CN109610093A - 一种负载镁基合金的复合纤维膜及其制备方法和应用 - Google Patents

一种负载镁基合金的复合纤维膜及其制备方法和应用 Download PDF

Info

Publication number
CN109610093A
CN109610093A CN201811456689.3A CN201811456689A CN109610093A CN 109610093 A CN109610093 A CN 109610093A CN 201811456689 A CN201811456689 A CN 201811456689A CN 109610093 A CN109610093 A CN 109610093A
Authority
CN
China
Prior art keywords
base alloy
magnesium base
magnesium
preparation
cellulosic membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811456689.3A
Other languages
English (en)
Other versions
CN109610093B (zh
Inventor
李双寿
张琦
赵洋强
汤彬
杨建新
李睿
马运
陈星�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201811456689.3A priority Critical patent/CN109610093B/zh
Publication of CN109610093A publication Critical patent/CN109610093A/zh
Application granted granted Critical
Publication of CN109610093B publication Critical patent/CN109610093B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/06Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/56Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/413Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Powder Metallurgy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种负载镁基合金的复合纤维膜及其制备方法和应用,该方法通过高压静电纺丝技术可将微纳级的镁基合金均匀负载于纵横交割的网状结构纤维膜上,使其具有机械性能良好、化学稳定性高、催化活性高、可多次反复使用的优点,且易于分离回收。此外,通过制备技术和材料的优化和改进,可实现在刚性、柔性、曲面等复杂基底表面的快速成型以及复杂图案、多功能结器件的制备,并可满足生物修复、催化储能、光降解、光探测等生物医学、能源环境领域和智能制造、可穿戴衣物等民用领域的应用需求。

