。
图3为对比例1中的对照电池和实施例4至6(8-羟基喹啉-铝)的钙钛矿太阳能电池及其掺杂器件的J-V曲线。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例来进一步说明本发明的技术方案,但本发明并非局限在实施例范围内。
对比例1
1)制备空穴传输层(NiOX)
具体步骤为:将125mg的乙酸镍溶到5ml乙醇中,加入30μL乙醇胺,待溶解完全后,过滤。
将配好的乙酸镍的乙醇溶液旋涂至FTO层玻璃上,在400℃的热板上加热30min后退火,制得的空穴传输层(NiOX)的厚度约为50nm。
2)掺杂钙钛矿层的制备
将前驱体PbI2、NH2CH=NH2I和CsI按照摩尔质量比为1.1:1:0.1的比例配置,称取1.5mol溶解在1L以γ-丁内酯与二甲基亚砜体积比为7:3的溶液中,混合均匀,得到浓度为1.5mol/L的前驱体溶液。将前驱体溶液旋涂到空穴传输层薄膜表面,旋涂时转速为4000rpm,旋涂时间为30s。旋涂结束前10s滴加300μL氯苯,最后在100℃的热板上加热30min,得到钙钛矿层。
3)制备电子传输层
在得到的钙钛矿层上,旋涂一层电子传输层,旋涂时转速为2000rpm,旋涂时间为30s,所得该空穴传输层的厚度为50-100nm;其中,电子传输层由如下材料制成:将15mg的PCBM溶解在1mL氯苯中。
4)制备BCP层
在所得电子传输层之上旋涂BCP的异丙醇饱和溶液,旋涂时转速为4000rpm,旋涂时间为30s,制得的BCP层厚度为6nm。5)蒸镀Ag/Au电极。
在真空度在1.0×10-3Pa以下,蒸镀速度为条件下,在BCP层上蒸镀电极,蒸镀得到的电极厚度为120nm。
在AM1.5,100mW/cm2光照下用太阳能模拟器来测试电池的J-V性能曲线,如图2所示,空白条件下得到电池的短路电流密度为19.65mA/cm2,开路电压为0.92V,填充因子为0.72,光电转换效率为13.02%。
实施例1制备掺杂8-羟基喹啉-镓的钙钛矿太阳能电池
其余步骤与对比例1相同,在步骤2)中将前驱体PbI2、NH2CH=NH2I和CsI按照摩尔比为1.1:1:0.1的比例配置,称取1.5mol前驱体溶解在1L以γ-丁内酯与二甲基亚砜体积比为7:3的溶液中,混合均匀,得到浓度为1.5mol/L的前驱体溶液,然后添加8-羟基喹啉-镓到上述前驱体溶液中直至浓度为1mg/ml,过滤。将滤液旋涂到空穴传输层薄膜表面,旋涂时转速为4000rpm,时间为30s。结束前10s滴加300μL氯苯,最后在100℃的热板上加热30min,得到掺杂8-羟基喹啉-镓的钙钛矿层(Cs0.17(NH2CH=NH2)0.83PbI3)。
在AM1.5,100mW/cm2光照下用KEITHLEY 2400测试该电池的J-V性能曲线,如图2中所示,得到电池的短路电流密度为21.83mA/cm2,开路电压为0.96V,填充因子为0.77,光电转换效率为16.14%。
实施例2、制备掺杂8-羟基喹啉-铜的钙钛矿太阳能电池
按照实施例1的步骤,仅将步骤2)所用掺杂8-羟基喹啉-镓换成8-羟基喹啉-铜。添加8-羟基喹啉-铜到前驱体溶液中直至浓度为1mg/mL,得到掺杂8-羟基喹啉-铜的钙钛矿层(Cs0.17(NH2CH=NH2)0.83PbI3)。
在AM1.5,100mW/cm2光照下用KEITHLEY 2400测试该电池的J-V性能曲线,如图2中所示,得到电池的短路电流密度为22.10mA/cm2,开路电压为0.96V,填充因子为0.75,光电转换效率为15.91%。
实施例3、制备掺杂8-羟基喹啉-镁的钙钛矿太阳能电池
按照实施例1的步骤,仅将步骤2)所用掺杂8-羟基喹啉-镓换成8-羟基喹啉-镁。添加8-羟基喹啉-镁到前驱体溶液中直至浓度为1mg/mL,得到掺杂8-羟基喹啉-镁的钙钛矿层(Cs0.17(NH2CH=NH2)0.83PbI3)。
在AM1.5,100mW/cm2光照下用KEITHLEY 2400测试该电池的J-V性能曲线,如图2中所示,得到电池的短路电流密度为21.92mA/cm2,开路电压为0.95V,填充因子为0.79,光电转换效率为16.45%。
实施例4、制备掺杂8-氨基喹啉-铝的钙钛矿太阳能电池(8-氨基喹啉-铝质量浓度为1mg/mL)
按照实施例1的步骤,仅将步骤2)所用掺杂8-羟基喹啉-镓换成8-羟基喹啉-铝。添加8-羟基喹啉-铝到前驱体溶液中直至浓度为1mg/mL,得到掺杂8-羟基喹啉-铝的钙钛矿层(Cs0.17(NH2CH=NH2)0.83PbI3)。
在AM1.5,100mW/cm2光照下用KEITHLEY 2400测试该电池的J-V性能曲线,如图2中所示,得到电池的短路电流密度为22.85mA/cm2,开路电压为0.97V,填充因子为0.78,光电转换效率为17.30%。
实施例5、制备掺杂8-氨基喹啉-铝的钙钛矿太阳能电池(8-氨基喹啉-铝质量浓度为0.001mg/mL)
