CN109621959A - 非晶硼酸钴纳米棒高效析氧电催化剂的制备方法及应用 - Google Patents

非晶硼酸钴纳米棒高效析氧电催化剂的制备方法及应用 Download PDF

Info

Publication number
CN109621959A
CN109621959A CN201811395939.7A CN201811395939A CN109621959A CN 109621959 A CN109621959 A CN 109621959A CN 201811395939 A CN201811395939 A CN 201811395939A CN 109621959 A CN109621959 A CN 109621959A
Authority
CN
China
Prior art keywords
catalyst
boric acid
nanorod
preparation
acid cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811395939.7A
Other languages
English (en)
Other versions
CN109621959B (zh
Inventor
秦伟
周宁芳
吴春
丁美
贾传坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201811395939.7A priority Critical patent/CN109621959B/zh
Publication of CN109621959A publication Critical patent/CN109621959A/zh
Application granted granted Critical
Publication of CN109621959B publication Critical patent/CN109621959B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于电催化水分解析氧领域,具体涉及一种非晶硼酸钴纳米棒高效析氧电催化剂的制备方法及应用,拟解决目前常用贵金属电催化析氧催化剂价格高昂等缺陷。以低成本水溶性钴盐,十水四硼酸钠为前驱反应物;采用水热法控制加热温度和反应时长;将所获得的沉淀离心洗涤,冷冻干燥即可获得非晶硼酸钴纳米棒高效析氧电催化剂。该制备方法成本低廉、绿色环保、操作简单且产物的后处理方便,易于对纳米棒的直径和长度进行调控。同时,该方法制得非晶硼酸钴纳米棒高效析氧电催化剂,具有低起始过电位,低塔菲尔斜率以及高稳定性等优点。