Description

一种负载镁基合金的复合纤维膜及其制备方法和应用
技术领域
本发明涉及镁基合金复合纤维材料的制备及应用技术领域,特别涉及一种负 载镁基合金的复合纤维膜及其制备方法和应用。
背景技术
镁合金作为一种轻质合金,除具有比重轻、比高强度等结构性能优势外,还 具备与正常的骨骼相近的弹性模量、良好的生物相容性、优越的生物可降解性及 光/电/化学催化特性。镁合金用于生物体时一般不发生排斥反应、可以被生物体 分解吸收;用于能源存储及光降解、光探测也有显著的效果;而镁基合金则因制 备过程中采用特种制造技术,以及金属、非金属等掺杂物的添加兼具了更多优异 的理化特性。相比于块体合金,微纳级的镁基合金具有更大的比表面积、可提供 更多催化反应所需的活性点位。然而,目前报道的微纳级的镁基合金大多为粉末 状,粉末状的镁基合金存在使用和回收的困难,多孔结构虽提供了一种解决该问 题的有效思路,但这种方法的制备成本较高,且应用于非晶合金等亚稳态金属时, 其产品效果严重受到添加材料及制备方法的影响。因此,如何更好地利用这一结 构、性能优势进行制备和应用成为当前需迫切解决的问题。
微纳级的镁基合金负载于高压静电纺丝技术制备的纳米纤维膜可成为解决 当前镁基合金应用问题的一种重要手段。与粉状材料相比,负载镁基合金的复合 纤维膜具有明显的优势:纤维膜纵横交割的网状结构具有机械强度适宜、耐高温、 耐化学稳定性等优势,可为镁基合金提供足够的承载空间;同时,由于镁基合金 的尺寸达到微纳级尺度,可发挥大比表面性和小尺寸效应,而镁基合金在高孔隙 结构纤维膜上的均匀分布也提高了其分散度,有利于镁基合金结构特性和表面催 化特性的发挥,可达到同样的使用效果却节省活性组分用量的作用。此外,复合 纤维膜状的孔径、孔体积以及孔隙分布等均可通过高压静电纺丝技术加以控制, 可以发挥活性组分和载体的双重优点。更重要的是,通过制备方法和复合纤维膜 材料的优化和改进,可实现在刚性、柔性、曲面等复杂基底表面的快速成型以及 复杂图案、多功能结器件的制备,满足生物修复、催化储能、光降解、光探测等 生物医学、能源环境领域和智能制造、可穿戴衣物等民用领域的应用需求。因此, 开发一种负载镁基合金的复合纤维膜及其制备方法和应用显得尤为重要。
发明内容
基于背景技术存在的技术问题,本发明的目的是提供一种负载镁基合金的复 合纤维膜及其制备方法和应用,通过高压静电纺丝技术可将微纳级的镁基合金均 匀负载于纵横交割的网状结构纤维膜上,使其具有机械性能良好、化学稳定性高、 催化活性高、可多次反复使用的优点,且易于分离回收。此外,通过制备技术和 材料的优化和改进,可实现在刚性、柔性、曲面等复杂基底表面的快速成型以及 复杂图案、多功能结器件的制备,并可满足生物修复、催化储能、光降解、光探 测等生物医学、能源环境领域和智能制造、可穿戴衣物等民用领域的应用需求。 具体技术方案如下:
一种负载镁基合金的复合纤维膜制备方法,其特征在于,包括以下步骤:
(1)设计成分并配置镁合金及掺杂材料,采用凝固加工控制技术制备镁基 合金,并通过机械球磨处理获得微纳级的镁基合金粉末;
(2)配制镁基合金前驱体溶液;
(3)采用高压静电纺丝技术在承印基底上印制负载镁基合金的复合纤维膜;
(4)低温条件下的陈化处理及表面功能化处理。
可选的,所述的镁合金包括镁镍、镁铜、镁锌合金中的一种;所述的掺杂材 料包括碳纳米管等一维纳米材料,石墨烯、氧化石墨烯、还原氧化石墨烯、石墨 炔、氮化硼、黒磷、过渡金属硫族化合物等二维纳米材料以及碳化硅、氮化硼等 小尺寸微纳米材料中的一种或几种;所述的凝固加工控制技术包括电阻熔融、电 弧熔炼、压铸、喷铸、吸铸、浇铸、单辊急冷等方法中的一种;所述的镁基合金 包括组成成分中包含镁镍、镁铜、镁锌的多晶、微晶、纳米晶、非晶合金及其复 合材料中的一种或几种;所述的机械球磨处理为使用高能球磨机球磨4-72h;
可选的,所述的复合纤维膜的制备方法,其特征在于,镁基合金前驱体溶液 包括以下组分:
镁基合金 0.05-5重量份
聚合物 75-100重量份
溶剂 400-4000重量份
其中,所述的聚合物为PVP、PAN、PMMA、PVAc、PLA中的一种或几种;
所述的溶剂包括DMF、DMSO、异丙醇、甲苯、氯苯等溶液中的一种或几 种;
可选的,所述的复合纤维膜的制备方法中,高压静电纺丝技术采用的电压为 1-50kV;喷嘴孔径为3-80μm;
可选的,所述的复合纤维膜的制备方法中,低温条件下的陈化处理为将复合 纤维膜放置于温度为20-70℃、湿度为20-80%的环境下保存2-48h;所述的表面 功能化处理则是在一定气氛、100-400℃温度的条件下处理1-8h。其中,所述的 气氛为空气、氩气、氧气、氮气中的一种或几种。
可选的,所述的复合纤维膜的制备方法中,采用高压静电纺丝技术可以直接 在刚性、柔性、曲面等复杂基底表面进行快速成型印制;
可选的,所述的复合纤维膜的制备方法中,采用基底表面覆盖图案化模板后, 再用高压静电纺丝技术可印制复杂图形;
可选的,所述的复合纤维膜的制备方法中,可采用基底表面印制复合纤维膜 后再印制其他功能材料,获得多功能结器件;
可选的,所述的复合纤维膜可满足生物修复、催化储能、光降解、光探测等 生物医学、能源环境领域和智能制造、可穿戴衣物等民用领域的应用需求。
本发明的有益效果是:通过高压静电纺丝技术可将微纳级的镁基合金均匀 负载于纵横交割的网状结构纤维膜上,使其具有机械性能良好、化学稳定性高、 催化活性高、可多次反复使用的优点,且易于分离回收。此外,通过制备技术和 材料的优化和改进,可实现在刚性、柔性、曲面等复杂基底表面的快速成型以及 复杂图案、多功能结器件的制备,并可满足生物修复、催化储能、光降解、光探 测等生物医学、能源环境领域和智能制造、可穿戴衣物等民用领域的应用需求。
附图说明
图1为本发明负载镁基合金的复合纤维膜的制备流程图;
图2为本发明实施例1所使用的镁基非晶合金复合纤维膜的SEM图;
图3为本发明实施例1所使用的镁基非晶合金复合纤维膜降解亚甲基蓝溶液 前后的紫外-可见光谱图;
图4为本发明实施例1所使用的镁基非晶合金复合纤维膜循环降解亚甲基蓝 溶液的效率图;
图5为本发明可应用的含光复合纤维膜的多功能结器件结构图。
具体实施方式
下面将结合本发明实施方式和附图,对本发明的技术方案进行清楚、完整的 描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实 施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动 前提下所获得的所有其他实施方式,都属于本发明保护的范围。
为了解决现有技术中粉末状镁基合金存在使用和回收的问题,本发明提供 一种负载镁基合金的复合纤维膜及其制备方法和应用,通过高压静电纺丝技术可 将微纳级的镁基合金均匀负载于纵横交割的网状结构纤维膜上,使其具有机械性 能良好、化学稳定性高、催化活性高、可多次反复使用的优点,且易于分离回收。 此外,通过制备技术和材料的优化和改进,可实现在刚性、柔性、曲面等复杂基 底表面的快速成型以及复杂图案、多功能结器件的制备,并可满足生物修复、催 化储能、光降解、光探测等生物医学、能源环境领域和智能制造、可穿戴衣物等 民用领域的应用需求。
下面先从总体上对本发明实施方式提供的一种负载镁基合金的复合纤维膜 及其制备方法和应用进行说明。
如图1所示,为本发明提供的一种负载镁基合金的复合纤维膜及其制备方 法和应用的制备流程图,包括:
(1)设计成分并配置镁合金及掺杂材料,采用凝固加工控制技术制备镁基 合金,并通过机械球磨处理获得微纳级的镁基合金粉末;
(2)配制镁基合金前驱体溶液;
(3)采用高压静电纺丝技术在承印基底上印制负载镁基合金的复合纤维膜;
(4)低温条件下的陈化处理及表面功能化处理。