按照实施例1的步骤,仅将步骤2)所用掺杂8-羟基喹啉-镓换成8-羟基喹啉-铝。添加8-羟基喹啉-铝到前驱体溶液中直至质量浓度为0.001mg/mL,得到掺杂8-羟基喹啉-铝的钙钛矿层(Cs0.17(NH2CH=NH2)0.83PbI3和CH3NH3PbI3)。
在AM1.5,100mW/cm2光照下用KEITHLEY 2400测试该电池的J-V性能曲线,如图3中所示,得到电池的短路电流密度为20.51mA/cm2,开路电压为0.93V,填充因子为0.73,光电转换效率为13.92%。
实施例6、制备掺杂8-氨基喹啉-铝的钙钛矿太阳能电池(8-氨基喹啉-铝质量浓度为100mg/mL)
按照实施例1的步骤,仅将步骤2)所用掺杂8-羟基喹啉-镓换成8-羟基喹啉-铝。添加8-羟基喹啉-铝到前驱体溶液中直至浓度为100mg/mL,得到掺杂8-羟基喹啉-铝的钙钛矿层(Cs0.17(NH2CH=NH2)0.83PbI3)。
在AM1.5,100mW/cm2光照下用KEITHLEY 2400测试该电池的J-V性能曲线,如图3中所示,得到电池的短路电流密度为19.03mA/cm2,开路电压为0.90V,填充因子为0.71,光电转换效率为12.16%。
表1、实施例1至实施例6的钙钛矿太阳能电池及其掺杂器件的J-V参数
由上可知,通过掺杂处理后,器件的短路电流、填充因子和开路电压普遍提高。综合以上器件的光伏性能指标,器件的光电转化效率提高。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (10)

1.一种8-羟基喹啉金属配合物钙钛矿型太阳能电池,包括自下而上依次层叠设置的FTO层、空穴传输层、钙钛矿层、电子传输层、BCP层和电极,其特征在于,所述钙钛矿层为经过掺杂8-羟基喹啉金属配合物得到的钙钛矿层,所述掺杂后的钙钛矿层材料为Cs0.17(NH2CH=NH2)0.83PbI3和CH3NH3PbI3中的至少一种。
2.根据权利要求1所述的8-羟基喹啉金属配合物钙钛矿型太阳能电池,其特征在于,所述8-羟基喹啉金属配合物为8-羟基喹啉-镓、8-羟基喹啉-铜、8-羟基喹啉-镁和8-羟基喹啉-铝中的任意一种。
3.根据权利要求1所述的8-羟基喹啉金属配合物钙钛矿型太阳能电池,其特征在于,所述电子传输层的材料是PCBM。
4.根据权利要求1所述的8-羟基喹啉金属配合物钙钛矿型太阳能电池,其特征在于,所述电极的材料是金和银中的其中一种。
5.根据权利要求1所述的8-羟基喹啉金属配合物钙钛矿型太阳能电池,其特征在于,所述BCP层材料是2,9-二甲基-4,7-二苯基-1,10-菲啰啉。
6.一种8-羟基喹啉金属配合物钙钛矿型太阳能电池的制备方法,其特征在于,所述方法包括钙钛矿层的制备,所述钙钛矿层的制备包括如下步骤:
1)钙钛矿前驱体溶液的制备:将前驱体PbI2、NH2CH=NH2I和CsI溶解在γ-丁内酯与二甲基亚砜混合的溶液中,混合均匀,得到钙钛矿前驱体溶液;
2)添加8-羟基喹啉金属配合物到所述钙钛矿前驱体溶液中,混合均匀;
3)将步骤2)所得溶液过滤,将滤液旋涂于空穴传输层上,并在结束前5s-40s滴加氯苯,制得涂层薄膜;
4)最后将步骤3)中涂层薄膜在90℃-120℃的热板上加热30min-60min后,得到掺杂8-羟基喹啉金属配合物的钙钛矿层。
7.根据权利要求6所述的8-羟基喹啉金属配合物钙钛矿型太阳能电池的制备方法,其特征在于,所述钙钛矿前驱体溶液的制备方法为:将前驱体PbI2、NH2CH=NH2I和CsI按照摩尔比为1.1:1:0.1的比例配置,称取1.5mol前驱体溶解在1L以γ-丁内酯与二甲基亚砜体积比为7:3的溶液中,混合均匀,得到浓度为1.5mol/L的前驱体溶液。
8.根据权利要求6所述的8-羟基喹啉金属配合物钙钛矿型太阳能电池的制备方法,其特征在于,所述添加8-羟基喹啉金属配合物到钙钛矿前驱体溶液中直至质量浓度为0.001-100mg/mL。
9.根据权利要求6所述的8-羟基喹啉金属配合物钙钛矿型太阳能电池的制备方法,其特征在于,步骤3)中溶液过滤,所述过滤使用的滤头孔径为10-440nm。
10.根据权利要求6至9任一项所述的8-羟基喹啉金属配合物钙钛矿型太阳能电池的制备方法,其特征在于,所述旋涂中,旋涂转速为2000-6000rpm,旋涂时间为15s-60s。
CN201910032401.8A 2019-01-14 2019-01-14 一种8-羟基喹啉金属配合物钙钛矿型太阳能电池及其制备方法 Active CN109638167B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910032401.8A CN109638167B (zh) 2019-01-14 2019-01-14 一种8-羟基喹啉金属配合物钙钛矿型太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910032401.8A CN109638167B (zh) 2019-01-14 2019-01-14 一种8-羟基喹啉金属配合物钙钛矿型太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN109638167A true CN109638167A (zh) 2019-04-16
CN109638167B CN109638167B (zh) 2022-08-09

Family

ID=66060752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910032401.8A Active CN109638167B (zh) 2019-01-14 2019-01-14 一种8-羟基喹啉金属配合物钙钛矿型太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN109638167B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436069A (zh) * 2020-10-26 2021-03-02 暨南大学 一种基于双钙钛矿单晶的紫外光探测器及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204260A (ja) * 1998-01-19 1999-07-30 Mitsubishi Chemical Corp キノリノール誘導体、その金属錯体およびそれを用いた有機電界発光素子
US20060003089A1 (en) * 1998-12-02 2006-01-05 South Bank University Enterprises Ltd. Electroluminescent quinolates
WO2014203455A1 (ja) * 2013-06-17 2014-12-24 パナソニックIpマネジメント株式会社 透明導電膜、透明導電膜付き基材、有機エレクトロルミネッセンス素子及び電子デバイス
KR20160096372A (ko) * 2015-02-05 2016-08-16 재단법인대구경북과학기술원 정공전달 물질, 이를 이용한 무-유기 하이브리드 태양전지 및 그 제조방법
US20170125747A1 (en) * 2015-10-30 2017-05-04 Postech Academy - Industry Foundation Metal halide perovskite light emitting device and method of manufacturing the same
CN107210367A (zh) * 2014-12-19 2017-09-26 联邦科学和工业研究组织 形成光电器件的光活性层的方法
CN108054279A (zh) * 2017-12-07 2018-05-18 暨南大学 Fk102配体修饰的钙钛矿型太阳能电池及其钙钛矿层的制备方法
CN108269940A (zh) * 2018-01-22 2018-07-10 苏州大学 碱金属卤化物掺杂的钙钛矿发光二极管及其制备方法
CN108987583A (zh) * 2018-07-27 2018-12-11 电子科技大学 缺陷被钝化的钙钛矿太阳能电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204260A (ja) * 1998-01-19 1999-07-30 Mitsubishi Chemical Corp キノリノール誘導体、その金属錯体およびそれを用いた有機電界発光素子
US20060003089A1 (en) * 1998-12-02 2006-01-05 South Bank University Enterprises Ltd. Electroluminescent quinolates
WO2014203455A1 (ja) * 2013-06-17 2014-12-24 パナソニックIpマネジメント株式会社 透明導電膜、透明導電膜付き基材、有機エレクトロルミネッセンス素子及び電子デバイス
CN107210367A (zh) * 2014-12-19 2017-09-26 联邦科学和工业研究组织 形成光电器件的光活性层的方法
KR20160096372A (ko) * 2015-02-05 2016-08-16 재단법인대구경북과학기술원 정공전달 물질, 이를 이용한 무-유기 하이브리드 태양전지 및 그 제조방법
US20170125747A1 (en) * 2015-10-30 2017-05-04 Postech Academy - Industry Foundation Metal halide perovskite light emitting device and method of manufacturing the same
CN108054279A (zh) * 2017-12-07 2018-05-18 暨南大学 Fk102配体修饰的钙钛矿型太阳能电池及其钙钛矿层的制备方法
CN108269940A (zh) * 2018-01-22 2018-07-10 苏州大学 碱金属卤化物掺杂的钙钛矿发光二极管及其制备方法
CN108987583A (zh) * 2018-07-27 2018-12-11 电子科技大学 缺陷被钝化的钙钛矿太阳能电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436069A (zh) * 2020-10-26 2021-03-02 暨南大学 一种基于双钙钛矿单晶的紫外光探测器及制备方法

Also Published As

Publication number Publication date
CN109638167B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
Xu et al. Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells
CN108039411B (zh) 一种钙钛矿型太阳能电池及其修饰层制备方法
CN104022225B (zh) 一种全溶液法制备的高效低成本铜铟镓硒/钙钛矿双结太阳能光电池
CN108389967B (zh) 太阳能电池的吸光层材料、宽带隙钙钛矿太阳能电池及其制备方法
CN102646745A (zh) 一种光伏器件及太阳能电池
CN111668377B (zh) 一种以Mo-二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法
CN107946466B (zh) 钙钛矿型太阳能电池及其pedot:pss层的修饰方法
CN114649480B (zh) 一种掺杂全氟有机化合物的钙钛矿型太阳能电池及其制备方法
CN102544378A (zh) 一种基于ZnO同质核壳结构纳米棒阵列的有机/无机杂化太阳电池及其制备方法
CN109817810A (zh) 一种掺杂三唑离子液体的钙钛矿太阳能电池及制备方法
CN102169910B (zh) 一种基于硫属化合物纳米晶的薄膜太阳能电池
Wang et al. Effects of the concentration of PbI2 and CH3NH3I on the perovskite films and the performance of perovskite solar cells based on ZnO-TiO2 nanorod arrays
CN108054279A (zh) Fk102配体修饰的钙钛矿型太阳能电池及其钙钛矿层的制备方法
CN107170887B (zh) 一种具备BaCl2修饰层的钙钛矿太阳能电池及其制造方法
CN107268022A (zh) α‑Fe2O3多孔纳米棒阵列光阳极材料的制备方法及应用
WO2008147486A2 (en) Methods of fabricating nanostructured zno electrodes for efficient dye sensitized solar cells
CN111668378B (zh) 一种以v-二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法
CN109638167A (zh) 一种8-羟基喹啉金属配合物钙钛矿型太阳能电池及其制备方法
CN105552230A (zh) 基于钙钛矿单晶衬底的太阳电池
CN108023018A (zh) 基于带隙连续可调控的倒置钙钛矿太阳电池的制备方法
Zhao et al. Three-dimensional ZnO/ZnxCd1− xS/CdS nanostructures modified by microwave hydrothermal reaction-deposited CdSe quantum dots for chemical solar cells
CN109802039A (zh) 一种掺杂2,2′-二联吡啶及其衍生物的钙钛矿型太阳能电池及其制备方法
CN109786558A (zh) 一种钙钛矿型太阳能电池及其制备方法
CN109860393B (zh) 一种掺杂氨基羟基喹啉类化合物的钙钛矿型太阳能电池及其制备方法
CN113421969B (zh) 一种hf改性二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant