CN109622017B - 一种氮掺杂碳材料负载钴催化剂及其制备方法和在醛类化合物还原胺化中的应用 - Google Patents

一种氮掺杂碳材料负载钴催化剂及其制备方法和在醛类化合物还原胺化中的应用 Download PDF

Info

Publication number
CN109622017B
CN109622017B CN201811646604.8A CN201811646604A CN109622017B CN 109622017 B CN109622017 B CN 109622017B CN 201811646604 A CN201811646604 A CN 201811646604A CN 109622017 B CN109622017 B CN 109622017B
Authority
CN
China
Prior art keywords
solution
catalyst
nitrogen
doped carbon
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811646604.8A
Other languages
English (en)
Other versions
CN109622017A (zh
Inventor
张泽会
袁紫亮
刘冰
池泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South Central Minzu University
Original Assignee
South Central University for Nationalities
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South Central University for Nationalities filed Critical South Central University for Nationalities
Priority to CN201811646604.8A priority Critical patent/CN109622017B/zh
Publication of CN109622017A publication Critical patent/CN109622017A/zh
Application granted granted Critical
Publication of CN109622017B publication Critical patent/CN109622017B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B43/00Formation or introduction of functional groups containing nitrogen
    • C07B43/04Formation or introduction of functional groups containing nitrogen of amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/38Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/52Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及催化剂的制备和应用技术领域,更具体涉及一种氮掺杂碳材料负载钴催化剂及其制备方法和在醛类化合物还原胺化中的应用,通过将Co2+与邻苯二胺配位,通过保持pH相对不变,使Co2+不至于脱落到溶剂中,然后用环保的H2O2作为诱导剂,使邻苯二胺发生聚合反应,制备含Co的复合材料前体,在复合材料前体的基础上,通过在惰性气体下热解煅烧,制备得到一种氮掺杂碳材料负载钴催化剂,该催化剂可用于温和条件下催化加氢还原胺化醛类化合物制备重要有机合成中间体—苄胺类化合物。本发明中的催化剂制备方法简单,在催化加氢还原胺化醛类化合物中具有良好催化效果,催化剂稳定性良好,可循环12次以上,该催化剂在工业应用中,具有良好的应用前景。

Description

一种氮掺杂碳材料负载钴催化剂及其制备方法和在醛类化合 物还原胺化中的应用
技术领域
本发明涉及催化剂的制备和应用技术领域,更具体涉及一种氮掺杂碳材料负载钴催化剂及其制备方法和在醛类化合物还原胺化中的应用。
背景技术
伯胺是合成大量药物和农用化学品的重要中间体,尤其是苄胺类化合物可用作有机溶剂及合成医药中间体、农药及香料原料,铂、钒和钨酸盐的测定,以及作钍、铈、镧、锆等的沉淀剂。
长期以来,为了可持续、高选择性地合成伯胺,开发新的催化途径引起了科研工作者、工业催化领域极大的关注。近几十年来,已有多种新型催化方法用于合成伯胺,如酰胺化合物的加氢,腈类化合物的催化加氢还原胺化,芳基卤化合物的胺化,羰基化合物的还原胺化,醇类化合物的直接胺化。尽管一些报道的方法对伯胺的合成有高的选择性,但其稳定性较差,所以仍有必要开发一种或多种能在温和条件下高效和高选择性生产伯胺的新途径及新方法。
在这种情况下,由于醛类化合物原料价廉、易获得,并且原子利用率高,其代表了获得伯胺的有科学意义的合成手段;用H2对醛类化合物催化氢化还原胺化已在许多均相催化剂和多相催化剂存在的条件下应用,如:均相Ir配合物,Ru-氢化物,Fe配合物等成功应用于醛类化合物催化氢化还原胺化,但均相催化剂的再循环和再利用困难,以及均相催化剂中痕量金属的掉落会污染目标产物,难于分离,对于药品生产来说,这将是致命的缺点。在以往研究中,多相非贵金属催化剂很少用于将腈类化合物还原胺化生成伯胺,例如:Beller及其同事已经制备了金属氧化物负载的钴催化剂,用于将腈类化合物氢化成伯胺,其在120~160℃和30bar的H2压力下进行,但是其金属氧化物载体相对于氮掺杂碳材料来说,在氢气条件容易被部分还原,以至催化剂不稳定,并且以往的多相催化剂应用于该反应,总是需要高的氢气压力(>10bar),这对于工业生产来说,无疑增加了巨大的挑战;因此,开发用于醛类化合物催化氢化还原胺化的新型有效催化系统仍然具有挑战性。
发明内容
为解决上述现有技术中存在的问题,本发明提供了一种氮掺杂碳材料负载钴催化剂及其制备方法和在醛类化合物催化加氢还原胺化制备苄胺类化合物中的应用,该催化剂为非贵金属催化剂,且制备方法简单易操作,可用于催化醛类化合物催化加氢还原胺化制备苄胺类化合物。
利用上述催化剂用于醛类化合物催化加氢还原胺化制备苄胺类化合物,不仅反应条件温和,而且收率相对较高。
为了实现上述的目的,本发明采用以下技术方案:
1.一种氮掺杂碳材料负载钴催化剂,由以下方法步骤制备得到:
(1)将邻苯二胺(OPDA)分散在水中,向其中加入硝酸钴(一般使用六水合硝酸钴),在室温下搅拌一段时间(2-8h),形成均匀的Co-OPDA络合物溶液;
(2)在Co-OPDA络合物溶液中加入HNO3溶液使溶液pH=6-7,然后加入胶体二氧化硅,搅拌均匀,得到悬浮液;
(3)然后向悬浮液中缓慢加入H2O2溶液,同时向其中添加碱性中和剂使反应溶液的pH值保持稳定(稳定在pH=6-7),待H2O2溶液加完后,继续在室温下搅拌10-15h,减压过滤,所得固体在50-100℃下,干燥8-15h,得到催化剂前体Co-PPDA;
(4)将催化剂前体Co-PPDA在惰性气体气氛下,升温至600℃-900℃,在600℃-900℃下热解1.5-3.5h,待降至室温后,所得样品用HF溶液洗涤,离心,再用蒸馏水洗涤后,将所得固体干燥得到氮掺杂碳材料负载钴催化剂;
所述邻苯二胺、硝酸钴与胶体二氧化硅用量比为0.5-1.5mmol:1-3mmol:0.1-5mL,优选为1mmol:1mmol:0.5mL。
进一步的,所述胶体二氧化硅浓度为35-50wt.%。
进一步的,所述步骤(4)中将催化剂前体Co-PPDA在氮气气氛下,升温至800℃,在800℃下热解2h。
进一步的,所述H2O2溶液为:浓度20-40wt.%的H2O2水溶液,所述邻苯二胺与H2O2溶液用量比为1mmol:2-10mL,优选地,所述H2O2溶液为30wt.%的H2O2水溶液,邻苯二胺与H2O2溶液用量比为1mmol:2mL。
进一步的,步骤(2)中所述HNO3溶液为1mol/L的HNO3溶液。
进一步的,步骤(3)中所述碱性中和剂为1mol/L的NaHCO3溶液。
进一步的,步骤(4)中所述升温的升温速率为3℃/min。
进一步的,步骤(3)中减压过滤后的固体在70℃下,干燥12h。
进一步的,步骤(4)中所述干燥条件为60℃下真空干燥12h。
进一步的,步骤(4)中所述惰性气体为氮气。
进一步的,步骤(4)中所述用HF溶液洗涤的具体操作为:将所得样品浸入20wt%的HF溶液中,在室温下放置24h。
本发明还提供了一种上述的氮掺杂碳材料负载钴催化剂在醛类化合物催化加氢还原胺化制备苄胺类化合物中应用。
所述应用包括如下步骤:
将氮掺杂碳材料负载钴催化剂、溶剂、醛类化合物、氨水按照用量比10-30mg:10-30mL:1mmol:0.5-5.0mL加入到反应容器中,除去反应容器中空气,密封反应容器后充入1bar-20bar还原性气体,在搅拌、90-150℃下反应1-18h,待反应产物冷却至室温后,减压过滤,得到苄胺类化合物。
所述醛类化合物为对氟苯甲醛
Figure BDA0001932175450000031
对氯苯甲醛
Figure BDA0001932175450000032
对溴苯甲醛
Figure BDA0001932175450000033
苯甲醛
Figure BDA0001932175450000034
对甲基苯甲醛
Figure BDA0001932175450000035
对甲氧基苯甲醛
Figure BDA0001932175450000036
对(二甲氨基)苯甲醛
Figure BDA0001932175450000037
2-萘苯甲醛
Figure BDA0001932175450000038
4-吡啶甲醛
Figure BDA0001932175450000039
糠醛
Figure BDA00019321754500000310
正庚醛
Figure BDA00019321754500000311
异丁醛
Figure BDA00019321754500000312
或环己基甲醛
Figure BDA00019321754500000313
进一步的,所述氨水的浓度为25-28wt.%。
进一步的,所述还原性气体为氢气。
进一步的,所述溶剂为异丙醇、乙腈、甲苯、乙酸乙酯、甲醇、无水乙醇和水中的任意一种,优选为无水乙醇。
进一步的,所述应用包括如下步骤:
将氮掺杂碳材料负载钴催化剂、溶剂、醛类化合物、氨水按照用量比20mg:10mL:1mmol:0.5-2.0mL加入到反应容器中,除去反应容器中空气,密封反应容器后充入1bar-10bar还原性气体,在搅拌、90-150℃下反应6-18h,待反应产物冷却至室温后,减压过滤,得到苄胺类化合物。
更优选为:将氮掺杂碳材料负载钴催化剂、溶剂、醛类化合物、氨水按照用量比20mg:10mL:1mmol:0.5-2.0mL加入到反应容器中,除去反应容器中的空气,密封反应容器后充入5bar-10bar还原性气体,在搅拌、110-130℃下反应8-12h,待反应产物冷却至室温后,减压过滤,得到苄胺类化合物。
本发明与现有技术相比,具有以下优点和效果:
1、本发明通过Co2+与邻苯二胺配位,通过保持pH相对不变,使Co2+不至于脱落到溶剂中,然后用环保的H2O2作为诱导剂,使邻苯二胺发生聚合反应,制备含Co的复合材料前体,在复合材料前体的基础上,通过在氮气下热解煅烧,制备出了一种氮掺杂碳材料负载钴催化剂,该新型催化剂的制备方法相对简单,制备过程所用溶剂和诱导剂环保无污染,是一类环境友好的催化材料制备过程。
2、本发明将上述制备的新型催化剂用于醛类化合物催化加氢还原胺化制备苄胺类化合物,相对于现有的方法,其反应温度和反应压强降低,反应的条件变得温和,因而大幅度降低了苄胺类化合物的制备成本,而且相对于现有Pd、Au等金属催化剂,产物苄胺类化合物的收率保持更高水平。
3、本发明制备的催化剂稳定性较好,可循环12次以上,具有良好的工业应用前景。
附图说明
图1为实施例1的氮掺杂碳材料负载钴催化剂的制备流程图简图。
图2为实施例1-3的氮掺杂碳材料负载钴催化剂的透射电子显微镜图和粒径分布图,其中Co@CN-600、Co@CN-800、Co@CN-900的透射电子显微镜图分别为图2a、图2b、图2c,Co@CN-600、Co@CN-800、Co@CN-900的粒径分布图分别为图2d、图2e、图2f。
图3为实施例1-3制备得到的氮掺杂碳材料负载钴催化剂的X射线衍射图谱(XRD图谱)。
图4为实施例1的Co@CN-800催化剂的X光电子能谱(XPS图谱)N 1s谱。
图5为实施例2的Co@CN-600催化剂的X光电子能谱(XPS图谱)N 1s谱。
图6为实施例3的Co@CN-900催化剂的X光电子能谱(XPS图谱)N 1s谱。
图7为实施例1的Co@CN-800催化剂的X光电子能谱拟合后的图谱C 1s谱。
图8为实施例1-3的氮掺杂碳材料负载钴催化剂的X光电子能谱拟合后的图谱Co2p谱。
图9为实施例1-3的氮掺杂碳材料负载钴催化剂的拉曼光谱(Raman图谱)。
图10为实施例1-3的氮掺杂碳材料负载钴催化剂的N2吸附-脱附(图10-1)及孔径分布图(图10-2)。
具体实施方式
下面结合具体实施例和说明书附图对本发明的技术方案进行详细说明,但以下实施例不用来限制本发明要求保护的范围。
以下实施例中所用邻苯二胺、Co(NO3)2·6H2O、H2O2(30wt.%)和NaHCO3均购自阿拉丁,批号分别为P103811、C112731、H112517、S112334。
所用胶体二氧化硅为
Figure BDA0001932175450000051
HS-40,浓度40wt%。
所用氨水的浓度为26.5wt.%。
实施例1
一种氮掺杂碳材料负载钴催化剂,由以下方法制备而成:
(1)首先,将0.01mol邻苯二胺(OPDA)分散在100mL蒸馏水中,以形成均匀的OPDA溶液,然后向其中加入10mmol Co(NO3)2·6H2O,在室温下搅拌4h,形成均匀的Co-OPDA络合物溶液;
(2)在上述均匀的Co-OPDA络合物溶液中加入1-2滴1mol/L的HNO3溶液以使溶液pH=6-7;之后,将5mL40wt.%的胶体二氧化硅加入到上述酸性Co-OPDA络合物溶液中,并且剧烈搅拌2h,获得均匀的悬浮液;
(3)然后向悬浮液中缓慢加入20mLH2O2(30wt.%)溶液,进行聚合形成Co-PPDA的聚合物,H2O2溶液在30min加完,滴加过程中向其中添加新制的1mol/LNaHCO3溶液使整个体系pH值保持在6-7,H2O2溶液加完后,继续在室温下连续搅拌12h,减压过滤获得固体,将其在70℃下、干燥12h,得到催化剂前体:Co-PPDA。由于OPDA和PPDA中的胺配体对质子(H+)的亲和力高于对Co2+的亲和力,而氧化聚合过程会导致pH降低,从而Co2+会被络合物释放;为了使聚合过程中Co2+不被释放出,在氧化步骤期间添加新制的1mol/LNaHCO3溶液充当中和剂,使整个体系pH值保持稳定,以确保Co-PPDA中的配位Co-Nx的密度更高。
(4)将得到的催化剂前体Co-PPDA在氮气气氛下,以3℃/min的加热速率从室温升至目标热解温度800℃,在800℃下热解2h,待降至室温后,取出浸入HF溶液(20wt%)中24h,洗掉二氧化硅硬模板和松散结合的钴纳米颗粒,然后离心并用蒸馏水洗涤三次。最后,将所得固体在60℃真空烘箱中干燥12h,得到氮掺杂碳材料负载钴催化剂:Co@CN-800。
实施例2
与实施例1的操作及步骤相同,只改变目标热解温度为600℃,得到氮掺杂碳材料负载钴催化剂:Co@CN-600。
实施例3
与实施例1的操作及步骤相同,只改变目标热解温度为900℃,得到氮掺杂碳材料负载钴催化剂:Co@CN-900。
对实施例1-3制备的氮掺杂碳材料负载钴的催化剂用透射电子显微镜(TEM)进行扫描,所得的透射电子显微镜图谱如图2所示(图2a-c分别为Co@CN-600、Co@CN-800和Co@CN-900的TEM图谱,图2d-f分别为Co@CN-600、Co@CN-800和Co@CN-900对应的粒径分布图),从图2中可以发现:
如图2a、图2b、图2c所示,在氮掺杂碳材料的表面上清楚地观察到钴纳米颗粒。此外,还清楚地观察到样品的多孔结构;并且因为松散地结合在氮掺杂碳材料表面上的钴纳米颗粒被酸洗掉,因此可以看出内部结构中钴纳米颗粒是嵌入碳层中的。钴纳米颗粒的尺寸分布如图2d、图2e、图2f所示,钴纳米颗粒的平均尺寸从Co@CN-600催化剂的11.2nm略微增加到Co@CN-800催化剂的13.1nm;然而对于Co@CN-900催化剂,观察到钴纳米颗粒严重聚集。这些结果表明,热解温度的升高导致钴纳米颗粒生长团聚;除了热解温度的升高外,在较高的热解温度下氮含量降低(由图4-6中的XPS确定)也是钴纳米颗粒在较高热解温度下团聚的原因之一,因为氮原子具有通过电子相互作用稳定金属纳米粒子的能力。
对实施例1-3制备的氮掺杂碳材料负载钴催化剂进行X射线衍射图谱分析,通过对材料进行X射线衍射测试,分析其衍射图谱,获得材料内部原子或分子的结构或形态等信息,Co@CN-T样品的XRD图谱如图3所示,在Co@CN-T催化剂的XRD图中观察到在2θ=44.0°处的特征峰,其为金属Co纳米的(111)晶面(JCPDS No.15-0806),这些结果表明钴纳米颗粒是金属态的晶相。另外,在所有三个样品中观察到在2θ=25.8°处的衍射峰,其为Co@CN-T催化剂六方石墨结构的(002)晶面,从图中还可以看出,随着热解温度的升高,XRD图谱的衍射峰变得尖锐,这说明随着热解温度升高,Co@CN-T催化剂的石墨碳和金属Co纳米的结晶度都在升高。
对实施例1-3制备的氮掺杂碳材料负载钴催化剂进行X光电子能谱分析,通过XPS技术表征氮、碳和钴的价态,所得的X光电子能谱分析如图4-8所示,图4为实施例1的Co@CN-800催化剂的能谱图N 1s谱,图5为实施例2的Co@CN-600催化剂的能谱图N 1s谱,图6为实施例3的Co@CN-900催化剂的能谱图N 1s谱,图7为实施例1的Co@CN-800催化剂的能谱图C 1s谱,图8为实施例1-3的催化剂的能谱图Co 2p谱。
N 1s的XPS图谱可以拟合为四种类型的氮结合方式,分别为吡啶-N(398.5eV,N1),Co-N(399.5eV,N2),吡咯-N(400.3~400.5eV,N3)和石墨-N(401.4eV,N4);通过XPS测定的Co@CN-600、Co@CN-800、Co@CN-900催化剂中的氮原子的原子百分比分别为18.0at.%、4.0at.%和3.4at.%,表明高热解温度导致碳层中氮结构的破坏。此外,Co@CN-T催化剂中的氮原子类型也受到热解温度的影响。如图4-6所示,Co-N(399.5eV,N2)仅存在于Co@CN-600催化剂中,该催化剂在低热解温度下制备,具有最高的氮含量;石墨-N(401.4eV,N4)仅在Co@CN-900催化剂的XPS光谱N 1s谱中观察到,表明吡啶-N(398.5eV,N1)和吡咯-N(400.3~400.5eV,N3)逐渐转化为石墨-N,需要900℃的高热解温度。Co@CN-800催化剂的XPS光谱C1s谱如图7所示,图中可以看出C元素sp2杂化的类石墨碳峰(C=C,284.5eV),sp3杂化的类金刚石碳峰(C-C,285.5eV)和C-O键峰(286.5eV)。
Co@CN-T催化剂中钴纳米颗粒的XPS光谱Co 2p谱如图8所示,对于Co@CN-T三个催化剂,钴纳米颗粒的峰强度较弱,原因是钴纳米颗粒嵌入氮掺杂碳层中,因为XPS技术只能检测钴纳米颗粒的表面价态,所以很难通过XPS检测。同时,Co@CN-T催化剂中钴纳米颗粒的表面价态是不同的,对于Co@CN-600催化剂和Co@CN-900催化剂,钴纳米颗粒的氧化态,主要处于其结合能为780eV处的Co 2p3/2峰,而对于Co@CN-800催化剂,钴纳米颗粒的氧化态,主要处于其结合能为778eV处的Co 2p3/2峰。通过ICP测定Co@CN-600、Co@CN-800和Co@CN-900催化剂中钴含量分别为2.17wt.%,2.0wt.%和1.42wt.%。
对实施例1-3制备的氮掺杂碳材料负载钴催化剂进行拉曼光谱分析,所得的拉曼图谱如图9所示,可以看出所有Co@CN-T催化剂均显示出两个峰,波峰在1345cm-1和1580cm-1附近的两个峰,分别称为D峰和G峰。D峰与晶格对称性的结构缺陷相关,G峰与碳的sp2杂化特征相关,计算出D峰强度对G峰强度(ID/IG)为0.79~0.84,这表明Co@CN-T样品的石墨网络中存在缺陷,并且随着热解温度的升高,ID/IG的值略有增加,这表明热解温度的升高略微增加了Co@CN-T的缺陷。
图10为实施例1-3的氮掺杂碳材料负载钴催化剂的N2吸附-脱附(图10-1)及孔径分布图(图10-2)。Co@CN-T催化剂的N2吸附-脱附等温曲线是相似的,显示典型的IV型曲线,即Co@CN-T催化剂显示出中孔结构,这些结果表明,引入二氧化硅(SiO2)作为硬模板,成功地产生中孔结构。根据Brunauer-Emmett-Teller(BET)方法,检测Co@CN-600、Co@CN-800、Co@CN-900催化剂的BET比表面积分别为216.2m2·g-1、690.4m2·g-1和981.2m2·g-1,孔体积分别计算为0.5cm3·g-1、1.5cm3·g-1和2.3cm3·g-1(如表1所示)。这些结果表明,随着热解温度的升高,比表面积和孔体积均增加。
表1.Co@CN-T催化剂的物理化学性质
Figure BDA0001932175450000081
实施例4-6
利用实施例1-3制备的氮掺杂碳材料负载钴催化剂催化醛类化合物还原胺化制备苄胺类化合物的方法,其步骤为:
将Co@CN-T催化剂、溶剂(无水乙醇)、苯甲醛、氨水按照用量分别为20mg、10mL、1mmol、2.0mL加入到25mL的反应釜中,将反应釜用H2吹扫数次以除去空气,密封反应釜后充入20bar还原性气体(H2),以1000rpm的转速搅拌,在130℃下反应4h,反应后,将反应混合物冷却至室温,然后减压过滤除去催化剂,得到还原产物苄胺、N-苄烯丁胺和二苄胺,测得转化率和各产物选择性,具体如表2所示:
表2.不同催化剂对苯甲醛还原胺化的影响
Figure BDA0001932175450000082
Figure BDA0001932175450000083
Figure BDA0001932175450000091
实施例7-13
与实施例5的操作方法及步骤相同,确定催化剂为Co@CN-800,只改变反应溶剂,同样得到产物苄胺、N-苄烯丁胺和二苄胺,测得转化率和各产物选择性,具体如表3所示:
表3.不同溶剂对苯甲醛还原胺化的影响
Figure BDA0001932175450000092
Figure BDA0001932175450000093
实施例14-24
按照实施例5的操作方法和步骤,确定催化剂为Co@CN-800,反应时间为4h,分别改变反应温度、H2压力、氨水用量,同样得到产物苄胺、N-苄烯丁胺和二苄胺,但是转化率和产率不同,具体表4、表5、表6所示。
表4.用不同量的氨水将苯甲醛还原胺化的结果
Figure BDA0001932175450000101
Figure BDA0001932175450000102
表5.H2压力对苯甲醛还原胺化的影响
Figure BDA0001932175450000103
Figure BDA0001932175450000104
表6.反应温度对苯甲醛还原胺化的影响
Figure BDA0001932175450000105
Figure BDA0001932175450000106
实施例25-31
与实施例19的操作方法及步骤相同,确定催化剂为Co@CN-800,只改变反应时间,同样得到产物苄胺、N-苄烯丁胺和二苄胺,具体如表7所示:
表7.反应时间对苯甲醛还原胺化的影响
Figure BDA0001932175450000111
Figure BDA0001932175450000112
实施例32-43
按照实施例31的操作方法及步骤,在苯甲醛(1mmol),催化剂:Co@CN-800 20mg,130℃,H2(10bar),溶剂无水乙醇(10mL),26.5wt.%NH3·H2O(2mL),反应时间12h的条件下反应;反应后,通过离心收集Co@CN-800催化剂,并用蒸馏水洗,直至洗涤溶液的pH=7,然后将洗涤后的催化剂在真空下干燥,并将其用于下一循环。如表8所示,在所研究的12次循环使用期间,12次运行中苄胺选择性全部高于93%,所有结果表明Co@CN-800催化剂具有良好的重复性和稳定性。
表8
Figure BDA0001932175450000113
Figure BDA0001932175450000121
实施例44-56
按照实施例31的操作方法及步骤,在底物(1mmol),催化剂:Co@CN-800 20mg,130℃,H2(10bar),无水乙醇(10mL),26.5wt.%NH3·H2O(2mL),12h的条件下反应;将该反应物扩充至不同的醛类化合物底物,如表9所示。
表9.不同底物反应
Figure BDA0001932175450000122
Figure BDA0001932175450000123
Figure BDA0001932175450000131

Claims (9)

1.一种氮掺杂碳材料负载钴催化剂在醛类化合物催化加氢还原胺化制备苄胺类化合物中应用,其特征在于,所述氮掺杂碳材料负载钴催化剂,由以下方法制备得到:
(1)将邻苯二胺分散在水中,向其中加入硝酸钴,在室温下搅拌一段时间形成均匀的Co-OPDA络合物溶液;
(2)在Co-OPDA络合物溶液中加入HNO3溶液使溶液pH=6-7;然后将胶体二氧化硅加入到Co-OPDA络合物溶液中,搅拌均匀,得到悬浮液;
(3)然后向悬浮液中缓慢加入H2O2溶液,同时向其中添加碱性中和剂使反应溶液的pH值保持稳定,待H2O2溶液加完后,继续在室温下搅拌10-15h,减压过滤,所得固体在50-100℃下,干燥8-15h,得到催化剂前体Co-PPDA;
(4)将催化剂前体Co-PPDA在惰性气体气氛下,升温至600℃-900℃,在600℃-900℃下热解1.5-3.5h,待降至室温后,所得样品用HF溶液洗涤,离心,再用蒸馏水洗涤后,将所得固体干燥得到氮掺杂碳材料负载钴催化剂;
所述邻苯二胺、硝酸钴与胶体二氧化硅用量比为0.5-1.5mmol:1-3mmol:0.1-5mL。
2.根据权利要求1所述的应用,其特征在于,所述邻苯二胺与H2O2溶液用量比为1mmol:2-10mL。
3.根据权利要求2所述的应用,其特征在于,步骤(3)中所述碱性中和剂为NaHCO3溶液。
4.根据权利要求3所述的应用,其特征在于,步骤(3)中减压过滤后的固体在70℃下,干燥12h,步骤(4)中所述干燥条件为60℃下真空干燥12h。
5.根据权利要求4所述的应用,其特征在于,步骤(4)中所述用HF溶液洗涤的具体操作为:将所得样品浸入20wt%的HF溶液中,在室温下放置24h。
6.根据权利要求1所述的应用,其特征在于,所述应用包括如下步骤:
将氮掺杂碳材料负载钴催化剂、溶剂、醛类化合物、氨水按照用量比10-30mg:10-30mL:1mmol:0.5-5.0mL加入到反应容器中,除去反应容器中空气,密封反应容器后充入1bar-20bar还原性气体,在搅拌、90-150℃下反应1-18h,待反应产物冷却至室温后,减压过滤,得到苄胺类化合物。
7.根据权利要求6所述的应用,其特征在于,所述醛类化合物为对氟苯甲醛
Figure FDA0003332077450000021
对氯苯甲醛
Figure FDA0003332077450000022
对溴苯甲醛
Figure FDA0003332077450000023
苯甲醛
Figure FDA0003332077450000024
对甲基苯甲醛
Figure FDA0003332077450000025
对甲氧基苯甲醛
Figure FDA0003332077450000026
对(二甲氨基)苯甲醛
Figure FDA0003332077450000027
2-萘苯甲醛
Figure FDA0003332077450000028
4-吡啶甲醛
Figure FDA0003332077450000029
糠醛
Figure FDA00033320774500000210
正庚醛
Figure FDA00033320774500000211
异丁醛
Figure FDA00033320774500000212
或环己基甲醛
Figure FDA00033320774500000213
8.根据权利要求7所述的应用,其特征在于,所述还原性气体为氢气。
9.根据权利要求8所述的应用,其特征在于,所述溶剂为异丙醇、乙腈、甲苯、乙酸乙酯、甲醇、无水乙醇和水中的任意一种。
CN201811646604.8A 2018-12-30 2018-12-30 一种氮掺杂碳材料负载钴催化剂及其制备方法和在醛类化合物还原胺化中的应用 Expired - Fee Related CN109622017B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811646604.8A CN109622017B (zh) 2018-12-30 2018-12-30 一种氮掺杂碳材料负载钴催化剂及其制备方法和在醛类化合物还原胺化中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811646604.8A CN109622017B (zh) 2018-12-30 2018-12-30 一种氮掺杂碳材料负载钴催化剂及其制备方法和在醛类化合物还原胺化中的应用

Publications (2)

Publication Number Publication Date
CN109622017A CN109622017A (zh) 2019-04-16
CN109622017B true CN109622017B (zh) 2021-12-14

Family

ID=66054857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811646604.8A Expired - Fee Related CN109622017B (zh) 2018-12-30 2018-12-30 一种氮掺杂碳材料负载钴催化剂及其制备方法和在醛类化合物还原胺化中的应用

Country Status (1)

Country Link
CN (1) CN109622017B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110433839B (zh) * 2019-07-19 2021-10-26 华南理工大学 一种负载二氧化铈的钴碳氮材料的制备方法
US20230107592A1 (en) * 2020-03-04 2023-04-06 Tokyo Institute Of Technology Oxide-supported cobalt catalyst capable of accelerating reductive amination
CN114345387A (zh) * 2022-01-10 2022-04-15 兰州市三青化学有限公司 一种氮掺杂碳负载钴催化剂的制备方法
CN114870881A (zh) * 2022-05-06 2022-08-09 青岛大学 一种海藻衍生缺陷碳材料负载镍催化剂及应用
CN115724747B (zh) * 2022-11-07 2024-03-15 华南理工大学 一种乙二胺类化合物的制备方法
CN115805096B (zh) * 2023-02-07 2023-05-12 浙江新和成股份有限公司 一种非均相氮掺杂碳材料负载钴催化剂及维生素k3的生产工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106552661A (zh) * 2016-10-28 2017-04-05 中南民族大学 一种氮掺杂碳材料负载钴催化剂及利用其催化加氢还原胺化制备胺类化合物的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106552661A (zh) * 2016-10-28 2017-04-05 中南民族大学 一种氮掺杂碳材料负载钴催化剂及利用其催化加氢还原胺化制备胺类化合物的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cobalt and nitrogen-codoped ordered mesoporous carbon as highly efficient bifunctional catalysts for oxygen reduction and hydrogen evolution reactions;Xiaojun Liu et al.;《J. Mater. Chem. A》;20180806;第6卷;第17067-17074页 *
Xiaojun Liu et al..Cobalt and nitrogen-codoped ordered mesoporous carbon as highly efficient bifunctional catalysts for oxygen reduction and hydrogen evolution reactions.《J. Mater. Chem. A》.2018,第6卷 *

Also Published As

Publication number Publication date
CN109622017A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN109622017B (zh) 一种氮掺杂碳材料负载钴催化剂及其制备方法和在醛类化合物还原胺化中的应用
CN109304201B (zh) 碳包覆过渡金属纳米复合材料及其制备方法和应用
Cui et al. Pd-doped Ni nanoparticle-modified N-doped carbon nanocatalyst with high Pd atom utilization for the transfer hydrogenation of nitroarenes
Li et al. Highly selective Pd@ mpg-C 3 N 4 catalyst for phenol hydrogenation in aqueous phase
Hong et al. Immobilization of highly active bimetallic PdAu nanoparticles onto nanocarbons for dehydrogenation of formic acid
Tsyganok et al. Mg–Al layered double hydroxide intercalated with [Ni (edta)] 2− chelate as a precursor for an efficient catalyst of methane reforming with carbon dioxide
CN109174148B (zh) 一种催化氧化甲苯合成苯甲醛的催化剂及其制备方法
Huang et al. Facile fabrication of a Cu@ gC 3 N 4 nanocatalyst and its application for the aerobic oxidations of alkylaromatics and the reduction of 4-nitrophenol
Nandi et al. Nitrogen-rich graphitic-carbon stabilized cobalt nanoparticles for chemoselective hydrogenation of nitroarenes at milder conditions
Li et al. Superior activity and selectivity of heterogenized cobalt catalysts for hydrogenation of nitroarenes
Zhang et al. Co–N–C supported on SiO 2: a facile, efficient catalyst for aerobic oxidation of amines to imines
Wang et al. Highly efficient hydrogenation of phenol to cyclohexanol over Ni-based catalysts derived from Ni-MOF-74
Li et al. Ru nanoparticles supported on nitrogen-doped porous carbon derived from ZIF-8 as an efficient catalyst for the selective hydrogenation of p-chloronitrobenzene and p-bromonitrobenzene
CN109879265B (zh) 一种介孔氮掺杂碳材料及其制备方法和用途
CN115350706B (zh) 一种co2加氢热催化的三元金属mof衍生催化剂制备方法
Cao et al. Ru/gC 3 N 4 as an efficient catalyst for selective hydrogenation of aromatic diamines to alicyclic diamines
CN102909034B (zh) 一种担载型金镍合金纳米催化剂的制备
Narani et al. Pd-Nanoparticles immobilized organo-functionalized SBA-15: An efficient heterogeneous catalyst for selective hydrogenation of CC double bonds of α, β-unsaturated carbonyl compounds
Zhang et al. Selective catalytic hydrogenation of phenol to cyclohexanone over Pd@ CN: Role of CN precursor separation mode
Li et al. Mesoporous α-Al2O3-supported PdCu bimetallic nanoparticle catalyst for the selective semi-hydrogenation of alkynes
Shesterkina et al. Silica-supported iron oxide nanoparticles: unexpected catalytic activity in hydrogenation of phenylacetylene
Yue et al. Mild-temperature hydrogenation of carbonyls over Co-ZIF-9 derived Co-ZIF-x nanoparticle catalyst
CN111468154A (zh) 碳包覆过渡金属的纳米复合材料及其制备方法和应用
CN107185525B (zh) 八面体Pt纳米粒子负载γ-Al2O3型催化剂的制备方法
CN114870881A (zh) 一种海藻衍生缺陷碳材料负载镍催化剂及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211214