在一种实施方式中,所述的镁合金包括镁镍、镁铜、镁锌合金中的一种;所 述的掺杂材料包括碳纳米管等一维纳米材料,石墨烯、氧化石墨烯、还原氧化石 墨烯、石墨炔、氮化硼、黒磷、过渡金属硫族化合物等二维纳米材料以及碳化硅、 氮化硼等小尺寸微纳米材料中的一种或几种;所述的凝固加工控制技术包括电阻 熔融、电弧熔炼、压铸、喷铸、吸铸、浇铸、单辊急冷等方法中的一种;所述的 镁基合金包括组成成分中包含镁镍、镁铜、镁锌的多晶、微晶、纳米晶、非晶合 金及其复合材料中的一种或几种;所述的机械球磨处理为使用高能球磨机球磨 4-72h;
在另一种实施方式中,镁基合金前驱体溶液包括以下组分:
镁基合金 0.05-5重量份
聚合物 75-100重量份
溶剂 400-4000重量份
其中,所述的聚合物由PVP、PAN、PMMA、PVAc、PLA中的一种或几种;
所述的溶剂包括DMF、DMSO、异丙醇、甲苯、氯苯等溶液中的一种或几 种;
在另一种实施方式中,高压静电纺丝技术采用的电压为1-50kV;喷嘴孔径 为3-80μm;
在另一种实施方式中,低温条件下的陈化处理为将复合纤维膜放置于温度为 20-70℃、湿度为20-80%的环境下保存2-48h;所述的表面功能化处理则是在 一定气氛、100-400℃温度的条件下处理1-8h。其中,所述的气氛为空气、氩 气、氧气、氮气中的一种或几种。
下面通过具体实施方式,对本发明实施方式提供的镁基合金复合纤维膜的制 备和性能差异进行详细说明。
实施例1
将镁铜合金及石墨烯采用压铸法制备得到镁基非晶合金,并采用高能球磨机 球磨12h得到镁铜基复合非晶合金粉末;将镁镍非晶合金粉末0.15重量份、聚 合物由PVP为80重量份、DMF为1500重量份配制成镁基非晶合金前驱体溶液; 采用高压静电纺丝技术,使用电压为15kV、喷嘴孔径为10μm的条件,在承印 基底上印制负载镁铜基复合非晶合金的复合纤维膜,并将复合纤维膜放置于温度 为50℃、湿度为30%的温湿度箱内保存2h,然后在氩气气氛中、200℃的温 度条件下保温5h,得到负载镁铜基复合非晶合金的复合纤维膜,其SEM图如图 2所示。将镁基非晶合金复合纤维膜进行紫外可见光谱测试,可以看出降解后亚甲基蓝的特征峰消失,经计算降解率可达95.73%,其结果如图3所示。将实施 例1得到的镁基非晶合金复合纤维膜用于亚甲基蓝循环光降解,降解十次后仍可 以达到87.67%,其结果如图4所示。
实施例2
将镁镍合金及碳纳米管采用喷铸法制备得到镁基晶体合金,并采用高能球磨 机球磨48h得到镁镍基复合晶体合金粉末;将镁铜晶体合金粉末1重量份、聚合 物由PAN为100重量份、异丙醇为3000重量份配制成镁基晶体合金前驱体溶液; 采用高压静电纺丝技术,使用电压为40kV、喷嘴孔径为50μm的条件,在承印 基底上印制负载镁镍基复合晶体合金的复合纤维膜,并将复合纤维膜放置于温度 为70℃、湿度60%的温湿度箱内保存24h,然后在氮气气氛中、300℃的温度 条件下保温2h,得到负载镁镍基复合晶体合金的复合纤维膜。将镁基非晶合金 复合纤维膜进行紫外可见光谱测试,可以看出降解后亚甲基蓝的特征峰消失,经 计算降解率可达88.34%。
在镁基非晶合金复合纤维膜制备的基础上,通过进一步改进印制基底、印制 图案、产品结构的印制方式,可实现催化纤维的多样化应用。
在一种实现方式中,所述的复合纤维膜的制备方法中,采用高压静电纺丝技 术可以直接在刚性、柔性、曲面基底表面进行快速成型印制;
在另一种实现方式中,所述的复合纤维膜的制备方法中,采用基底表面覆盖 图案化模板后,再用高压静电纺丝技术可印制复杂图形;
在另一种实现方式中,所述的复合纤维膜的制备方法中,可采用基底表面印 制镁基合金复合纤维膜后再印制其他功能材料,获得多功能结器件,如图5;
由以上可见,通过本发明实施方式提供的负载镁基合金的复合纤维膜,通过 高压静电纺丝技术可将微纳级的镁基合金均匀负载于纵横交割的网状结构纤维 膜上,使其具有机械性能良好、化学稳定性高、催化活性高、可多次反复使用的 优点,且易于分离回收。此外,通过制备技术和材料的优化和改进,可实现在刚 性、柔性、曲面等复杂基底表面的快速成型以及复杂图案、多功能结器件的制备, 并可满足生物修复、催化储能、光降解、光探测等生物医学、能源环境领域和智 能制造、可穿戴衣物等民用领域的应用需求。

Claims (9)

1.一种负载镁基合金的复合纤维膜制备方法,其特征在于,包括以下步骤:
(1)制备镁基合金粉末;
(2)配制镁基合金前驱体溶液;
(3)在承印基底上印制负载镁基合金的复合纤维膜;
(4)陈化处理及表面功能化处理。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中所述的镁基合金包括镁镍、镁铜、镁锌的多晶、微晶、纳米晶、非晶合金及其复合材料中的一种或几种;所述镁基合金粉末含有碳纳米管一维纳米材料,石墨烯、氧化石墨烯、还原氧化石墨烯、石墨炔、氮化硼、黒磷、过渡金属硫族化合物二维纳米材料,以及碳化硅、氮化硼小尺寸微纳米材料中的一种或几种。
3.根据权利要求1所述的方法,其特征在于,步骤(1)中所述镁基合金通过凝固加工控制技术制备,所述凝固加工控制技术包括电阻熔融、电弧熔炼、压铸、喷铸、吸铸、浇铸、单辊急冷方法中的一种;所述镁基合金粉末通过球磨机球磨4-72h制备。
4.根据权利要求1所述的方法,其特征在于,步骤(2)中所述的镁基合金前驱体溶液包括以下组分:
镁基合金 0.05-5重量份
聚合物 75-100重量份
溶剂 400-4000重量份
其中,所述的聚合物为PVP、PAN、PMMA、PVAc、PLA中的一种或几种;
所述的溶剂包括DMF、DMSO、异丙醇、甲苯、氯苯中的一种或几种。
5.根据权利要求1所述的方法,其特征在于,步骤(3)中采用基底表面覆盖图案化模板后,再用高压静电纺丝技术印制复杂图形;所述高压静电纺丝技术采用的电压为1-50kV;喷嘴孔径为3-80μm。
6.根据权利要求5所述的方法,其特征在于,所述高压静电纺丝技术直接在刚性、柔性、曲面复杂基底表面进行快速成型印制。
7.根据权利要求1所述的方法,其特征在于,步骤(3)中印制复合纤维膜后再印制功能材料,获得多功能结器件。
8.根据权利要求1所述的方法,其特征在于,步骤(4)中所述的陈化处理为将复合纤维膜放置于温度为20-70℃、湿度为20-80%的环境下保存2-48h;所述的表面功能化处理则是在一定气氛、100-400℃温度的条件下处理1-8h,其中,所述的气氛为空气、氩气、氧气、氮气中的一种或几种。
9.根据权利要求1-8任一项所述方法制备的复合纤维膜,其特征在于,所述的复合纤维膜应用于生物修复、催化储能、光降解、光探测生物医学、能源环境和智能制造领域,或用于可穿戴衣物。
CN201811456689.3A 2018-11-30 2018-11-30 一种负载镁基合金的复合纤维膜及其制备方法和应用 Active CN109610093B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811456689.3A CN109610093B (zh) 2018-11-30 2018-11-30 一种负载镁基合金的复合纤维膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811456689.3A CN109610093B (zh) 2018-11-30 2018-11-30 一种负载镁基合金的复合纤维膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109610093A true CN109610093A (zh) 2019-04-12
CN109610093B CN109610093B (zh) 2020-10-30

Family

ID=66006690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811456689.3A Active CN109610093B (zh) 2018-11-30 2018-11-30 一种负载镁基合金的复合纤维膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109610093B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257955A (zh) * 2019-06-27 2019-09-20 闽江学院 一种静电纺丝纳米纤维制备工艺
CN110316698A (zh) * 2019-07-08 2019-10-11 陕西科技大学 一种pmma有机包覆纳米镁一维储氢材料及其制备方法
CN110438584A (zh) * 2019-07-06 2019-11-12 贵州森塑宇木塑有限公司 一种高耐磨复合纤维材料及其应用
CN111342064A (zh) * 2020-03-05 2020-06-26 清华大学 一种镧钴氧系纳米复合纤维膜及其应用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110055893A (ko) * 2009-11-20 2011-05-26 한국전자통신연구원 전기방사법을 이용한 금속선 제조방법
CN103103628A (zh) * 2013-01-14 2013-05-15 北京大学深圳研究生院 纳米材料及其应用以及纳米材料的制备方法和装置
KR101284610B1 (ko) * 2012-04-09 2013-07-17 한국과학기술원 타원형 기공을 갖는 나노섬유, 그 제조방법 및 이를 포함하는 물품
CN103227334A (zh) * 2013-04-03 2013-07-31 上海交通大学 一种碳载金属催化剂及其制备方法和应用
CN108018654A (zh) * 2017-11-28 2018-05-11 华中科技大学 一种超薄声透射相位调控薄膜及其制作方法
CN108807946A (zh) * 2018-08-07 2018-11-13 许焕生 具有多层核壳结构的锂电池正极材料的制备方法
CN108842293A (zh) * 2018-07-10 2018-11-20 宁波革创新材料科技有限公司 一种环保柔性储氢材料的制备方法
CN108862187A (zh) * 2018-07-25 2018-11-23 宁波革创新材料科技有限公司 一种具有层次结构的环保储氢材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110055893A (ko) * 2009-11-20 2011-05-26 한국전자통신연구원 전기방사법을 이용한 금속선 제조방법
KR101284610B1 (ko) * 2012-04-09 2013-07-17 한국과학기술원 타원형 기공을 갖는 나노섬유, 그 제조방법 및 이를 포함하는 물품
CN103103628A (zh) * 2013-01-14 2013-05-15 北京大学深圳研究生院 纳米材料及其应用以及纳米材料的制备方法和装置
CN103227334A (zh) * 2013-04-03 2013-07-31 上海交通大学 一种碳载金属催化剂及其制备方法和应用
CN108018654A (zh) * 2017-11-28 2018-05-11 华中科技大学 一种超薄声透射相位调控薄膜及其制作方法
CN108842293A (zh) * 2018-07-10 2018-11-20 宁波革创新材料科技有限公司 一种环保柔性储氢材料的制备方法
CN108862187A (zh) * 2018-07-25 2018-11-23 宁波革创新材料科技有限公司 一种具有层次结构的环保储氢材料的制备方法
CN108807946A (zh) * 2018-08-07 2018-11-13 许焕生 具有多层核壳结构的锂电池正极材料的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257955A (zh) * 2019-06-27 2019-09-20 闽江学院 一种静电纺丝纳米纤维制备工艺
CN110438584A (zh) * 2019-07-06 2019-11-12 贵州森塑宇木塑有限公司 一种高耐磨复合纤维材料及其应用
CN110438584B (zh) * 2019-07-06 2021-10-22 贵州森塑宇木塑有限公司 一种高耐磨复合纤维材料及其应用
CN110316698A (zh) * 2019-07-08 2019-10-11 陕西科技大学 一种pmma有机包覆纳米镁一维储氢材料及其制备方法
CN111342064A (zh) * 2020-03-05 2020-06-26 清华大学 一种镧钴氧系纳米复合纤维膜及其应用方法

Also Published As

Publication number Publication date
CN109610093B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN109610093A (zh) 一种负载镁基合金的复合纤维膜及其制备方法和应用
Xu et al. Noble-metal-free electrospun nanomaterials as electrocatalysts for oxygen reduction reaction
Wang et al. Continuous synthesis of hollow high‐entropy nanoparticles for energy and catalysis applications
US9842666B2 (en) Carbon nanofiber including copper particles, nanoparticles, dispersed solution and preparation methods thereof
Guo et al. Ultralong Pt-on-Pd bimetallic nanowires with nanoporous surface: nanodendritic structure for enhanced electrocatalytic activity
Yan et al. Binder‐free air electrodes for rechargeable zinc‐air batteries: recent progress and future perspectives
Wei et al. Solvent-controlled synthesis of NiO–CoO/carbon fiber nanobrushes with different densities and their excellent properties for lithium ion storage
Bornamehr et al. Prussian blue and its analogues as functional template materials: control of derived structure compositions and morphologies
CN111348676B (zh) 一种多孔金属氧化物纳米片及其制备方法和应用
CN110201696A (zh) 一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法
Wen et al. Activating MoS2 by interface engineering for efficient hydrogen evolution catalysis
Cao et al. Nanofiber materials for lithium-ion batteries
KR102629191B1 (ko) 리튬 이온 전지의 실리콘계 음극재료 및 그 제조 방법과 전지
Jiang et al. Microcellular 3D graphene foam via chemical vapor deposition of electroless plated nickel foam templates
Sui et al. Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency
Dong et al. Hollow hydrangea-like and hollow spherical CoMoO4 micro/nano-structures: pH-dependent synthesis, formation mechanism, and enhanced lithium storage performance
Zhang et al. Rational synthesis of three-dimensional porous ZnCo2O4 film with nanowire walls via simple hydrothermal method
Li et al. Electrospun FeCo nanoparticles encapsulated in N-doped carbon nanofibers as self-supporting flexible anodes for lithium-ion batteries
Xu et al. Electrospun Ti3C2T x MXene and silicon embedded in carbon nanofibers for lithium-ion batteries
Sanij et al. Fabrication of polyoxometalate-modified palladium–nickel/reduced graphene oxide alloy catalysts for enhanced oxygen reduction reaction activity
Mahajan et al. Formation of copper nickel bimetallic nanoalloy film using precursor inks
Cui et al. Construction of CoNi2S4/Co9S8@ Co4S3 nanocubes derived from Ni-Co prussian blue analogues@ cobalt carbonate hydroxide core–shell heterostructure for asymmetric supercapacitor
CN110177760A (zh) 制造中空结构体的方法
Chen et al. Electrospun carbon nanofiberic coated with ambutan-like NiCo 2 O 4 microspheres as electrode materials
KR101395611B1 (ko) 구조체 내의 기공 또는 간극 표면에 탄소나노와이어를 고밀도로 합성하는 방법 및 이에 의하여 합성된 계층 구조체

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant