CN109616535A - 基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法 - Google Patents

基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法 Download PDF

Info

Publication number
CN109616535A
CN109616535A CN201811487852.2A CN201811487852A CN109616535A CN 109616535 A CN109616535 A CN 109616535A CN 201811487852 A CN201811487852 A CN 201811487852A CN 109616535 A CN109616535 A CN 109616535A
Authority
CN
China
Prior art keywords
bemgzno
film
face
spontaneous polarization
polarization enhanced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811487852.2A
Other languages
English (en)
Other versions
CN109616535B (zh
Inventor
何云斌
杨蓉慧子
黎明锴
卢寅梅
常钢
李派
陈俊年
张清风
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Ruilian Zhichuang Photoelectric Co Ltd
Hubei University
Original Assignee
Wuhan Ruilian Zhichuang Photoelectric Co Ltd
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Ruilian Zhichuang Photoelectric Co Ltd, Hubei University filed Critical Wuhan Ruilian Zhichuang Photoelectric Co Ltd
Priority to CN201811487852.2A priority Critical patent/CN109616535B/zh
Publication of CN109616535A publication Critical patent/CN109616535A/zh
Application granted granted Critical
Publication of CN109616535B publication Critical patent/CN109616535B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法。本发明的探测器从下至上依次包括m面蓝宝石衬底、m面取向的BeMgZnO四元合金薄膜层、一对平行金属电极,其中:所述平行金属电极垂直于所述BeMgZnO四元合金薄膜的c轴方向。本发明的光电探测器当电极上所加的电场与内部自发极化场的方向相同时,此时内部的极化场将与外电场叠加,协同增强载流子的分离和传输,有效的提高光探测器的响应速度。另外,本发明探测器为MSM构造,结构简单,衬底和BeMgZnO薄膜层之间未设置缓冲层,且制备工艺简单,操作方便,原料用量较少,制作成本低廉,易于生产,有利于产业化应用。

Description

基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备 方法
技术领域
本发明属于光电探测器技术领域,具体地说,本发明涉及一种基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法。
背景技术
以氧化锌(ZnO)为代表的第三代半导体材料是近年来迅速发展起来的新型半导体材料,具有禁带宽度大、击穿电场高、热导率高、电子饱和速率高及抗辐射能力强等优点,是固态光源和电力电子、微波射频器件的“核芯”,正在成为全球半导体产业新的战略高地。
ZnO作为一种重要的II-VI族宽禁带半导体,以其独特的性质和在电子和光电子器件的应用前景得到了广泛的研究。它具有大的直接带隙(3.37eV)和激子结合能(60meV)、高的可见光透过率和紫外吸收系数、良好的抗辐射性能,以及资源丰富、化学性能稳定等优势,使其在电子和光电子器件的发展运用中拥有更大的潜力、更多的可能性和更强的竞争力。经过十多年持续的攻关研究,人们对ZnO半导体的光、电、磁及压电等特性的理解不断深入,ZnO半导体在太阳能电池、发电机、传感器、探测器、发光二极管和激光器等领域的应用成果不断涌现,目前ZnO的研究已进入功能扩展与综合利用的新阶段,展现出广阔的应用前景。
但是,ZnO材料禁带宽度的调节范围有限,限制了其进一步应用。因此,人们又发展了基于Be、In、Ga、Cu、Mg、Cd等金属元素掺杂的ZnO合金材料,提升或降低ZnO材料的禁带宽度。例如,CN 103022217 A的专利申请公开了“一种BeMgZnO基MSM日盲探测器及其制备方法”,所述探测器包括衬底、衬底上沉积有缓冲层,缓冲层上生长有薄膜层;薄膜层上制作有作为电极的金属叉指图形,叉指电极之间的间隙部分为感光区域,所述薄膜层为BeMgZnO四元合金薄膜层。但是该现有技术存在如下缺陷:(1)该探测器制备工艺复杂,需先在c面蓝宝石衬底上生长缓冲层之后再生长BeMgZnO薄膜,增加了制作成本;(2)极性c面取向BeMgZnO薄膜具有斯塔克效应,该效应会使得薄膜中的载流子空间上发生分离而不易复合,且由于能带的弯曲使薄膜相应的发光波长会发生红移,不利于该薄膜在发光器件的应用。
基于上述理由,特提出本申请。
发明内容
为了克服现有技术的上述缺陷和问题,本发明的目的在于提供一种基于m面取向BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法。本发明主要通过m面BeMgZnO四元合金薄膜中的自发极化场来促进光生载流子分离,有效提高光探测器的响应速度,增强探测器的探测能力。
为了实现本发明的上述第一个目的,本发明采用如下技术方案:
基于m面BeMgZnO薄膜的自发极化增强型光电探测器,所述探测器从下至上依次包括m面蓝宝石衬底、m面取向的BeMgZnO四元合金薄膜层、一对平行金属电极,其中:所述平行金属电极垂直于所述BeMgZnO四元合金薄膜的c轴方向。
进一步地,上述技术方案,所述BeMgZnO四元合金薄膜层的厚度为200~300nm,优选为300nm。
进一步地,上述技术方案,所述平行电极的厚度为50nm~100nm。
进一步地,上述技术方案,所述平行电极的间距为10~100μm,优选为100μm。
进一步地,上述技术方案,所述m面蓝宝石衬底的厚度为0.1~0.6mm,优选为0.35~0.45mm。
进一步地,上述技术方案,所述平行金属电极材料可以为Au、Al或Ag中的任一种,优选为Au。
本发明的另一目的在于提供上述基于m面BeMgZnO薄膜的自发极化增强型光电探测器的制备方法,所述方法包括以下步骤:
(1)以m面蓝宝石作为薄膜生长的衬底,利用清洗液对所述衬底进行超声清洗后用氮气吹干,立即置于脉冲激光沉积系统的真空腔内,开启真空泵,使真空度为4×10-4~6×10-4Pa;
(2)采用脉冲激光烧蚀沉积方法,利用BeMgZnO陶瓷作为靶材,控制衬底温度为600~800℃,脉冲激光能量为300~400mJ/Pulse,薄膜沉积氧压为1~3Pa,在洁净干燥的m面蓝宝石衬底表面沉积m面BeMgZnO外延薄膜;
(3)确定步骤(2)制得的m面BeMgZnO四元合金薄膜的c轴方向,做好标记;利用真空蒸镀仪,通过热蒸发的方法在步骤(2)得到的BeMgZnO薄膜表面蒸镀一对平行金属电极,其中:所述金属平行电极与m面BeMgZnO薄膜c轴方向垂直。
进一步地,上述技术方案,步骤(1)中所述清洗液包括丙酮、乙醇、去离子水,所述超声清洗时间优选为15min。
进一步地,上述技术方案,步骤(2)中所述沉积时间为30~90min。
进一步地,上述技术方案,步骤(3)中所述热蒸发过程中真空度为2×10-4~4×10-4Pa。
进一步地,上述技术方案,步骤(2)中所述BeMgZnO陶瓷靶材是采用固相烧结法制得,具体方法如下:按配比将BeO、ZnO、MgO粉体原料混合均匀,然后置于真空管式炉烧制2h后制得,其中:烧结温度为1250℃。
更进一步地,上述技术方案,所述粉体原料BeO、ZnO、MgO的摩尔比为5:85:10。
本发明的原理如下:
在通常条件下,ZnO具有稳定的六方纤锌矿结构,该结构属于六方晶系,为AB型共价键晶体。沿着ZnO的c轴方向Zn2+离子层和O2-离子层交替堆叠,因此ZnO的c面为Zn或O终止的极性面,换言之,沿c轴方向,ZnO内部存在从O2-离子面指向Zn2+离子面的自发极化,及其诱导的Zn2+离子面指向O2-离子面的退极化电场。当ZnO薄膜以m面即(100)面取向时,该表面内Zn2+与O2-数目相等,即不存在极性。而此时,ZnO薄膜的c轴(极化轴)与其表面即m面平行,因此m面取向ZnO内存在与其表面平行的极化电场。我们在m面蓝宝石上生长的m-BeMgZnO四元合金薄膜具有与m-ZnO相同的结构,此时m-BeMgZnO四元合金薄膜的表面为(100)面,薄膜的c轴与(100)表面平行,薄膜内部存在与薄膜表面平行的极化电场。当在薄膜表面制备垂直于薄膜c轴的平行电极时,外加电场的方向将会与该自发极化场平行,当二者同向时,能有效促进载流子的分离。这即是说,在所制备的m面BeMgZnO四元合金薄膜光电探测器件中,薄膜内存在的与其表面平行的极化场,当与通过电极外加电场方向一致时,能叠加增强对光生载流子的分离和传输,有效提高光探测器的响应速度。
与现有技术相比,本发明涉及的一种基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法具有如下有益效果:
(1)本发明制备的基于m面BeMgZnO薄膜的自发极化增强型光电探测器为MSM构造,结构简单,衬底和BeMgZnO薄膜层之间未设置缓冲层,且本发明的探测器响应速度快,探测器的探测能力强;
(2)本发明的基于m面BeMgZnO薄膜的自发极化增强型光电探测器的制备工艺简单,操作方便,原料用量较少,制作成本低廉,易于生产,有利于产业化应用,具有良好的市场应用前景。
附图说明
图1为本发明实施例1~3中制得的基于m面BeMgZnO四元合金薄膜的XRD全谱图;
图2为本发明实施例1中的基于m面BeMgZnO薄膜的自发极化增强型光电探测器的结构示意图;
图3为本发明实施例3中的m-BeMgZnO薄膜无自发极化增强型光电探测器的结构示意图;
图4为本发明实施例1中的m-BeMgZnO薄膜自发极化增强型光电探测器响应度随波长变化图;
图5为本发明实施例1中的m-BeMgZnO薄膜自发极化增强型光电探测器光响应电流随时间变化的I-T曲线图;
图6为本发明实施例2中的m-BeMgZnO薄膜自发极化增强型光电探测器光响应电流随时间变化的I-T曲线图;
图7为本发明实施例3中的m-BeMgZnO薄膜无自发极化增强型光电探测器光响应电流随时间变化的I-T曲线图。
具体实施方式
下面结合附图对本发明的实施案例作详细说明。本实施案例在本发明技术方案的前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施案例。
根据本申请包含的信息,对于本领域技术人员来说可以轻而易举地对本发明的精确描述进行各种改变,而不会偏离所附权利要求的精神和范围。应该理解,本发明的范围不局限于所限定的过程、性质或组分,因为这些实施方案以及其他的描述仅仅是为了示意性说明本发明的特定方面。实际上,本领域或相关领域的技术人员明显能够对本发明实施方式作出的各种改变都涵盖在所附权利要求的范围内。
为了更好地理解本发明而不是限制本发明的范围,在本申请中所用的表示用量、百分比的所有数字、以及其他数值,在所有情况下都应理解为以词语“大约”所修饰。因此,除非特别说明,否则在说明书和所附权利要求书中所列出的数字参数都是近似值,其可能会根据试图获得的理想性质的不同而加以改变。各个数字参数至少应被看作是根据所报告的有效数字和通过常规的四舍五入方法而获得的。
本发明下述各实施例中采用的蓝宝石衬底,其主要成分是氧化铝(Al2O3),m-Al2O3表示m面蓝宝石。本发明中蓝宝石衬底的厚度优选为0.35~0.45mm。
下述各实施例中的BeMgZnO陶瓷靶材均是由陶瓷坯片烧结得到,具体制备工艺如下:
(a)按摩尔比为5:10:85的配比分别称取0.504g BeO、1.624g MgO和27.872g ZnO粉末,得到初混粉末;
(b)向步骤(a)得到的初混粉末中加入初混粉末总质量60%(即18g)的去离子水球磨4h,得到混合粉末;
(c)将步骤(b)中得到的混合粉末放入烘干箱中进行干燥处理,得到干燥的混合粉末,其中,干燥温度为120℃,干燥时间为12h;
(d)向步骤(c)得到的干燥的混合粉末中加入2g的无水乙醇,研磨搅拌均匀,得到混合粘结在一起的陶瓷坯料;
(e)将步骤(d)得到的陶瓷坯料压制成直径27.5mm、厚度3mm的圆形陶瓷坯片;
(f)以氩气为保护气,将真空管式炉抽真空至0.1Pa,在真空管式炉中对步骤(e)得到的陶瓷坯片进行烧结,控制烧结温度为1250℃,烧结时间为2h,随后自然冷却至室温,得到所需陶瓷靶材。
实施例1
如图2所示,本实施例的一种基于m面BeMgZnO薄膜的自发极化增强型光电探测器,所述探测器从下至上依次包括m面蓝宝石衬底层、m面取向的BeMgZnO四元合金薄膜层、一对平行Au电极,其中:所述m面取向的BeMgZnO四元合金薄膜层厚度为300nm,所述平行金属电极垂直于所述BeMgZnO四元合金薄膜的c轴方向;所述衬底层的厚度为0.43mm,所述电极的厚度在80nm,所述平行电极的间距为100μm。
本实施例上述的基于m面BeMgZnO薄膜的自发极化增强型光电探测器采用如下方法制备而成,包括如下步骤:
采用BeMgZnO陶瓷作为溅射靶材,将m面蓝宝石衬底依次经过丙酮、无水乙醇和去离子水经超声清洗器清洗15min,将靶材和衬底放入真空室,并开启真空泵抽真空至真空度为5×10-4Pa;开启衬底加热器,待温度达到700℃之后,通入氧气,调整氧压为2Pa,开启激光器,设定激光器的激光脉冲频率为5Hz,设定激光脉冲能量为350mJ/pulse,激光脉冲个数为18000个,靶台的自转速度为5r/min,样品台转速为10r/min,开启激光器,预溅射3min后,旋开样品台的挡板,开始沉积薄膜,沉积60min后关闭所述激光器,关闭氧气阀和衬底加热器,让沉积的薄膜自然冷却至室温后再取出真空室。用XRD对m-BeMgZnO四元合金薄膜进行表征并确定c轴方向,之后将m-BeMgZnO/Al2O3放置于真空镀膜仪的掩膜版中,使平行电极垂直于m-BeMgZnO薄膜c轴方向,开启真空泵抽真空,待真空度为2×10-4Pa时,加热金线得到条形Au电极。外加10V(外加电场与薄膜中自发极化场同向)电压对制备的器件进行光电表征,在300nm的单色光照射下探测器的光电流14.47nA,遮光时的暗电流为0.73nA,其上升时间τr1为2.3s其衰减时间τd1为0.6s。其I-T响应曲线如图5所示。
实施例2
本实施例的一种基于m面BeMgZnO薄膜的自发极化增强型光电探测器的结构与实施例1相同,且制备工艺也相同,区别仅在于:采用外加-10V(外加电场与薄膜中自发极化场反向)电压对制备的器件进行光电表征,在300nm的单色光照射下探测器的光电流13.8nA,遮光时的暗电流为0.56nA,其上升时间τr1为2.5s,其衰减时间τd1为0.9s。其I-T响应曲线如图6所示。
实施例3
如图3所述,本实施例的一种基于m面BeMgZnO薄膜的无自发极化增强型光电探测器,所述探测器从下至上依次包括m面蓝宝石衬底层、m面取向的BeMgZnO四元合金薄膜层、一对平行Au电极,其中:所述m面取向的BeMgZnO四元合金薄膜层厚度为300nm,所述平行金属电极平行于所述BeMgZnO四元合金薄膜的c轴方向;所述衬底层的厚度为0.43mm,所述电极的厚度在80nm,所述平行电极的间距为100μm。
本实施例上述的基于m面BeMgZnO薄膜的无自发极化增强型光电探测器的制备方法与实施例1基本相同,区别仅在于:
真空镀膜步骤中,使平行Au电极平行于m-BeMgZnO薄膜c轴方向。
外加10V电压对制备的器件进行光电表征,在300nm的单色光照射下探测器的光电流为18nA,挡光时的暗电流为1.7nA,其上升时间τr为3.8s和其衰减时间τd为1.6s。其I-T响应曲线如图7所示。
实施例4
本实施例的一种基于m面BeMgZnO薄膜的自发极化增强型光电探测器,所述探测器从下至上依次包括m面蓝宝石衬底层、m面取向的BeMgZnO四元合金薄膜层、一对平行Ag电极,其中:所述m面取向的BeMgZnO四元合金薄膜层厚度为270nm,所述平行金属电极垂直于所述BeMgZnO四元合金薄膜的c轴方向;所述衬底层的厚度为0.3mm,所述电极的厚度为50nm,所述平行电极的间距为10μm。
本实施例上述所述的基于m面BeMgZnO薄膜的自发极化增强型光电探测器采用如下方法制备而成,包括如下步骤:
采用BeMgZnO陶瓷作为溅射靶材,将m面蓝宝石衬底依次经过丙酮、无水乙醇和去离子水经超声清洗器清洗15min,将靶材和衬底放入真空室,并开启真空泵抽真空至真空度为4×10-4Pa;开启衬底加热器,待温度达到600℃之后,通入氧气,调整氧压为1Pa,开启激光器,设定激光器的激光脉冲频率为5Hz,设定激光脉冲能量为300mJ/pulse,靶台的自转速度为5r/min,样品台转速为10r/min,开启激光器,预溅射3分钟后,旋开样品台的挡板,开始沉积薄膜,沉积90min后关闭所述激光器,关闭氧气阀和衬底加热器,让沉积的薄膜自然冷却至室温后再取出真空室。用XRD对m-BeMgZnO四元合金薄膜进行表征并确定c轴方向,之后将m-BeMgZnO/Al2O3放置于真空镀膜仪的掩膜版中,使平行电极垂直于m-BeMgZnO薄膜c轴方向,开启真空泵抽真空,待真空度为4×10-4Pa左右时,加热银线得到条形Ag电极。
实施例5
本实施例的一种基于m面BeMgZnO薄膜的自发极化增强型光电探测器,所述探测器从下至上依次包括m面蓝宝石衬底层、m面取向的BeMgZnO四元合金薄膜层、一对平行Al电极,其中:所述m面取向的BeMgZnO四元合金薄膜层厚度为220nm,所述平行金属电极垂直于所述BeMgZnO四元合金薄膜的c轴方向;所述衬底层的厚度为0.5mm,所述电极的厚度为100nm,所述平行电极的间距为60μm。
本实施例上述所述的基于m面BeMgZnO薄膜的自发极化增强型光电探测器采用如下方法制备而成,包括如下步骤:
采用BeMgZnO陶瓷作为溅射靶材,将m面蓝宝石衬底依次经过丙酮、无水乙醇和去离子水经超声清洗器清洗15min,将靶材和衬底放入真空室,并开启真空泵抽真空至真空度为6×10-4Pa;开启衬底加热器,待温度达到800℃之后,通入氧气,调整氧压为3Pa,开启激光器,设定激光器的激光脉冲频率为5Hz,设定激光脉冲能量为400mJ/pulse,靶台的自转速度为5r/min,样品台转速为10r/min,开启激光器,预溅射3分钟后,旋开样品台的挡板,开始沉积薄膜,沉积30min后关闭所述激光器,关闭氧气阀和衬底加热器,让沉积的薄膜自然冷却至室温后再取出真空室。用XRD对m-BeMgZnO四元合金薄膜进行表征并确定c轴方向,之后将m-BeMgZnO/Al2O3放置于真空镀膜仪的掩膜版中,使平行电极垂直于m-BeMgZnO薄膜c轴方向,开启真空泵抽真空,待真空度为2×10-4Pa左右时,加热Al颗粒得到条形Al电极。

Claims (9)

1.基于m面BeMgZnO薄膜的自发极化增强型光电探测器,其特征在于:所述探测器从下至上依次包括m面蓝宝石衬底、m面取向的BeMgZnO四元合金薄膜层、一对平行金属电极,其中:所述平行金属电极垂直于所述BeMgZnO四元合金薄膜的c轴方向。
2.根据权利要求1所述的基于m面BeMgZnO薄膜的自发极化增强型光电探测器,其特征在于:所述BeMgZnO四元合金薄膜层的厚度为200~300nm。
3.根据权利要求1所述的基于m面BeMgZnO薄膜的自发极化增强型光电探测器,其特征在于:所述平行电极的厚度为50nm~100nm。
4.根据权利要求1所述的基于m面BeMgZnO薄膜的自发极化增强型光电探测器,其特征在于:所述平行电极的间距为10~100μm。
5.根据权利要求1所述的基于m面BeMgZnO薄膜的自发极化增强型光电探测器,其特征在于:所述平行金属电极材料为Au、Al或Ag中的任一种。
6.权利要求1~5任一项所述的基于m面BeMgZnO薄膜的自发极化增强型光电探测器的制备方法,其特征在于:所述方法包括以下步骤:
(1)以m面蓝宝石作为薄膜生长的衬底,利用清洗液对所述衬底进行超声清洗后用氮气吹干,立即置于脉冲激光沉积系统的真空腔内,开启真空泵,使真空度为4×10-4~6×10- 4Pa;
(2)采用脉冲激光烧蚀沉积方法,利用BeMgZnO陶瓷作为靶材,控制衬底温度为600~800℃,脉冲激光能量为300~400mJ/Pulse,薄膜沉积氧压为1~3Pa,在洁净干燥的m面蓝宝石衬底表面沉积m面BeMgZnO外延薄膜;
(3)确定步骤(2)制得的m面BeMgZnO四元合金薄膜的c轴方向,做好标号;利用真空蒸镀仪,通过热蒸发的方法在步骤(2)得到的BeMgZnO薄膜表面蒸镀一对平行金属电极,其中:所述金属平行电极与m面BeMgZnO薄膜c轴方向垂直。
7.根据权利要求6所述的基于m面BeMgZnO薄膜的自发极化增强型光电探测器的制备方法,其特征在于:步骤(2)中所述沉积时间为30~90min。
8.根据权利要求6所述的基于m面BeMgZnO薄膜的自发极化增强型光电探测器的制备方法,其特征在于:步骤(2)中所述BeMgZnO陶瓷靶材是采用固相烧结法制得,具体方法如下:按配比将BeO、ZnO、MgO粉体原料混合均匀,然后置于真空管式炉烧制2h后制得,其中:烧结温度为1250℃。
9.根据权利要求8所述的基于m面BeMgZnO薄膜的自发极化增强型光电探测器的制备方法,其特征在于:所述粉体原料BeO、MgO、ZnO的摩尔比为5:10:85。
CN201811487852.2A 2018-12-06 2018-12-06 基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法 Active CN109616535B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811487852.2A CN109616535B (zh) 2018-12-06 2018-12-06 基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811487852.2A CN109616535B (zh) 2018-12-06 2018-12-06 基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN109616535A true CN109616535A (zh) 2019-04-12
CN109616535B CN109616535B (zh) 2020-04-28

Family

ID=66006613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811487852.2A Active CN109616535B (zh) 2018-12-06 2018-12-06 基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN109616535B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143526A1 (en) * 2007-05-17 2008-11-27 Canterprise Limited Contact and method of fabrication
CN101552322A (zh) * 2009-04-30 2009-10-07 苏州大学 一种氧化锌基有机/无机杂化纳米结构太阳电池
CN102185071A (zh) * 2011-04-22 2011-09-14 浙江大学 一种非极性ZnO基发光器件及其制备方法
CN103022217A (zh) * 2012-11-22 2013-04-03 中山大学 一种BeMgZnO基MSM日盲探测器及其制备方法
CN104831241A (zh) * 2015-03-31 2015-08-12 湖北大学 一种生长单相外延m面ZnOS三元合金薄膜的方法
CN107240615A (zh) * 2017-05-15 2017-10-10 东南大学 一种具有非极性吸收层的紫外探测器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143526A1 (en) * 2007-05-17 2008-11-27 Canterprise Limited Contact and method of fabrication
CN101552322A (zh) * 2009-04-30 2009-10-07 苏州大学 一种氧化锌基有机/无机杂化纳米结构太阳电池
CN102185071A (zh) * 2011-04-22 2011-09-14 浙江大学 一种非极性ZnO基发光器件及其制备方法
CN103022217A (zh) * 2012-11-22 2013-04-03 中山大学 一种BeMgZnO基MSM日盲探测器及其制备方法
CN104831241A (zh) * 2015-03-31 2015-08-12 湖北大学 一种生长单相外延m面ZnOS三元合金薄膜的方法
CN107240615A (zh) * 2017-05-15 2017-10-10 东南大学 一种具有非极性吸收层的紫外探测器

Also Published As

Publication number Publication date
CN109616535B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN107369763B (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
Moholkar et al. Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate
CN110459640B (zh) 一种基于Cs3Cu2I5钙钛矿的自供能光电探测器及其制备方法
Jäger et al. Hydrogenated indium oxide window layers for high-efficiency Cu (In, Ga) Se2 solar cells
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
CN110061089A (zh) 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法
CN110729376B (zh) 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法
CN102956752A (zh) 柔性铜铟镓硒薄膜太阳电池的制备方法
CN109037374A (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN109148635B (zh) CuAlO2/Ga2O3紫外光电二极管及制备方法
CN103400903A (zh) 一种提高铜锌锡硫薄膜晶粒尺寸和致密度的制备方法
CN107910094A (zh) 透明导电膜与制备方法、溅射靶与透明导电性基板及太阳能电池
CN109585593A (zh) 一种基于BeZnOS四元合金的自发极化场增强型紫外光探测器及其制备方法
CN109957759A (zh) Cu掺杂β-Ga2O3薄膜的制备方法及相应的结构
CN103346179B (zh) 太阳能电池器件及其制备方法
CN109616535A (zh) 基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法
CN110467230A (zh) 相变温度可调的RuxV1-xO2合金半导体薄膜材料、制备方法及其在智能窗中的应用
CN112531065B (zh) 用于红外光电的铅盐薄膜结构及其制备方法
TWI433328B (zh) 銅銦硒系薄膜太陽能電池及其製造方法
US20150295116A1 (en) Oxide sintered body, sputtering target using it, and oxide film
CN109841697B (zh) 一种基于CuO/Se复合材料薄膜的太阳能电池
CN109560161B (zh) 基于m面ZnOS薄膜的自发极化增强型光电探测器及其制备方法
CN103060753B (zh) 一种低温制备六方相ZnS薄膜的工艺方法
CN106449810B (zh) 一种CdTe/CIGS梯度吸收层薄膜太阳能电池及其制备方法
CN109560162A (zh) 一种基于非极性a面ZnOS薄膜的光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant