CN109622022A - 一种高分散Pt改性纳米HZSM-5催化剂的制备方法及应用 - Google Patents

一种高分散Pt改性纳米HZSM-5催化剂的制备方法及应用 Download PDF

Info

Publication number
CN109622022A
CN109622022A CN201811480690.XA CN201811480690A CN109622022A CN 109622022 A CN109622022 A CN 109622022A CN 201811480690 A CN201811480690 A CN 201811480690A CN 109622022 A CN109622022 A CN 109622022A
Authority
CN
China
Prior art keywords
hzsm
catalyst
zeolite
high dispersive
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811480690.XA
Other languages
English (en)
Inventor
郭洪臣
周微
刘家旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201811480690.XA priority Critical patent/CN109622022A/zh
Publication of CN109622022A publication Critical patent/CN109622022A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/44Noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化剂技术领域,涉及一种高分散Pt改性纳米HZSM‑5催化剂的制备方法及应用。将占高分散Pt改性纳米HZSM‑5催化剂质量分数为1.0%‑8.0%的Zn负载于纳米HZSM‑5沸石上,得到Zn/HZSM‑5载体。再将质量分数为0.1%‑0.5%的Sn和0.1%Pt负载于Zn/HZSM‑5载体上,三金属间强相互作用,形成高分散的纳米Pt粒子,得到具有金属‑酸双功能的新型催化剂ZnSnPt/HZSM‑5。本发明能在等电点不利于负载Pt的低硅铝比HZSM‑5上利用氯铂酸前驱体制备低载量、高分散的Pt粒子,且具有金属‑酸双功能特性。该催化剂用于低碳烃的芳构化反应,提高芳构化产物选择性高。

Description

一种高分散Pt改性纳米HZSM-5催化剂的制备方法及应用
技术领域
本发明属于催化剂技术领域,涉及一种高分散Pt改性纳米HZSM-5催化剂的制备方法及应用。更具体的说是涉及一系列以不同硅铝比纳米HZSM-5沸石为载体,添加金属助剂Sn,制备低负载量、高分散的、并具有高催化性能的Pt基催化剂。
背景技术
页岩气革命促进了乙烷和丙烷的大规模提取。乙烷和丙烷成本的大幅下降,为其转化为高附加值产品提供了机会。苯、甲苯和二甲苯(BTX)是化学工业中必不可少的原料。BTX主要由石脑油重整和蒸汽裂解生产。然而,石脑油的短缺和高昂的价格限制了BTX的生产。因此,研究低成本烷烃催化转化为BTX是一项重要的工业和学术研究。低碳烃芳构化研究已有数十年。在众多的研究中,Zn/HZSM-5催化剂被证明是活化低碳烷烃的有效催化剂,已被应用于Alpha过程等商业化过程。
Zn/HZSM-5催化剂可以通过离子交换、浸渍、化学气相沉积、原子层沉积等方法制备。尽管制备方法不同,Zn/HZSM-5的活性Zn物种一般可以分为(i)在沸石阳离子位点上孤立的Zn2+,(ii)由骨架外的ZnOH+脱水而形成的双核[ZnOZn]2+团簇,以及(iii)分子筛内或分子筛外的氧化锌团簇。根据文献报道和我们之前的工作,[ZnOZn]2+物种在低碳烷烃C-H键活化方面比其他Zn物种更为有利。然而,表面H原子在[ZnOZn]2+位点上的重组脱附却很难,导致氢解反应的发生,生产甲烷和乙烷干气副产物。因此,为了充分利用[ZnOZn]2+物种在低碳烷烃活化方面的突出能力,同时抑制氢解副反应的发生,需要引入第二次金属来加速[ZnOZn]2+物种表面H原子的重组脱附。
众所周知,负载Pt催化剂是低碳烷烃脱氢的有效催化剂。Pt/Al2O3-Cl已成功用于Oleflex商业丙烷脱氢过程。因此,在Zn/HZSM-5中加入Pt有望促进[ZnOZn]2+物种表面H原子的重组脱附。然而,既往研究表明,在HZSM-5上直接添加Pt会导致Pt的金属分散度较低,产生严重的氢解副反应。因此,将Pt引入Zn/HZSM-5并具有良好的分散度是获得较好的丙烷芳构化性能的关键。
用贵金属铂的化合物制备各种负载型Pt催化剂,已经有大量的专利文献和公开文献。制备负载型Pt催化剂的关键在于使铂呈现高分散状态,以便提高贵金属铂的利用率和保持贵金属铂的高活性态。在不同载体上制备高分散铂主要由等电点规则支配。由于不同氧化物所具有的等电点不同、电荷密度、表面吸附位不同,因此所选择的金属前驱体及金属粒子选择吸附的位置也会不同。例如SiO2的等电点为4,其表面布满了负电荷,需以Pt(NH3)4 2+为前驱体,能更有利于Pt粒子的吸附;而Al2O3的等电点较高为8,其表面布满了正电荷,更利于相对便宜的前驱体PtCl6 2-在其上吸附。
以下专利披露了在金属氧化物上制备高分散Pt的方法及其应用:
专利CN104148063A一种活性中心稳定分散的重整催化剂及其制备方法,属于重整催化剂技术领域。该催化剂为氧化铝和水滑石构筑的多级结构,利用水滑石前体拓扑转变过程中层板对表面金属原子有限域作用这一特点,提高Pt的分散稳定性。优点在于助剂金属和Pt的分散稳定性高;催化剂重复使用性好。另外,该发明为多级结构,便于工业应用。
专利CN 104162423A一种控制负载型金属催化剂活性中心分散状态的方法,该方法属于负载型催化剂活性中心结构控制的技术领域。该催化剂为将活性中心负载在水滑石原位修饰的三氧化二铝上,通过利用水滑石层板对层板上的金属活性中心铂的晶格诱导作用,实现对金属活性中心分散状态的控制。提高活性中心分散度,实现更好的催化效果。
专利CN106955701A发明了一种含铝SiO2负载高分散Pt催化剂及其制备方法。该发明通过双层表面活性剂法、水热合成法、后修饰氧化铝法、离子交换法、乙醇还原法、胶体浸渍法等制备而成,具有高比表面积、大的微孔孔容和高度分散的Pt纳米粒子。
专利CN104549368A涉及一种负载双金属型Cu-Pt/TiO2-NBs催化剂的制备方法与应用,它以二氧化钛纳米带为载体,表面负载铜铂双金属纳米颗粒形成Cu-Pt/TiO2-NBs纳米结构,然后经过H2还原处理,制得Cu-Pt/TiO2-NBs纳米催化剂。该发明通过沉积沉淀法制得,该催化剂表面的颗粒分布均匀、粒径较小且粒径分布窄、成分组成量化可控、具有高催化活性、高选择性和高稳定性,原料价廉易得、易于回收和重复利用。此方法适用于大规模的产业化应用。
在分子筛类载体上负载铂,从等电点上要求用四氨基铂(II)硝酸盐为前驱体比较好。除了根据载体的等电点来选择铂化合物前驱体的方法以外,为了能够用比较廉价的铂化合物前驱体在分子筛载体上制备出高分散的贵金属铂催化剂,人们经过长期研究还提出了其它行之有效的技术方法:金属助剂法、化学还原法,直接合成或是微乳液技术。
以下公开文献和专利尝试用相对廉价的氯铂酸前驱体进行铂负载。
公开文献J.Am.Chem.Soc.2016,138,15743-15750中Avelino Corma等人提出了一种直接合成纳米(20-50nm)其间包封1nm左右Pt纳米粒子高硅CHA沸石。这些Pt纳米颗粒具有显著的稳定性:在H2气氛中,650℃下保持1nm尺寸。该方法适用范围有限,不适用于高结晶温度(150℃以上)和高pH值的体系。在这些条件下,大多数金属前驱体在加入合成介质时倾向于析出大的块体金属氢氧化物。
文献Journal of the Taiwan Institute of Chemical Engineers 78(2017)401-408采用浸渍法,以Pt(NO3)2为前驱体,ZSM-5为载体,制备催化剂Pt/ZSM-5,其Pt粒子的平均粒径为12.4nm。引入Cu物种来调节Pt物种的存在状态,采用共浸渍的方法,将ZSM-5浸渍在Pt(NO3)2和Cu(NO3)2·3H2O的混合溶液中,Pt与Cu的负载量均为1.5%。PtCu/ZSM-5催化剂中,Pt粒子的平均粒径为6.2nm,这是因为Cu的引入增加Pt与Cu物种的强相互作用,能够阻止Pt纳米粒子聚集,在催化剂表面高度分散。
专利CN 1398675 A发明一种沸石负载高分子Pt族金属簇的方法。其特征是将含铂族金属的无机化合物的醇水溶液和高分子聚合物的醇水溶液与超细Beta沸石分子筛充分接触后,加热回流还原铂族金属,然后用旋转减压蒸发的方式干燥得到粉末状超细Beta沸石分子筛负载高分子铂族金属簇。用该方法制得的金属簇,可均匀分散于分子筛的表面,且金属粒子的粒径小,分布窄,在空气中可稳定存在。该金属簇可用于甲烷低温转化的催化剂,并且对高碳烃具有较高的选择性。
专利CN 105312075 A涉及一种高分散双金属Pt@Fe-MCM-41催化剂及其制备方法,先通过一步法水热合成前驱体Pt-Fe-MCM-41,然后进行选择性还原Pt得到Pt@Fe-MCM-41。这种催化剂既包含高度分散的具有加氢及脱氢功能的金属活性组分,也包含具有裂化功能的酸性载体,Pt和Fe高度分散于MCM-41基体结构中,其中Pt是以金属原子簇或纳米粒子的形式被镶嵌于分子筛骨架中,而Fe是以Fe-O四面体形式结合于分子筛骨架中,该催化剂既包含高度分散的具有加氢及脱氢功能的金属活性组分,也包含具有裂化功能的酸性载体,对大分子的加氢裂化反应具有优异的催化性能。
化学还原方法常常采用乙二醇或NaBH4做还原溶剂,这种方法由于操作过程简单,并且易得到大负载量的负载型Pt催化剂,因此应用较为广泛。不幸的是,在反应环境中,随着时间的推移Pt粒子会发生烧结,从而导致催化剂寿命的减少。
为了得到高度均匀分散、小颗粒、具有较高催化作用的Pt纳米粒子,通常会采用微乳液技术(核壳结构)用有机溶剂包裹,阻止纳米粒子发生聚集。然而,当反应温度达到300℃以上时,这些有机层会发生分解,金属粒子就会聚集团簇。因此这种方法的应用在热力学及催化稳定性上具有争议。目前研究较多的是Pt与其他氧化物形成核壳结构的方法。外面的壳能够间隔有催化活性的Pt纳米粒子核,阻止核在催化反应过程中发生烧结。此方法制备的催化剂不但能够用于高温催化,还能增加催化剂的活性及稳定性,最大化金属与载体的协同催化作用。
另一种核壳结构是以Pt为核,用其他金属氧化物包裹后,再负载在载体上。这种方法既能在高温作用下能够有效的阻止Pt纳米粒子的聚集,还能制作出金属核团簇尺寸、壳厚度可控的催化剂,有助于更好的控制催化过程。这种特殊的核壳结构使催化剂具有更好的抗聚集性、烧结性和更好的催化活性。还可以用二元或三元金属化合物作为前驱物,在技术和工业领域有望有广泛的应用。
核壳结构的催化剂虽然能制得高度分散的Pt粒子,但是操作复杂,首先要制备Pt纳米粒子溶胶,然后制备核壳结构的催化剂,最后还要移除其中的有机试剂。在技术和工业领域会有更多的阻力。
但是,到目前为止以氯铂酸为前驱体,在分子筛上负载金属铂都存在分散不均匀、颗粒度大的问题。对于纳米HZSM-5沸石分子筛来说,其等电点比较低,表面状态相对复杂,还会存在酸中心,制备高度分散的Pt粒子更是不易。至于在锌改性的HZSM-5沸石分子筛上负载铂,目前能查到的文献还很少。
发明内容
为解决上述问题,本发明提供了一种在Zn改性的HZSM-5沸石上用氯铂酸制备高分散铂的简单方法,将铂负载在HZSM-5沸石上,得到新型催化剂。本发明的关键是在负载铂之前,先在Zn改性的H-ZSM-5沸石上负载少量Sn。
本发明的技术方案:
一种高分散Pt改性纳米HZSM-5催化剂的制备方法,采用分步浸渍法,具体如下:
首先将占高分散Pt改性纳米HZSM-5催化剂质量分数为1.0%-8.0%的Zn负载于纳米HZSM-5沸石上,得到Zn/HZSM-5载体。再将占高分散Pt改性纳米HZSM-5催化剂质量分数为0.1%-0.5%的Sn和0.1%Pt负载于Zn/HZSM-5载体上,三金属间强相互作用,形成高分散的纳米Pt粒子,进而得到具有金属-酸双功能的新型催化剂ZnSnPt/HZSM-5。
所述的催化剂ZnSnPt/HZSM-5应用于丙烷的芳构化反应,反应温度450-600℃,压力0-0.7Mpa,WHSV为0.33-1.0h-1。通过对催化剂反应性能的比较,Zn占高分散Pt改性纳米HZSM-5催化剂的质量分数为6.0%、Sn占高分散Pt改性纳米HZSM-5催化剂的质量分数为0.2%时,Zn6.0Sn0.2Pt0.1/HZSM-5催化剂在丙烷芳构化中,550℃,0.1Mpa,0.55h-1空速条件下,表现出较优异的BTX选择性及稳定性。
本发明的优点和益处在于:本发明能够在等电点不利于负载Pt的低硅铝比HZSM-5上利用氯铂酸前驱体制备低载量、高分散的Pt粒子,并且催化剂具有金属-酸双功能特性。本发明所述的ZnSnPt/HZSM-5催化剂用于低碳烃的芳构化反应,能够提高芳构化产物选择性高,而裂解及氢解产物(C1~C2)少的显著特点,且表现出优异的稳定性,3600h内未见明显失活。另外,此制备方法同样适用于不同硅铝比的沸石,并都可表现出良好的催化性能。
附图说明
图1为Pt/HZSM-5、ZnPt/HZSM-5以及Zn、Sn、Pt负载不同Si/Al比HZSM-5催化剂的TEM照片;
图2(a)、图2(b)和图2(c)为用固定床评价ZnSnPt/HZSM-5中Sn负载量的变化对丙烷芳构化反应性能的影响示意图(反应条件:T=550℃,P=0.1Mpa,WHSV=0.55h-1,TOS=48h)。
具体实施方式
对比实施例1
采用硅铝比为30的HZSM-5沸石分子筛为母体。水浴条件下采用分步浸渍法,首先制备负载金属Zn的Zn/HZSM-5催化剂:在充分搅拌下,将HZSM-5母体浸渍在Zn(NO3)2溶液中,溶液pH值为2-3,水浴温度为80℃,负载时间为4小时。改性液体积为纳米ZSM-5沸石吸水体积的3倍(每10g ZSM-5沸石吸水20ml);干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为6小时。得到Zn的质量百分数为6.0%的Zn/HZSM-5沸石。
对比实施例2
采用硅铝比为30的HZSM-5沸石分子筛为母体。水浴条件下采用分步浸渍法,首先制备负载金属Zn的Zn/HZSM-5催化剂:在充分搅拌下,将HZSM-5母体浸渍在Zn(NO3)2溶液中,溶液pH值为2-3,水浴温度为80℃,负载时间为4小时。改性液体积为纳米ZSM-5沸石吸水体积的3倍(每10g ZSM-5沸石吸水20ml);干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为6小时。得到Zn的质量百分数为6.0%的Zn/HZSM-5沸石。然后,以H2PtCl4·6H2O为前驱体,采用浸渍法制备:将上述制备好的Zn/HZSM-5催化剂在充分搅拌下,充分浸渍在Pt前驱体溶液中,具体做法是:将1g H2PtCl4·6H2O溶于100ml容量瓶中,取一定量配制好的H2PtCl6溶液,加水稀释,使得Pt元素的质量百分含量为0.1%。再将Zn/HZSM-5沸石浸渍在配制好的0.1%的H2PtCl6溶液中,负载温度80℃,负载时间4h。通过等体积浸渍法,在Zn/HZSM-5催化剂中引入质量百分数为0.1%的Pt,干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为4小时,最终得到ZnPt/HZSM-5催化剂。
对比实施例3
采用硅铝比为30的HZSM-5沸石分子筛为母体。水浴条件下采用分步浸渍法,首先制备负载金属Zn的Zn/HZSM-5催化剂:在充分搅拌下,先将HZSM-5母体浸渍在Zn(NO3)2溶液中,溶液pH值为2-3,水浴温度为80℃,负载时间为4小时。改性液体积为纳米ZSM-5沸石吸水体积的3倍(每10g ZSM-5沸石吸水20ml);干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为6小时。得到Zn的质量百分数为6.0%的Zn/HZSM-5沸石。然后采用SnCl2·2H2O为改性剂,对Zn/HZSM-5沸石进行改性,采用溶液过量浸渍法进行改性。具体过程为:80℃水浴条件下,将30g纳米Zn/HZSM-5沸石置于配置好的SnCl2水溶液中搅拌浸渍4小时。SnCl2的用量为0.396g,用蒸馏水配置为180ml溶液。然后经过滤、干燥、焙烧得到ZnSn/HZSM-5沸石。改性液体积为Sn改性纳米ZSM-5沸石吸水体积的3倍(每10g Sn改性Zn/HZSM-5沸石吸水20ml);干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为6小时。得到Sn的质量百分数为0.2%的ZnSn/HZSM-5沸石。最后,以H2PtCl4·6H2O为前驱体,采用等体积浸渍法制备:将上述制备好的ZnSn/HZSM-5催化剂在充分搅拌下,充分浸渍在Pt前驱体溶液中,具体做法是:将1g H2PtCl4·6H2O溶于100ml容量瓶中,取一定量配制好的H2PtCl6溶液,加水稀释,使得Pt元素的质量百分含量为0.1%。再将ZnSn/HZSM-5沸石浸渍在配制好的0.1%的H2PtCl6溶液中,负载温度80℃,负载时间4h。通过等体积浸渍法,在Zn/HZSM-5催化剂中引入质量百分数为0.1%的Pt,干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为4小时,最终得到ZnSnPt/HZSM-5催化剂。
实施例1:
0.1%Pt/HZSM-5(Si/Al=30)的制备方法:
(1)参照公开专利CN100364890C披露的方法合成出ZSM-5分子筛原粉。然后在540℃下焙烧4小时得到ZSM-5分子筛。
(2)铵交换处理:将焙烧过的分子筛于适宜的温度下用铵盐溶液进行离子交换处理。然后,用去离子水洗涤到中性,再干燥、焙烧得到氢型催化剂。所说的铵盐为硝酸铵,铵盐溶液浓度为0.6mol/L,催化剂与铵盐溶液的液固体积比为5:1,交换温度为30℃,交换时间为1小时,交换次数2次。干燥温度110℃,干燥时间12小时,焙烧温度为540℃,焙烧时间为6小时。交换后Na+含量不高于0.5%。
(3)酸扩孔处理:将氢型催化剂于适宜的酸浓度和温度下进行酸扩孔处理。然后用去离子水洗涤至中性,再干燥、焙烧得到催化剂。所说的酸为HNO3。酸浓度为0.6mol/L,酸溶液与催化剂的液固体积比5:1,酸扩孔处理时间为24小时,处理温度为30℃。干燥温度为110℃,干燥时间为12小时,焙烧温度选540℃,焙烧时间为3小时。
(4)H2PtCl4·6H2O为前驱体,充分浸渍在Pt前驱体溶液中,具体做法是:将1gH2PtCl4·6H2O溶于100ml容量瓶中,取一定量配制好的H2PtCl6溶液,加水稀释,使得Pt元素的质量百分含量为0.1%。再将Zn/HZSM-5沸石浸渍在配制好的0.1%的H2PtCl6溶液中,负载温度80℃,负载时间4h。通过等体积浸渍法,在Zn/HZSM-5催化剂中引入质量百分数为0.1%的Pt,干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为4小时,最终得到Pt/HZSM-5催化剂。
实施例2:
Zn6.0Pt0.1Sn0.2/HZSM-5的制备方法:
(1)重复实施例1的(1)(2)(3),制备氢型纳米HZSM-5载体。
(2)在充分搅拌下,先将HZSM-5母体浸渍在Zn(NO3)2溶液中,溶液pH值为2-3,水浴温度为80℃,负载时间为4小时。改性液体积为纳米ZSM-5沸石吸水体积的3倍(每10g ZSM-5沸石吸水20ml);干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为6小时。得到Zn的质量百分数为6.0%的Zn/HZSM-5沸石。
(3)以H2PtCl4·6H2O为前驱体,采用等体积浸渍法制备:将上述制备好的Zn/HZSM-5催化剂在充分搅拌下,充分浸渍在Pt前驱体溶液中,具体做法是:将1g H2PtCl4·6H2O溶于100ml容量瓶中,取一定量配制好的H2PtCl6溶液,加水稀释,使得Pt元素的质量百分含量为0.1%。再将Zn/HZSM-5沸石浸渍在配制好的0.1%的H2PtCl6溶液中,负载温度80℃,负载时间4h。在Zn/HZSM-5催化剂中引入质量百分数为0.1%的Pt,干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为4小时,最终得到ZnPt/HZSM-5催化剂。
(4)采用SnCl2·2H2O为改性剂,对ZnPt/HZSM-5沸石进行改性,采用溶液过量浸渍法进行改性。具体过程为:80℃水浴条件下,将30g纳米ZnPt/HZSM-5沸石置于配置好的SnCl2水溶液中搅拌浸渍4小时。SnCl2的用量为0.396g,用蒸馏水配置为180ml溶液。然后经过滤、干燥、焙烧得到ZnSn/HZSM-5沸石。改性液体积为Sn改性纳米ZSM-5沸石吸水体积的3倍(每10g Sn改性ZnPt/HZSM-5沸石吸水20ml);干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为6小时。得到Sn的质量百分数为0.2%的ZnPtSn/HZSM-5沸石。
实施例3:
Sn0.2Zn6.0Pt0.1/HZSM-5的制备方法:
(1)重复实施例1的(1)(2)(3),制备氢型纳米HZSM-5载体。
(2)采用SnCl2·2H2O为改性剂,对HZSM-5沸石进行改性,采用溶液过量浸渍法进行改性。具体过程为:80℃水浴条件下,将30g纳米HZSM-5沸石置于配置好的SnCl2水溶液中搅拌浸渍4小时。SnCl2的用量为0.396g,用蒸馏水配置为180ml溶液。然后经过滤、干燥、焙烧得到Sn/HZSM-5沸石。干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为6小时。得到Sn的质量百分数为0.2%的Sn/HZSM-5沸石。
(3)在充分搅拌下,先将Sn/HZSM-5母体浸渍在Zn(NO3)2溶液中,溶液pH值为2-3,水浴温度为80℃,负载时间为4小时。干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为6小时。得到Zn的质量百分数为6.0%的SnZn/HZSM-5沸石。
(4)最后,以H2PtCl4·6H2O为前驱体,采用等体积浸渍法制备:将上述制备好的SnZn/HZSM-5催化剂在充分搅拌下,充分浸渍在Pt前驱体溶液中,具体做法是:将1gH2PtCl4·6H2O溶于100ml容量瓶中,取一定量配制好的H2PtCl6溶液,加水稀释,使得Pt元素的质量百分含量为0.1%。再将SnZn/HZSM-5沸石浸渍在配制好的0.1%的H2PtCl6溶液中,负载温度80℃,负载时间4h,干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为4小时,最终得到SnZnPt/HZSM-5催化剂。
实施例4:
Sn0.2Pt0.1Zn6.0/HZSM-5的制备方法:
(1)重复实施例1的(1)(2)(3),制备氢型纳米HZSM-5载体。
(2)采用SnCl2·2H2O为改性剂,对HZSM-5沸石进行改性,采用溶液过量浸渍法进行改性。具体过程为:80℃水浴条件下,将30g纳米HZSM-5沸石置于配置好的SnCl2水溶液中搅拌浸渍4小时。SnCl2的用量为0.396g,用蒸馏水配置为180ml溶液。然后经过滤、干燥、焙烧得到Sn/HZSM-5沸石。干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为6小时。得到Sn的质量百分数为0.2%的Sn/HZSM-5沸石。
(3)以H2PtCl4·6H2O为前驱体,采用等体积浸渍法制备:将上述制备好的Sn/HZSM-5催化剂在充分搅拌下,充分浸渍在Pt前驱体溶液中,具体做法是:将1g H2PtCl4·6H2O溶于100ml容量瓶中,取一定量配制好的H2PtCl6溶液,加水稀释,使得Pt元素的质量百分含量为0.1%。再将Sn/HZSM-5沸石浸渍在配制好的0.1%的H2PtCl6溶液中,负载温度80℃,负载时间4h,干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为4小时,最终得到SnPt/HZSM-5催化剂。
(4)在充分搅拌下,先将SnPt/HZSM-5母体浸渍在Zn(NO3)2溶液中,溶液pH值为2-3,水浴温度为80℃,负载时间为4小时。干燥温度100℃,干燥时间12小时;焙烧温度选540℃,焙烧时间为6小时。得到Zn的质量百分数为6.0%的SnPtZn/HZSM-5沸石。
实施例5:
重复对比实施例3,但将其中的Si/Al为30的HZSM-5载体替换为Si/Al是100的HZSM-5沸石(ZnSnPt/HZSM-5(Si/Al=100))。
实施例6:
重复对比实施例3,将其中Zn的负载量更改为1wt%、3wt%、8wt%和12wt%。
实施例7:
重复对比实施例3,但将其中的Si/Al为30的HZSM-5载体替换为Si/Al是700的HZSM-5沸石(ZnSnPt/HZSM-5(Si/Al=700))。
实施例8:
重复对比实施例3,但将其中的Si/Al为30的HZSM-5载体替换为全硅沸石(ZnSnPt/S-1)。
实施例9:
重复对比实施例3,但将其中Sn的用量更改为0.1%。
实施例10:
重复对比实施例3,但将其中Sn的用量更改为0.3%。
实施例11:
重复对比实施例3,但将其中Sn的用量更改为0.5%。
实施例12:
将对比实施例1-3得到的改性的ZSM-5沸石及本发明实施例1,5-7制备的改性的ZSM-5沸石进行TEM表征,经三金属Zn、Sn、Pt改性后,均可得到高度均匀分散的Pt粒子(如图1所示)。
实施例13:
对比ZnSnPt/HZSM-5中Sn负载量的变化对丙烷芳构化反应性能的影响。
将对比实施例3得到的改性的ZSM-5沸石及本发明实施例8-10制备的改性的ZSM-5沸石进行丙烷芳构化性能比较,相比于其他Sn的负载量,对比例实施例3中Sn的负载量更有益于得到高BTX选择性(如图2(a)、图2(b)和图2(c)所示,当Sn与Pt的摩尔比为3时,Sn的负载量为0.2wt%,此时丙烷转化率为67.02%,BTX选择性为47.26%)。
实施例14:丙烷芳构化性能的比较
将对比实施例1-3得到的改性的ZSM-5沸石、本发明实施例1-4制备的改性的ZSM-5沸石进行丙烷芳构化反应,反应条件为:T=550℃,P=0.1Mpa,WHSV=0.55h-1。对比实施例3,相比于未经改性的HZSM-5以及对比实施例1-2、实施例1-4,具有更优异的丙烷芳构化性能。主要表现在BTX选择性高,催化剂稳定性高,3600h内未见明显失活(如表1所示)。
表1 ZnSnPt/HZSM-5催化剂金属负载顺序以及与其他参比催化剂丙烷芳构化反应性能的比较
反应条件:T=550℃,P=0.1Mpa,WHSV=0.55h-1,TOS=48h.

Claims (3)

1.一种高分散Pt改性纳米HZSM-5催化剂的制备方法,其特征在于,将占高分散Pt改性纳米HZSM-5催化剂质量分数为1.0%-8.0%的Zn负载于纳米HZSM-5沸石上,得到Zn/HZSM-5载体;再将占高分散Pt改性纳米HZSM-5催化剂质量分数为0.1%-0.5%的Sn和0.1%Pt负载于Zn/HZSM-5载体上,三金属间强相互作用,形成高分散的纳米Pt粒子,进而得到具有金属-酸双功能的新型催化剂ZnSnPt/HZSM-5。
2.根据权利要求1所述的一种高分散Pt改性纳米HZSM-5催化剂的制备方法,其特征在于,Zn占高分散Pt改性纳米HZSM-5催化剂的质量分数为6.0%、Sn占高分散Pt改性纳米HZSM-5催化剂的质量分数为0.2%。
3.权利要求1所述制备方法制备的分散Pt改性纳米HZSM-5催化剂应用于丙烷的芳构化反应,其特征在于,反应温度450-600℃,压力0-0.7Mpa,WHSV为0.33-1.0h-1
CN201811480690.XA 2018-12-05 2018-12-05 一种高分散Pt改性纳米HZSM-5催化剂的制备方法及应用 Pending CN109622022A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811480690.XA CN109622022A (zh) 2018-12-05 2018-12-05 一种高分散Pt改性纳米HZSM-5催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811480690.XA CN109622022A (zh) 2018-12-05 2018-12-05 一种高分散Pt改性纳米HZSM-5催化剂的制备方法及应用

Publications (1)

Publication Number Publication Date
CN109622022A true CN109622022A (zh) 2019-04-16

Family

ID=66071171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811480690.XA Pending CN109622022A (zh) 2018-12-05 2018-12-05 一种高分散Pt改性纳米HZSM-5催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN109622022A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111437813A (zh) * 2020-03-26 2020-07-24 厦门大学 一种异丁烷脱氢催化剂及其制备方法和应用
CN114210362A (zh) * 2021-11-30 2022-03-22 大连理工大学 一种锌离子改性Sn-Beta沸石的制备方法和应用
CN114308114A (zh) * 2020-09-30 2022-04-12 大连理工大学 一种脱硝催化剂及其制备方法、应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367048A (zh) * 2008-09-28 2009-02-18 中国海洋石油总公司 一种凝析油芳构化催化剂的制备方法与应用
CN108816271A (zh) * 2018-06-15 2018-11-16 大连理工大学 ZnO改性全硅沸石分子筛负载Pt催化剂及制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367048A (zh) * 2008-09-28 2009-02-18 中国海洋石油总公司 一种凝析油芳构化催化剂的制备方法与应用
CN108816271A (zh) * 2018-06-15 2018-11-16 大连理工大学 ZnO改性全硅沸石分子筛负载Pt催化剂及制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WEIZHOU等: "Enhanced Dehydrogenative Aromatization of Propane by Incorporati", 《INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH》 *
刘路加 等: "镓锌铂改性HZSM-5催化剂芳构化性能的研究", 《石油炼制》 *
周微等: "丙烷在ZnSnPt三元金属改性纳米HZSM-5沸石上芳构化的研究", 《第十七届全国催化学术会议(杭州)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111437813A (zh) * 2020-03-26 2020-07-24 厦门大学 一种异丁烷脱氢催化剂及其制备方法和应用
CN111437813B (zh) * 2020-03-26 2021-12-17 厦门大学 一种异丁烷脱氢催化剂及其制备方法和应用
CN114308114A (zh) * 2020-09-30 2022-04-12 大连理工大学 一种脱硝催化剂及其制备方法、应用
CN114308114B (zh) * 2020-09-30 2023-02-10 大连理工大学 一种脱硝催化剂及其制备方法、应用
CN114210362A (zh) * 2021-11-30 2022-03-22 大连理工大学 一种锌离子改性Sn-Beta沸石的制备方法和应用

Similar Documents

Publication Publication Date Title
Dai et al. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane
Otor et al. Encapsulation methods for control of catalyst deactivation: a review
Das et al. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO 2
Wang et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation
Zhang et al. The effect of coordination environment on the activity and selectivity of single-atom catalysts
Pang et al. Hierarchical echinus-like Cu-MFI catalysts for ethanol dehydrogenation
CN110769930B (zh) 水蒸气重整用催化剂结构体、具备该水蒸气重整用催化剂结构体的重整装置以及水蒸气重整用催化剂结构体的制造方法
CN103272634B (zh) 纳米金属负载型分子筛催化剂的制备方法
Zahmakiran et al. Zeolite-confined ruthenium (0) nanoclusters catalyst: record catalytic activity, reusability, and lifetime in hydrogen generation from the hydrolysis of sodium borohydride
Zhu et al. Carbon nanomaterials in catalysis: proton affinity, chemical and electronic properties, and their catalytic consequences
CN107020147B (zh) 一种封装金属氧化物或金属纳米颗粒的mfi结构片层状分子筛催化剂、其制备方法及用途
Cui et al. Incorporation of active metal species in crystalline porous materials for highly efficient synergetic catalysis
Zhang et al. Total oxidation of toluene and propane over supported Co3O4 catalysts: effect of structure/acidity of MWW zeolite and cobalt loading
CN105879899A (zh) 核壳结构多级孔道式钴基费托合成催化剂及其制备方法
CN109622022A (zh) 一种高分散Pt改性纳米HZSM-5催化剂的制备方法及应用
Lü et al. Fischer–Tropsch synthesis: ZIF-8@ ZIF-67-Derived cobalt nanoparticle-embedded nanocage catalysts
CN101596462B (zh) 一种加氢异构催化剂及其制备方法
CN109622023A (zh) 一种用于丙烷脱氢芳构化反应催化剂的制备方法及应用
CN105921167A (zh) 整体式铁钴双金属费托合成催化剂及其制备方法
CN114558612A (zh) 多级孔ZSM-5分子筛封装Pt-Ni双金属催化剂及其制备方法和用途
CN101190413A (zh) 一种石脑油重整催化剂及其制备方法
Liu et al. From core–shell to yolk–shell: Improved catalytic performance toward CoFe2O4@ Hollow@ mesoporous TiO2 toward selective oxidation of styrene
Nkinahamira et al. Current progress on methods and technologies for catalytic methane activation at low temperatures
Navlani-García et al. Photocatalytic approaches for hydrogen production via formic acid decomposition
Tian et al. A general and scalable approach to sulfur-doped mono-/bi-/trimetallic nanoparticles confined in mesoporous carbon

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190416