Description

非晶硼酸钴纳米棒高效析氧电催化剂的制备方法及应用
技术领域
本发明属于电催化水分解析氧领域,具体涉及一种非晶硼酸钴纳米棒高效析氧电催化剂的制备方法及应用。
背景技术
能源危机是现代社会可持续发展面临的重要问题,其中电催化析氢产氧是能量转换重要方式。而对电催化析氢产氧,目前直接电解水制氢气仅占氢能来源的4%,限制其发展的主要原因是:由于电解水的两个半反应-水的还原产氢反应和氧化产氧反应,分别需要优良的电催化剂以降低水分解的过电势。目前主要的高效催化剂还是依赖于贵金属及其氧化物(如:RuO2和IrO2)等,其价格昂贵,难以广泛投入使用。因此,发展具有高效、廉价的电解水催化剂,以获得较高的催化效率和稳定性,是发展电化学分解水析氧研究和应用的关键。
最近,由于具有来源广泛、成本低廉等优势,氧化钴、硫化钴以及磷化钴等钴基化合物作为高性能电催化析氧催化剂引起人们的重点关注。然而,常规的钴的化合物材料受限于导电性差,形貌不规则,尺寸不均一等因素,严重制约其在电催化析氧等领域应用。相应的,过渡金属硼酸盐,尤其是硼酸镍等,作为一种优异的电催化剂引起人们重视。然而,考虑到钴镍类似电子结构,目前硼酸钴作为电催化水分解析氧催化剂的研究仍旧缺乏,且性能仍旧有待提高。
最新一些研究表明,相较于传统晶体材料,非晶材料表现出一些优良甚至超出对应晶体材料的性能。例如,使用电沉积制备的非晶Ni(OH)2用作电化学超级电容器材料时,其性能优于绝大部分文献报道的结晶Ni(OH)2电极材料(Nature Communications 4,1894(2013))。在电催化水分解析氧研究中,也发现类似现象。此外,相较于块体材料,一维纳米材料具有许多优异独特的性能,例如:超强机械强度,良好的热电性能,优异的催化特性等,是纳米材料研究领域的一种十分活跃方向。
因而,制备一维非晶硼酸钴纳米棒作为高效电催化析氧催化剂具有重要的意义及价值。然而截至目前,并没有相关专利及学术文献报道。
发明内容
本发明的首要目的在于提供一种非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,通过简易水热法制备结构规整、尺寸均一的非晶硼酸钴纳米棒高效析氧电催化剂,该方法具有操作简单,绿色环保,可控性好,制备材料结构均一、产率高等优势。
本发明的另一目的是提供一种所述方法制得的非晶硼酸钴纳米棒材料。
本发明的再一目的在于提供上述方法制备的非晶硼酸钴纳米棒材料在电催化水分解析氧领域的应用,该材料用电催化析氧催化剂材料时,表现出优异的电化学性能。
为了实现上述目的,本发明采用如下技术方案:
一种非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,首先将水溶性钴盐以及十水四硼酸钠溶于去离子水中;然后采用水热法控制加热温度和反应时长;最后将所获得的沉淀离心洗涤干燥,获得非晶硼酸钴纳米棒高效析氧电催化剂。
所述的非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,具体步骤如下:
(1)分别先后将水溶性钴盐以及十水四硼酸钠按照摩尔比0.5~2.5:1加入到去离子水中,磁力搅拌0.5~2小时,待加入药品完全溶解,得到反应前驱溶液;
(2)将上述溶液转移到水热反应釜中,在140~200℃下进行水热反应6~24小时;待反应完成自然冷却至室温后,将所得反应沉淀进行离心清洗,除去未反应吸附离子;
(3)将清洗之后所得沉淀重新超声分散于去离子水中,并转移至冰箱中冻实,之后将冻实样品置于冷冻干燥机中干燥,得到非晶硼酸钴纳米棒高效析氧电催化剂。
所述的非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,步骤(1)中,水溶性钴盐与十水四硼酸钠的摩尔比优选为2:1。
所述的非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,步骤(1)中,水溶性钴盐为氯化钴、硝酸钴或硫酸钴。
所述的非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,步骤(2)中,离心清洗是以6000~10000rpm转速离心得到沉淀,所述清洗是用去离子水和乙醇清洗。
所述的非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,步骤(3)中,使用冷冻干燥得到粉末样品,干燥时间为30~50小时。
所述的非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,非晶硼酸钴纳米棒高效析氧电催化剂的结构为非晶态,形貌为典型纳米棒结构,纳米棒直径从5nm到50nm,长度从20nm到500nm调节。
所述的非晶硼酸钴纳米棒高效析氧电催化剂的的应用,非晶硼酸钴纳米棒作为高性能析氧电催化剂。
本发明的设计思想是:
钴基金属化合物作为一种潜在的低成本电催化水分解析氧催化剂,其催化性能与催化剂的形貌结构,结晶程度等密切相关。氧化钴等常规钴基化合物催化剂受限于导电性差,形貌不规则,尺寸不均一等因素影响,性能并不能让人满意。在此,我们提出以水溶性钴盐及四硼酸钠作为反应前驱,通过控制前驱溶液中组分比例,水热反应条件中的反应温度及反应时间等因素,制备出成本低廉,结构均一的非晶硼酸钴作为高性能电催化水分解析氧催化剂。
本发明的主要反应式如下:
Co2++Na2B4O7→2Na++CoB4O7
本发明的显著优势及特点的在于:
(1)本发明方法成本低廉、绿色环保、操作简单、不需要添加表面活性剂且最终产物单一,分离方便。
(2)本发明方法制备的非晶硼酸钴纳米棒,可以方便的通过改变水热反应条件及反应前驱物的摩尔比,实现长度、直径的调节。
(3)本发明方法制备的非晶硼酸钴纳米棒用作电催化水分解析氧催化剂时,表现出优异的电化学性能,具有低起始过电位,低塔菲尔斜率以及稳定性好等优点。
附图说明
图1为实施例1中制备非晶硼酸钴纳米棒的透射电子显微照片。
图2为实施例1中制备非晶硼酸钴纳米棒的XRD衍射图。其中,横坐标2Theta为衍射角(Degree),纵坐标Intensity为强度(a.u.)。
图3为实施例2中制备非晶硼酸钴纳米棒的透射电子显微镜照片(a)及对应的选取电子衍射图(b)。
图4为实施例1中制备非晶硼酸钴纳米棒用作电催化水分解析氧反应的LSV曲线(a)及塔菲尔曲线(b)。其中,LSV曲线中,横坐标Voltage V/RHE为相对可逆氢电极电压(单位为V),纵坐标Current Density为电流密度(单位为mA·cm-2);塔菲尔曲线中,纵坐标Overpotential为过电势(单位为mV),横坐标Log(Current Density)为电流密度对数。
具体实施方式
在具体实施过程中,本发明非晶硼酸钴纳米棒高效电催化水分解析氧催化剂的制备方法,包括:1)将水溶性钴盐与十水四硼酸钠按一定比例溶于去离子水制备反应前驱的工序;2)一定温度下水热反应的工序;3)反应产物分离以及冷冻干燥的工序。其中,钴盐为氯化钴、硝酸钴或硫酸钴等。该方法成本低廉,绿色环保、操作简单且产物的后处理方便,易于对材料的尺寸和形貌进行调控。同时,该方法制得非晶硼酸钴纳米棒用作电催化水分解析氧催化剂时,具有低起始过电位,低塔菲尔斜率以及优异的稳定性。
下面结合具体实施例方式,对该发明进行进一步的阐述。应理解,这些实施例仅用于说明本发明而不是用于限制本发明的范围。
实施例1
本实施例中,非晶硼酸钴纳米棒电催化水分解析氧催化剂的制备方法如下:
(1)称取0.04mol六水硝酸钴加入到60mL去离子水中,室温下磁力搅拌10分钟,待完全溶解后,向该溶液中加入0.02mol十水四硼酸钠,搅拌30分钟完全溶解得到反应前驱溶液。
(2)将步骤(1)配置的反应前驱溶液转移至100mL聚四氟内衬的不锈钢水热反应釜中,在180℃温度下加热反应16小时。
(3)待反应结束,自然冷却至室温后,将所得反应沉淀分别使用去离子水和乙醇离心清洗三次,其中每次在6000rpm转速下离心10分钟;之后将在所得沉淀重新超声分散于100mL去离子水中,并转移至冰箱中经24小时冻实,之后将冻实的样品置于冷冻干燥机中干燥40小时,得到非晶硼酸钴纳米棒高效析氧电催化剂。
如图1所示,从本实施例所制备的非晶硼酸钴纳米棒透射电子显微镜照片可以看出,在该条件下制备的非晶硼酸钴纳米棒的直径约为20nm,长度为200~300nm。而且从图2中的XRD衍射图案可以看出,本实施例制备的硼酸钴纳米棒没有明显的衍射峰出现,从而可以明确的表明其非晶结构。
实施例2
本实施例中,非晶硼酸钴纳米棒电催化水分解析氧催化剂的制备方法如下:
(1)称取0.05mol六水硝酸钴加入到60mL去离子水中,室温下磁力搅拌10分钟,待完全溶解后,向该溶液中加入0.02mol十水四硼酸钠,搅拌30分钟完全溶解得到反应前驱溶液。
(2)将步骤(1)配置的反应前驱溶液转移至100mL聚四氟内衬的不锈钢水热反应釜中,在160℃温度下加热反应12小时。
(3)待反应结束,自然冷却至室温后,将所得反应沉淀分别使用去离子水和乙醇离心清洗三次,其中每次在10000rpm转速下离心20分钟;之后将在所得沉淀重新超声分散于100mL去离子水中并转移至冰箱中经24小时冻实,之后将冻实的样品置于冷冻干燥机中干燥50小时,得到非晶硼酸钴纳米棒高效析氧电催化剂。
如图3所示,左图为本实施例制备非晶硼酸钴纳米棒的透射电子显微镜照片,可以看出,基于本实施例制备的样品形貌均为纳米棒结构,其中纳米棒的直径约为5nm,长度约为50nm。右图为对应的选区电子衍射图案,从该衍射图中看不出明显的衍射环或者衍射点,从而可以证明本实施例制备的硼酸钴也是非晶结构。
实施例3
本实施例中,非晶硼酸钴纳米棒电催化水分解析氧催化剂的制备方法如下:
(1)使用移液枪将20μL的全氟磺酸树脂(nafion)溶液加入到980μL乙醇中,之后称取10mg通过实施例1制备的非晶硼酸钴纳米棒加入该溶液中,超声分散1小时,得到均匀分散溶液。
(2)取10μL步骤(1)制备的分散液,滴加到直径为1.2mm的玻碳电极上,使用红外灯辐照30分钟烘干,如此重复滴加三次,制备得到电极。
(3)使用CHI660电化学工作站测试步骤(2)制备电极的电催化水分解析氧性能,其中,对电极为石磨棒,参比电极为Hg/HgO电极,电解液为浓度1mol/L的KOH水溶液。
如图4(a)所示,实施例1所制备的非晶硼酸钴纳米棒用作电催化水分解析氧催化剂时,起始电位(电流密度为1mA·cm-2时的电压)低至20mV,而当电流密度达到10mA·cm-2时,电位也仅仅为270mV,这些都明显优于大部分文献中所报道的结果。此外,如图4(b)可以看出,此时,实施例1制备的非晶硼酸钴纳米棒电催化析氧催化剂的塔菲尔斜率也低至56mV/dec,亦远远优于绝大部分文献中结果。
实施例结果表明,本发明制备的非晶硼酸钴纳米棒用作电催化水分解析氧催化剂是,具有优异的催化性能,即低起始电位,低塔菲尔斜率以及高稳定性等。此外,需要指出的是,该制备方法成本低廉、绿色环保、操作简单且产物的后处理方便,制备的非晶硼酸钴纳米棒形貌规整,尺寸均一,产量高。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,其特征在于,首先将水溶性钴盐以及十水四硼酸钠溶于去离子水中;然后采用水热法控制加热温度和反应时长;最后将所获得的沉淀离心洗涤干燥,获得非晶硼酸钴纳米棒高效析氧电催化剂。
2.如权利要求1所述的非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,其特征在于,具体步骤如下:
(1)分别先后将水溶性钴盐以及十水四硼酸钠按照摩尔比0.5~2.5:1加入到去离子水中,磁力搅拌0.5~2小时,待加入药品完全溶解,得到反应前驱溶液;
(2)将上述溶液转移到水热反应釜中,在140~200℃下进行水热反应6~24小时;待反应完成自然冷却至室温后,将所得反应沉淀进行离心清洗,除去未反应吸附离子;
(3)将清洗之后所得沉淀重新超声分散于去离子水中,并转移至冰箱中冻实,之后将冻实样品置于冷冻干燥机中干燥,得到非晶硼酸钴纳米棒高效析氧电催化剂。
3.如权利要求2所述的非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,其特征在于,步骤(1)中,水溶性钴盐与十水四硼酸钠的摩尔比优选为2:1。
4.如权利要求2所述的非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,其特征在于,步骤(1)中,水溶性钴盐为氯化钴、硝酸钴或硫酸钴。
5.如权利要求2所述的非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,其特征在于,步骤(2)中,离心清洗是以6000~10000rpm转速离心得到沉淀,所述清洗是用去离子水和乙醇清洗。
6.如权利要求2所述的非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,其特征在于,步骤(3)中,使用冷冻干燥得到粉末样品,干燥时间为30~50小时。
7.如权利要求2所述的非晶硼酸钴纳米棒高效析氧电催化剂的制备方法,其特征在于,非晶硼酸钴纳米棒高效析氧电催化剂的结构为非晶态,形貌为典型纳米棒结构,纳米棒直径从5nm到50nm,长度从20nm到500nm调节。
8.如权利要求1至7之一所述方法制备的非晶硼酸钴纳米棒高效析氧电催化剂的应用,其特征在于,非晶硼酸钴纳米棒作为高性能析氧电催化剂。
CN201811395939.7A 2018-11-22 2018-11-22 非晶硼酸钴纳米棒高效析氧电催化剂的制备方法及应用 Active CN109621959B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811395939.7A CN109621959B (zh) 2018-11-22 2018-11-22 非晶硼酸钴纳米棒高效析氧电催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811395939.7A CN109621959B (zh) 2018-11-22 2018-11-22 非晶硼酸钴纳米棒高效析氧电催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN109621959A true CN109621959A (zh) 2019-04-16
CN109621959B CN109621959B (zh) 2021-08-06

Family

ID=66068761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811395939.7A Active CN109621959B (zh) 2018-11-22 2018-11-22 非晶硼酸钴纳米棒高效析氧电催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN109621959B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029570A (zh) * 2019-11-27 2020-04-17 长沙理工大学 锂离子电池负极用硼酸钴/石墨烯复合材料及制备方法
CN114737214A (zh) * 2022-04-15 2022-07-12 陕西师范大学 一种非晶过渡金属基催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420025A (zh) * 2007-10-26 2009-04-29 索尼株式会社 负极及其制备方法、以及二次电池
CN103066285A (zh) * 2013-01-21 2013-04-24 中南大学 一种锂离子电池负极材料的制备方法
CN103332687B (zh) * 2013-07-11 2015-12-02 黑龙江大学 一种以生物质为碳源制备硼氮共掺杂石墨化纳米碳的方法
CN108212157A (zh) * 2018-01-05 2018-06-29 吉林大学 金属硼化物水裂解催化剂、制备方法及其在电催化水裂解方面的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420025A (zh) * 2007-10-26 2009-04-29 索尼株式会社 负极及其制备方法、以及二次电池
CN103066285A (zh) * 2013-01-21 2013-04-24 中南大学 一种锂离子电池负极材料的制备方法
CN103332687B (zh) * 2013-07-11 2015-12-02 黑龙江大学 一种以生物质为碳源制备硼氮共掺杂石墨化纳米碳的方法
CN108212157A (zh) * 2018-01-05 2018-06-29 吉林大学 金属硼化物水裂解催化剂、制备方法及其在电催化水裂解方面的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIROKATSU KUROSU ET AL.: "In Situ Observations of Oxygen Evolution Cocatalysts on Photoelectrodes by X-ray Absorption Spectroscopy:Comparison between Cobalt-Phosphate and Cobalt-Borate", 《ELECTROCHEMISTRY》 *
刘彦君 等: "硼酸金属化合物的制备及其电催化活性", 《北京航空航天大学学报》 *
陈寿春: "《重要无机化学反应》", 31 December 1982, 上海科学技术出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029570A (zh) * 2019-11-27 2020-04-17 长沙理工大学 锂离子电池负极用硼酸钴/石墨烯复合材料及制备方法
CN114737214A (zh) * 2022-04-15 2022-07-12 陕西师范大学 一种非晶过渡金属基催化剂及其制备方法
CN114737214B (zh) * 2022-04-15 2024-03-15 陕西师范大学 一种非晶过渡金属基催化剂及其制备方法

Also Published As

Publication number Publication date
CN109621959B (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
Qian et al. Hollow nanocages of Ni x Co 1− x Se for efficient zinc–air batteries and overall water splitting
Wang et al. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries
Gao et al. Fabrication of metallic nickel–cobalt phosphide hollow microspheres for high-rate supercapacitors
CN107308977B (zh) 钴氮硫共掺杂碳气凝胶双功能氧催化剂及其制备方法和应用
Meng et al. Trash to treasure: waste eggshells used as reactor and template for synthesis of Co9S8 nanorod arrays on carbon fibers for energy storage
He et al. Engineering sulfur vacancies of Ni3S2 nanosheets as a binder-free cathode for an aqueous rechargeable Ni-Zn battery
Huang et al. Facilely synthesized porous ZnCo 2 O 4 rodlike nanostructure for high-rate supercapacitors
Chen et al. Room-temperature chemical transformation route to CuO nanowires toward high-performance electrode materials
Jiang et al. CoS2 quantum dots modified by ZIF-67 and anchored on reduced graphene oxide as an efficient catalyst for hydrogen evolution reaction
Hou et al. Interfacial engineering in crystalline cobalt tungstate/amorphous cobalt boride heterogeneous nanostructures for enhanced electrochemical performances
Chen et al. Petal-like CoMoO4 clusters grown on carbon cloth as a binder-free electrode for supercapacitor application
CN111540610A (zh) 一种用于超级电容器的电极材料及其制备方法和用途
Han et al. Design yolk-shelled FeCo layered double hydroxide via a “one-stone-two-birds” strategy for oxygen evolution reaction
Huang et al. Bimetallic organic framework in situ fabrication nanoflower-like cobalt nickel sulfide and ultrathin layered double hydroxide arrays for high-efficient asymmetric hybrid supercapacitor
Mahamad Yusoff et al. Electrochemical sodiation/desodiation into Mn3O4 nanoparticles
CN105140494A (zh) 一种Fe3O4/Fe/C纳米复合电池电极材料的仿生合成方法
CN109621959A (zh) 非晶硼酸钴纳米棒高效析氧电催化剂的制备方法及应用
Jiang et al. Zn, S, N self-doped carbon material derived from waste tires for electrocatalytic hydrogen evolution
CN104821397A (zh) 一种海胆状钛酸锂微球的制备方法
Ding et al. Polypyrrole-modified Ni3S2 nanosheet electrodes for supercapacitors
Miao et al. N-doping FeNi@ C (Nx) core-shell nanoparticles synthesized by arc plasma as a highly efficient bifunctional electrocatalyst for all-solid zinc-air batteries
Yang et al. A Co3O4/CuO composite nanowire array as low-cost and efficient bifunctional electrocatalyst for water splitting
CN106920932B (zh) 一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法
CN111841577A (zh) 一种片状铜钴双金属硫化物催化材料的制备方法及其应用
Devi et al. One-Pot Hydrothermal Synthesis of Ti3C2 (MXene)-CoS2 Nanocomposite as a Bifunctional Electrocatalyst (HER/OER) for a Clean Environment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant