CN109608395A - 过渡金属催化的c-h活化/环合反应高效合成异喹啉衍生物的绿色合成新方法 - Google Patents
过渡金属催化的c-h活化/环合反应高效合成异喹啉衍生物的绿色合成新方法 Download PDFInfo
- Publication number
- CN109608395A CN109608395A CN201811586801.5A CN201811586801A CN109608395A CN 109608395 A CN109608395 A CN 109608395A CN 201811586801 A CN201811586801 A CN 201811586801A CN 109608395 A CN109608395 A CN 109608395A
- Authority
- CN
- China
- Prior art keywords
- silver
- dimer
- palladium
- chloride
- rhodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D217/00—Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
- C07D217/12—Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring
- C07D217/14—Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring other than aralkyl radicals
- C07D217/16—Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring other than aralkyl radicals substituted by oxygen atoms
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明涉及一种以水作为溶剂、硫叶立德为卡宾供体、过渡金属催化的C‑H活化/环合反应高效在芳(杂)环上形成C‑C键,并环合成异喹啉衍生物的绿色合成新方法。与传统方法相比,本方法原料易得,步骤简单,避免了毒性有机溶剂的使用,是一种温和、快速、简便、有效、环境友好的制备异喹啉母环的方法,具有广阔的应用前景。
Description
技术领域
本发明涉及一种以水作为溶剂、硫叶立德为卡宾供体、过渡金属催化的C-H活化/环合反应高效在芳(杂)环上形成C-C键并环合成异喹啉衍生物的绿色合成新方法。
背景技术
异喹啉及其衍生物是一种常见的有机化合物母环结构,广泛存在于多种药物、天然化合物1-5和有机材料6, 7。合成异喹啉及其衍生物的传统方法包括Pomeranz-Fritsch反应8、Bischler-Napieralski反应9和Pictet-Spengler反应10,这些反应一般存在如下缺点:步骤繁琐、条件苛刻、收率低、官能团适用性差等。近年来,C-H活化在有机合成领域取得了快速的发展,多种含N原子的导向基团的化合物,分别与炔类或者重氮类等化合物,通过过渡金属催化,可快速构建含有异喹啉母环结构的各种化合物11-17。然而已有的这些方法依然有一定局限性,如原料难合成、不稳定、难保存,甚至具有潜在危险性,反应条件不够绿色环保,需要添加多种添加剂,并使用毒性有机溶剂等。因此,开发经济、高效、安全、绿色的C-H活化方法来合成异喹啉及其衍生物是一项具有重大意义的研究。硫叶立德是一种卡宾前体化合物,与重氮化合物相比,具有安全性,稳定性和易合成等优点,最近成为C-H活化研究的热点18-23。本发明提供一种以苄胺类化合物为起始原料,硫叶立德作为卡宾供体,以水作为溶剂,通过过渡金属催化,简捷高效地在芳杂环上形成C-C键并环合成异喹啉衍生物的绿色合成新方法。
发明内容
本发明实现了以水作为溶剂、硫叶立德作为卡宾供体,通过过渡金属催化的C-H活化一步偶联并环合构建异喹啉及其衍生物的合成新方法,解决了传统合成方法步骤冗长、反应条件苛刻、低原子利用率、使用有毒有机溶剂造成环境污染、成本较高等问题。本发明原料易得,步骤简单,是一种温和、快速、简便、有效、环境友好的制备异喹啉母环的方法,具有广阔的应用前景。
本发明的化学反应式如下所示:
A环为苯基、萘基、噻吩基、呋喃基、吡啶基、吡咯基、吲哚基中的一种;
R1为氢、卤素、烷基、苯基、烷氧基、羰基、醛基、羧基、氰基、硝基、烷酰氧基、酰胺基中的一种或一种以上;
R2为氢、烷基、杂芳基中的一种;
R3为苯基、噻吩基、呋喃基、吡啶基、萘基、吡咯基、吲哚基、烷基、烯基、炔基的一种或一种以上。
制备步骤如下:
(1)在洁净的反应器中依次加入苄胺类化合物、硫叶立德化合物、催化剂、添加剂和水,放入100℃油浴锅里搅拌24h;
(2)反应结束后,加入二氯甲烷萃取,收集二氯甲烷层,减压除去溶剂,残留物采用硅胶柱层析分离纯化即得产品。
步骤(1)中,催化剂为钯碳、四(三苯基膦)钯、醋酸钯、氯化钯、二(乙腈)二氯化钯、二(苯腈)二氯化钯,1,1’-二(二苯基膦基)二茂铁二氯化钯、二(三苯基膦)二氯化钯、双(二亚苄基丙酮)钯、三(二亚苄基丙酮)二钯、氯化烯丙基钯(II)二聚物、(1,5-环辛二烯)二氯化钯(II)、铑碳、三氯化铑、醋酸铑、乙酰丙酮三苯基膦羰基铑、双环辛烯氯化铑二聚体、二氯(五甲基环戊二烯基)合铑(III)二聚体、(二(六氟锑酸)三乙腈(五甲基环戊二烯基)铑(III))、三苯基膦氯化铑、三氯化钌、三苯基膦氯化钌、二氯二羰基双三苯基膦钌、双(2-甲基烯丙基)(1,5-环辛二烯)钌(II)、对伞花烃二氯化钌二聚体、氯化钴、乙酰乙酰钴、八羰基二钴、二氯(五甲基环戊二烯基)合钴(III)二聚体、五甲基环戊二烯基羰基二碘化钴、(二(六氟锑酸)三乙腈(五甲基环戊二烯基)钴(III))、三氯化铱、二氯(五甲基环戊二烯)合铱(III)二聚体、双(1,5-环辛二烯)氯化铱(Ⅰ)二聚体、甲氧基(环辛二烯)合铱二聚体中的一种或一种以上。
步骤(1)中的添加剂为硝酸银、乙酸银、碳酸银、硫酸银、甲烷磺酸银、三氟甲烷磺酸银、对甲苯磺酸银、双三氟甲烷磺酰亚胺银,三氟甲烷磺酸银,六氟锑酸银、四氟硼酸银、六氟磷酸银中的一种或一种以上。
步骤(1)中苄胺类化合物:硫叶立德化合物:催化剂:添加剂的摩尔比为1:(1.2~3.0):(0.02~0.05):(0.08~0.2)。
用核磁共振氢谱(1H NMR)、碳谱(13C NMR)以及高分辨质谱证实了在芳杂环上形成C-C键以及环合成异喹啉衍生物的结构,如附图1、附图2。其中核磁共振图采用VarianINOVA-400 型核磁共振仪测定,以四甲基硅烷(TMS)为内标(δ 0 ppm),氘代氯仿为溶剂;高分辨质谱用 Agilent 1946B 质谱仪测定。
附图说明
图1 为本发明化合物1的核磁氢谱图。
图2 为本发明化合物1的核磁碳谱图。
具体实施方法
下面结合具体实施方式对本发明作进一步描述,有助于对本发明的理解。但并不能以此来限制本发明的权利范围,而本发明的权利范围应以权利要求书阐述的为准。
实施实例1:化合物1的合成
(1)在洁净的反应器中依次加入苄胺(21.4 mg,0.2 mmol)、2,6-二甲氧基苯基硫叶立德(102.5 mg,0.4 mmol)、二氯(五甲基环戊二烯基)合铑(III)二聚体(6.18 mg,0.01mmol)、醋酸银(6.67 mg,0.04 mmol)和水(2 mL),放入100℃油浴锅里搅拌24 h。
(2)反应结束后,加入二氯甲烷萃取,收集二氯甲烷层,减压除去溶剂,残留物采用硅胶柱层析分离纯化即得白色固体,收率75 %。1H NMR (400 MHz, CDCL3) δ 9.39 (s,1H), 8.00 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.71 (s, 1H), 7.67(t, J = 7.6 Hz, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 8.4 Hz, 1H), 6.69(d, J = 8.4 Hz, 2H), 3.73 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 157.25(s,2C),150.79, 146.38, 135.22, 129.02, 128.57, 126.49, 126.36, 125.85, 125.67,121.36, 117.92, 103.12(2C), 54.95(s,2C). HRMS (ESI): m/z计算值C17H15NO2H+:266.1176, 实测值: 266.1177。
实施实例2:化合物2的合成
(1)在洁净的反应器中依次加入对溴苄胺(37.2 mg,0.2 mmol)、2,6-二甲氧基苯基硫叶立德(102.5 mg,0.4 mmol)、二氯(五甲基环戊二烯基)合铑(III)二聚体(6.18 mg,0.01mmol)、醋酸银(6.67 mg,0.04 mmol)和水(2 mL),放入100℃油浴锅里搅拌24 h。
(2)反应结束后,加入二氯甲烷萃取,收集二氯甲烷层,减压除去溶剂,残留物采用硅胶柱层析分离纯化即得白色固体,收率71.1 %。1H NMR (400 MHz, CDCl3) δ 9.34 (s,1H), 7.99 (d, J = 1.6 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.65 (dd, J = 8.8,1.6 Hz, 1H), 7.61 (s, 1H), 7.35 (t, J = 8.4 Hz, 1H), 6.68 (d, J = 8.4 Hz,2H), 3.73 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 158.22 (s,2C), 151.72 (s),148.65 (s), 137.30 (s), 130.50 (s), 129.89 (s), 129.19 (s), 128.92 (s),125.73 (s), 124.86 (s), 121.45 (s), 118.51 (s), 104.17 (s,2C), 55.99 (s,2C).HRMS (ESI): m/z计算值C17H14BrNO2H+: 344.0281, 实测值: 344.0282。
实施实例3:化合物3的合成
(1)在洁净的反应器中依次加入对甲基苄胺(24.2 mg,0.2 mmol)、2,6-二甲氧基苯基硫叶立德(102.5 mg,0.4 mmol)、二氯(五甲基环戊二烯基)合铑(III)二聚体(6.18 mg,0.01 mmol)、醋酸银(6.67 mg,0.04 mmol)和水(2 mL),放入100℃油浴锅里搅拌24 h。
(2)反应结束后,加入二氯甲烷萃取,收集二氯甲烷层,减压除去溶剂,残留物采用硅胶柱层析分离纯化即得浅黄色固体,收率56.4 %。1H NMR (400 MHz, CDCl3) δ 9.31 (s,1H), 7.89 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 9.7 Hz, 2H), 7.42 (dd, J = 8.4,1.2 Hz, 1H), 7.34 (t, J = 8.4 Hz, 1H), 6.68 (d, J = 8.4 Hz, 2H), 3.73 (s,6H), 2.54 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 157.26 (s,2C), 150.32 (s),146.29 (s), 139.35 (s), 135.55 (s), 128.50 (s), 128.17 (s), 126.32 (s),124.56 (s), 120.92 (s), 118.02 (s), 103.12 (s,2C), 54.94 (s,2C), 21.06 (s).HRMS (ESI): m/z计算值C18H17NO2H+: 280.1332, 实测值: 280.1331.
实施实例4:化合物4的合成
(1)在洁净的反应器中依次加入对三氟甲基苄胺(35.0 mg,0.2 mmol)、2,6-二甲氧基苯基硫叶立德(102.5 mg ,0.4 mmol)、二氯(五甲基环戊二烯基)合铑(III)二聚体(6.18mg,0.01 mmol)、醋酸银(6.67 mg,0.04 mmol)和水(2 mL),放入100℃油浴锅里搅拌24 h。
(2)反应结束后,加入二氯甲烷萃取,收集二氯甲烷层,减压除去溶剂,残留物采用硅胶柱层析分离纯化即得白色固体,收率89 %。1H NMR (400 MHz, CDCl3) δ 9.73 (s,1H), 8.00 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 7.2 Hz, 1H), 7.78 (s, 1H), 7.68(t, J = 7.8 Hz, 1H), 7.37 (t, J = 8.4 Hz, 1H), 6.70 (d, J = 8.4 Hz, 2H), 3.74(s, 6H).13C NMR (101 MHz, CDCl3) δ 157.18 (s,2C), 147.59 (s), 147.34 (q, J =3.1 Hz), 135.83 (s), 130.56 (s), 129.59 (s), 128.97 (s), 127.31 (s), 125.57(q, J = 31.6 Hz), 124.33 (q, J = 6.1 Hz), 121.85 (s), 121.66 (s), 117.22 (s),103.14 (s, 2C),54.94 (s, 2C). HRMS (ESI): m/z计算值C18H14F3NO2H+: 334.1049, 实测值: 334.1048.
实施实例5:化合物5的合成
(1)在洁净的反应器中依次加入邻甲基苄胺(24.2 mg,0.2 mmol)、2,6-二甲氧基苯基硫叶立德(102.5 mg ,0.4 mmol)、二氯(五甲基环戊二烯基)合铑(III)二聚体(6.18 mg,0.01 mmol)、醋酸银(6.67 mg,0.04 mmol)和水(2 mL),放入100℃油浴锅里搅拌24 h。
(2)反应结束后,加入二氯甲烷萃取,收集二氯甲烷层,减压除去溶剂,残留物采用硅胶柱层析分离纯化即得浅黄色固体,收率80.3%。1H NMR (400 MHz, CDCl3) δ 9.59 (s,1H), 7.69 (s, 1H), 7.67 (d, J = 8.3 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.35(m, 2H), 6.69 (d, J = 8.4 Hz, 2H), 3.73 (s, 6H), 2.81 (s, 3H). 13C NMR (151MHz, CDCl3) δ 158.34(s,2C), 148.75(s), 147.32(s), 136.59(s), 135.32(s),129.93(s), 129.58(s), 127.62(s), 126.41(s), 125.10(s), 122.75(s), 119.06(s),104.21(s,2C), 56.00(s,2C), 18.47(s). HRMS (ESI): m/z计算值C18H17NO2H+:280.1332, 实测值: 280.1332.
实施实例6:化合物6的合成
(1)在洁净的反应器中依次加入2,3-二甲氧基苄胺(33.4 mg,0.2 mmol)、3,4-二甲氧基苯基硫叶立德(102.5 mg ,0.4 mmol)、二氯(五甲基环戊二烯基)合铑(III)二聚体(6.18mg,0.01 mmol)、醋酸银(6.67 mg,0.04 mmol)和水(2 mL),放入100℃油浴锅里搅拌24 h。
(2)反应结束后,加入二氯甲烷萃取,收集二氯甲烷层,减压除去溶剂,残留物采用硅胶柱层析分离纯化即得黄色固体,收率37 %。1H NMR (400 MHz, CDCl3) δ 9.60 (s,1H), 7.93 (s, 1H), 7.76 (d, J = 2.0 Hz, 1H), 7.66 – 7.58 (m, 2H), 7.50 (d, J= 9.2 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 4.08 (s, 3H), 4.04 (s, 3H), 4.02 (s,3H), 3.95 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 149.47 (s), 149.28 (s), 149.07(s), 148.62 (s), 147.00 (s), 144.00 (s), 132.68 (s), 132.35 (s), 122.95 (s),122.88 (s), 120.51 (s), 119.10 (s), 115.21 (s), 111.25 (s), 109.95 (s), 61.75(s), 57.09 (s), 56.04 (s), 56.00 (s). HRMS (ESI): m/z计算值C19H19NO4H+:326.1387, 实测值: 326.1388.
参考文献
1.Bentley, K. W., beta-Phenylethylamines and the isoquinoline alkaloids.Nat Prod Rep 2006,23 (3), 444-63.
2.Bhadra, K.; Kumar, G. S., Therapeutic potential of nucleic acid-bindingisoquinoline alkaloids: binding aspects and implications for drug design. Med Res Rev 2011,31 (6), 821-62.
3.Chrzanowska, M.; Rozwadowska, M. D., Asymmetric synthesis ofisoquinoline alkaloids. Chem Rev 2004,104 (7), 3341-3370.
4.Khan, A. Y.; Suresh Kumar, G., Natural isoquinoline alkaloids: bindingaspects to functional proteins, serum albumins, hemoglobin, and lysozyme.Biophys Rev 2015,7 (4), 407-420.
5.Subasinghe, N. L.;Lanter, J.;Markotan, T.;Opas, E.;McKenney, S.;Crysler, C.;Hou, C.;O'Neill, J.;Johnson, D.; Sui, Z., A novel series of N-(azetidin-3-yl)-2-(heteroarylamino)acetamide CCR2 antagonists. Bioorg Med Chem Lett 2013,23 (4), 1063-9.
6.Shin, I. S.;Kim, J. I.;Kwon, T. H.;Hong, J. I.;Lee, J. K.; Kim, H.,Efficient electrogenerated chemiluminescence from bis-cyclometalated iridium(III) complexes with substituted 2-phenylquinoline ligands. J Phys Chem C 2007,111 (5), 2280-2286.
7.Zhao, Q.;Liu, S. J.;Shi, M.;Wang, C. M.;Yu, M. X.;Li, L.;Li, F. Y.;Yi,T.; Huang, C. H., Series of new cationic iridium(III) complexes with tunableemission wavelength and excited state properties: Structures, theoreticalcalculations, and photophysical and electrochemical properties. Inorg Chem 2006,45 (16), 6152-6160.
8.(a) Pomeranz, C. Monatsh Chem1893, 14, 116-119. (b) Fritsch, P. Ber. Dtsch. Chem. Ges.1893, 26, 419–422.
9.Heravi, M. M.;Khaghaninejad, S.; Nazari, N., Bischler-NapieralskiReaction in the Syntheses of Isoquinolines. Adv Heterocycl Chem 2014,112,183-234.
10.Stockigt, J.;Antonchick, A. P.;Wu, F.; Waldmann, H., The Pictet-Spengler reaction in nature and in organic chemistry. Angew Chem Int Ed Engl 2011,50 (37), 8538-64.
11.Chu, H.;Xue, P.;Yu, J. T.; Cheng, J., Rhodium-Catalyzed Annulation ofPrimary Benzylamine with alpha-Diazo Ketone toward Isoquinoline. J Org Chem 2016,81 (17), 8009-13.
12.Lin, X.;Chauvin, R.;Yu, Y. L.;Wang, L. H.;Xu, L. H.; Cui, X. L., Rh(III)-Catalyzed Synthesis of Multisubstituted Isoquinolines from Benzylaminesand Diazo Compounds. Chemistryselect2017,2 (8), 2383-2387.
13.Martinez, A. M.;Rodriguez, N.;Gomez-Arrayas, R.; Carretero, J. C.,Cobalt-Catalyzed ortho-C-H Functionalization/Alkyne Annulation of BenzylamineDerivatives: Access to Dihydroisoquinolines. Chemistry 2017,23 (48), 11669-11676.
14.Morimoto, K.;Hirano, K.;Satoh, T.; Miura, M., Rhodium-catalyzedOxidative Coupling of Benzylamines with Alkynes through Dehydrogenation andDehydrogenative Cyclization. Chem Lett 2011,40 (6), 600-602.
15.Pilgrim, B. S.;Gatland, A. E.;Esteves, C. H. A.;McTernan, C. T.;Jones,G. R.;Tatton, M. R.;Procopiou, P. A.; Donohoe, T. J., Palladium-catalyzedenolate arylation as a key C-C bond-forming reaction for the synthesis ofisoquinolines. Org Biomol Chem 2016,14 (3), 1065-1090.
16.Ruiz, S.;Villuendas, P.;Ortuno, M. A.;Lledos, A.; Urriolabeitia, E.P., Ruthenium-Catalyzed Oxidative Coupling of Primary Amines with InternalAlkynes through C-H Bond Activation: Scope and Mechanistic Studies. Chemistry 2015,21 (23), 8626-36.
17.Villuendas, P.; Urriolabeitia, E. P., Primary amines as directinggroups in the Ru-catalyzed synthesis of isoquinolines, benzoisoquinolines,and thienopyridines. J Org Chem 2013,78 (11), 5254-63.
18.Barday, M.;Janot, C.;Halcovitch, N. R.;Muir, J.; Aissa, C., Cross-Coupling of alpha-Carbonyl Sulfoxonium Ylides with C-H Bonds. Angew Chem Int Ed Engl 2017,56 (42), 13117-13121.
19.Hu, P.;Zhang, Y.;Xu, Y.;Yang, S.;Liu, B.; Li, X., Construction of(Dihydro)naphtho[1,8- bc]pyrans via Rh(III)-Catalyzed Twofold C-H Activationof Benzoylacetonitriles. Org Lett 2018,20 (8), 2160-2163.
20.Ji, S.;Yan, K.;Li, B.; Wang, B., Cp*Co(III)-Catalyzed C-HAcylmethylation of Arenes by Employing Sulfoxonium Ylides as CarbenePrecursors. Org Lett 2018,20 (18), 5981-5984.
21.Oh, H.;Han, S.;Pandey, A. K.;Han, S. H.;Mishra, N. K.;Kim, S.;Chun,R.;Kim, H. S.;Park, J.; Kim, I. S., Synthesis of (2 H)-Indazoles through Rh(III)-Catalyzed Annulation Reaction of Azobenzenes with Sulfoxonium Ylides. J Org Chem 2018,83 (7), 4070-4077.
22.Wu, X.;Xiong, H.;Sun, S.; Cheng, J., Rhodium-Catalyzed Relay CarbenoidFunctionalization of Aromatic C-H Bonds toward Fused Heteroarenes. Org Lett 2018,20 (5), 1396-1399.
23.Xu, Y.;Zheng, G.;Yang, X.; Li, X., Rhodium(iii)-catalyzedchemodivergent annulations between N-methoxybenzamides and sulfoxonium ylidesvia C-H activation. Chem Commun (Camb) 2018,54 (6), 670-673.
Claims (6)
1.一种基于过渡金属催化的C-H偶联/环合反应高效合成C-C键以及异喹啉衍生物的绿色合成新方法,其特征在于以(杂)芳基甲胺为起始原料,以硫叶立德化合物为卡宾供体,以水为溶剂,在芳(杂)环上形成C-C键,进一步环合成异喹啉类衍生物,其化学反应式为:
其中:
A环为苯基、萘基、噻吩基、呋喃基、吡啶基、吡咯基、吲哚基中的一种;
R1为氢、卤素、烷基、芳基、烷氧基、羰基、醛基、羧基、氰基、硝基、烷酰氧基、酰胺基中的一种或一种以上;
R2为氢、烷基、杂芳基中的一种;
R3为芳基、噻吩基、呋喃基、吡啶基、萘基、吡咯基、吲哚基、烷基、烯基、炔基的一种或一种以上。
2.一种制备合成权利要求1所述的衍生物的方法,其制备步骤如下:
应器中依次加入(杂)芳基甲胺类化合物、硫叶立德化合物、催化剂、添加剂和水,放入100℃油浴锅里搅拌24h;
反应结束后,加入二氯甲烷萃取,收集二氯甲烷层,减压除去溶剂,残留物采用硅胶柱层析分离纯化即得产品。
3.根据权利要求2所述的制备方法,其特征在于步骤(1)中的催化剂为钯碳、四(三苯基膦)钯、醋酸钯、氯化钯、二(乙腈)二氯化钯、二(苯腈)二氯化钯、1,1’-二(二苯基膦基)二茂铁二氯化钯、二(三苯基膦)二氯化钯、双(二亚苄基丙酮)钯、三(二亚苄基丙酮)二钯、氯化烯丙基钯(II)二聚物、(1,5-环辛二烯)二氯化钯(II)、铑碳、三氯化铑、醋酸铑、乙酰丙酮三苯基膦羰基铑、双环辛烯氯化铑二聚体、二氯(五甲基环戊二烯基)合铑(III)二聚体、(二(六氟锑酸)三乙腈(五甲基环戊二烯基)铑(III))、三苯基膦氯化铑、三氯化钌、三苯基膦氯化钌、二氯二羰基双三苯基膦钌、双(2-甲基烯丙基)(1,5-环辛二烯)钌(II)、对伞花烃二氯化钌二聚体、氯化钴、乙酰乙酰钴、八羰基二钴、二氯(五甲基环戊二烯基)合钴(III)二聚体、五甲基环戊二烯基羰基二碘化钴、(二(六氟锑酸)三乙腈(五甲基环戊二烯基)钴(III))、三氯化铱、二氯(五甲基环戊二烯)合铱(III)二聚体、双(1,5-环辛二烯)氯化铱(Ⅰ)二聚体、甲氧基(环辛二烯)合铱二聚体中的一种或一种以上。
4.根据权利要求2所述的制备方法,其特征在于步骤(1)中的添加剂为硝酸银、乙酸银、碳酸银、硫酸银、甲烷磺酸银、三氟甲烷磺酸银、对甲苯磺酸银、双三氟甲烷磺酰亚胺银、三氟甲烷磺酸银、六氟锑酸银、四氟硼酸银、六氟磷酸银中的一种或一种以上。
5.根据权利要求2所述的制备方法,其特征在于步骤(1)中的溶剂为水。
6.根据权利要求2所述的制备方法,步骤(1)中苄胺类化合物 : 硫叶立德化合物 : 催化剂 : 添加剂的摩尔比为1 :(1.2~3.0):(0.02~0.05):(0.08~0.2)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811586801.5A CN109608395B (zh) | 2018-12-25 | 2018-12-25 | 过渡金属催化的c-h活化/环合反应高效合成异喹啉衍生物的绿色合成新方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811586801.5A CN109608395B (zh) | 2018-12-25 | 2018-12-25 | 过渡金属催化的c-h活化/环合反应高效合成异喹啉衍生物的绿色合成新方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109608395A true CN109608395A (zh) | 2019-04-12 |
CN109608395B CN109608395B (zh) | 2021-06-18 |
Family
ID=66011064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811586801.5A Expired - Fee Related CN109608395B (zh) | 2018-12-25 | 2018-12-25 | 过渡金属催化的c-h活化/环合反应高效合成异喹啉衍生物的绿色合成新方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109608395B (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110256332A (zh) * | 2019-07-08 | 2019-09-20 | 四川大学 | 一种合成1,2-二氢-3h-吲哚-3-酮衍生物的新方法 |
CN110317160A (zh) * | 2019-07-08 | 2019-10-11 | 四川大学 | 一种通过c-h活化磺酰胺化2-苯基异靛红的新方法 |
CN110938048A (zh) * | 2019-12-02 | 2020-03-31 | 四川大学 | 路易酸催化的插入反应高效合成二氢呋喃衍生物 |
CN111808044A (zh) * | 2020-06-30 | 2020-10-23 | 四川大学 | 过渡金属催化的卡宾插入/环合反应高效合成氨基噻唑衍生物的绿色合成新方法 |
CN112028762A (zh) * | 2020-09-30 | 2020-12-04 | 四川大学 | 钌催化的环丙醇与硫叶立德的烷基化反应用于合成1,5-二酮化合物 |
CN112125800A (zh) * | 2020-09-30 | 2020-12-25 | 四川大学 | 钯催化的硫叶立德与溴代物的卡宾偶联反应用于合成三取代的烯烃 |
CN112142642A (zh) * | 2020-10-15 | 2020-12-29 | 华侨大学 | 一种1,2,3-三取代-5-三氟甲基吡咯衍生物的制备方法 |
CN112538087A (zh) * | 2020-12-30 | 2021-03-23 | 温州大学新材料与产业技术研究院 | 一种咪唑并吡啶类化合物的合成方法 |
CN113121437A (zh) * | 2021-03-19 | 2021-07-16 | 浙江大学 | 一种1,3-二取代异喹啉衍生物的合成方法 |
CN113501785A (zh) * | 2021-06-01 | 2021-10-15 | 四川大学 | 一种过渡金属催化的c-h活化/环合反应构建氨基异喹啉类衍生物的方法 |
CN113735770A (zh) * | 2021-09-30 | 2021-12-03 | 四川大学 | 一种铑催化的4-苯基噁二唑酮与碳酸亚乙烯酯合成1-氨基异喹啉骨架的方法 |
CN116444406A (zh) * | 2023-05-12 | 2023-07-18 | 四川大学 | 一种氧硫叶立德经由重排反应构建叔碳或季碳化合物的方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108640917A (zh) * | 2018-07-05 | 2018-10-12 | 河南师范大学 | 一种吲哚并[2,1-a]异喹啉类化合物的合成方法 |
-
2018
- 2018-12-25 CN CN201811586801.5A patent/CN109608395B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108640917A (zh) * | 2018-07-05 | 2018-10-12 | 河南师范大学 | 一种吲哚并[2,1-a]异喹啉类化合物的合成方法 |
Non-Patent Citations (3)
Title |
---|
RUI YANG ET AL.: "Rhodium-Catalyzed Annulation of 2-Arylimidazoles and a-Aroylsulfoxonium Ylides toward 5-Arylimidazo[2,1-a]isoquinolines", 《SYNTHESIS》 * |
RUIFANG NIE ET AL.: "Water-mediated C–H activation of arenes with secure carbene precursors: the reaction and its application", 《CHEM. COMMUN.》 * |
YONG ZHANG ET AL.: "Total synthesis of the isoquinoline alkaloid decumbenine B via Ru(III)-catalyzed C-H activation", 《ORG. CHEM. FRONT.》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110256332A (zh) * | 2019-07-08 | 2019-09-20 | 四川大学 | 一种合成1,2-二氢-3h-吲哚-3-酮衍生物的新方法 |
CN110317160A (zh) * | 2019-07-08 | 2019-10-11 | 四川大学 | 一种通过c-h活化磺酰胺化2-苯基异靛红的新方法 |
CN110317160B (zh) * | 2019-07-08 | 2022-07-05 | 四川大学 | 一种通过c-h活化磺酰胺化2-苯基异靛红的新方法 |
CN110938048A (zh) * | 2019-12-02 | 2020-03-31 | 四川大学 | 路易酸催化的插入反应高效合成二氢呋喃衍生物 |
CN110938048B (zh) * | 2019-12-02 | 2023-03-28 | 四川大学 | 路易酸催化的插入反应高效合成二氢呋喃衍生物 |
CN111808044A (zh) * | 2020-06-30 | 2020-10-23 | 四川大学 | 过渡金属催化的卡宾插入/环合反应高效合成氨基噻唑衍生物的绿色合成新方法 |
CN112028762B (zh) * | 2020-09-30 | 2021-07-06 | 四川大学 | 钌催化的环丙醇与硫叶立德的烷基化反应用于合成1,5-二酮化合物 |
CN112125800A (zh) * | 2020-09-30 | 2020-12-25 | 四川大学 | 钯催化的硫叶立德与溴代物的卡宾偶联反应用于合成三取代的烯烃 |
CN112028762A (zh) * | 2020-09-30 | 2020-12-04 | 四川大学 | 钌催化的环丙醇与硫叶立德的烷基化反应用于合成1,5-二酮化合物 |
CN112142642A (zh) * | 2020-10-15 | 2020-12-29 | 华侨大学 | 一种1,2,3-三取代-5-三氟甲基吡咯衍生物的制备方法 |
CN112538087A (zh) * | 2020-12-30 | 2021-03-23 | 温州大学新材料与产业技术研究院 | 一种咪唑并吡啶类化合物的合成方法 |
CN112538087B (zh) * | 2020-12-30 | 2021-10-15 | 温州大学新材料与产业技术研究院 | 一种咪唑并吡啶类化合物的合成方法 |
CN113121437A (zh) * | 2021-03-19 | 2021-07-16 | 浙江大学 | 一种1,3-二取代异喹啉衍生物的合成方法 |
CN113501785A (zh) * | 2021-06-01 | 2021-10-15 | 四川大学 | 一种过渡金属催化的c-h活化/环合反应构建氨基异喹啉类衍生物的方法 |
CN113735770A (zh) * | 2021-09-30 | 2021-12-03 | 四川大学 | 一种铑催化的4-苯基噁二唑酮与碳酸亚乙烯酯合成1-氨基异喹啉骨架的方法 |
CN113735770B (zh) * | 2021-09-30 | 2023-06-06 | 四川大学 | 一种铑催化的4-苯基噁二唑酮与碳酸亚乙烯酯合成1-氨基异喹啉骨架的方法 |
CN116444406A (zh) * | 2023-05-12 | 2023-07-18 | 四川大学 | 一种氧硫叶立德经由重排反应构建叔碳或季碳化合物的方法 |
CN116444406B (zh) * | 2023-05-12 | 2024-05-07 | 四川大学 | 一种氧硫叶立德经由重排反应构建叔碳或季碳化合物的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109608395B (zh) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109608395A (zh) | 过渡金属催化的c-h活化/环合反应高效合成异喹啉衍生物的绿色合成新方法 | |
Lee et al. | Ligand‐Directed Divergent Synthesis of Carbo‐and Heterocyclic Ring Systems | |
Fischer et al. | Iodine-mediated electrophilic cyclization of 2-alkynyl-1-methylene azide aromatics leading to highly substituted isoquinolines and its application to the synthesis of norchelerythrine | |
Qi et al. | Rh (III)-catalyzed oxidative annulation of 2-phenylimidazo [1, 2-a] pyridines with alkynes: Mono versus double C–H activation | |
Rubin et al. | New advances in selected transition metal-catalyzed annulations | |
Ghorai et al. | Rhodium (III)–N-heterocyclic carbene-driven cascade C–H activation catalysis | |
Orbisaglia et al. | Synthesis, characterization, and catalytic activity of cationic NHC gold (III) pyridine complexes | |
Chu et al. | Rhodium-catalyzed annulation of primary benzylamine with α-diazo ketone toward isoquinoline | |
Verniest et al. | Heteroaryl cross-coupling as an entry toward the synthesis of lavendamycin analogues: A model study | |
Chen et al. | Rh (iii)-catalyzed C–H activation/cyclization of oximes with alkenes for regioselective synthesis of isoquinolines | |
CN110105305B (zh) | 过渡金属催化的c-h活化/环合合成1,2-苯并噻嗪衍生物的绿色合成方法 | |
Thenarukandiyil et al. | Rhodium (III)-Catalyzed Nonaromatic sp2 C–H Activation/Annulation Using NHC as a Directing and Functionalizable Group | |
Klein et al. | A 3-dimensional {4 2· 8 4} lvt net built from a ditopic bis (3, 2′: 6′, 3 ″-terpyridine) tecton bearing long alkyl tails | |
Zheng et al. | Copper-catalyzed benign and efficient oxidation of tetrahydroisoquinolines and dihydroisoquinolines using air as a clean oxidant | |
Mo et al. | The applications of palladacycles as transition-metal catalysts in organic synthesis | |
Zhu et al. | Recent Advances to Mediate Reductive Processes of Nitroarenes Using Single-Electron Transfer, Organomagnesium, or Organozinc Reagents | |
Jovanovic et al. | Polycyclic Compounds from Allenes via Palladium-Mediated intramolecular carbopalladation/nucleophilic substitution cascade processes | |
Kotschy et al. | Heterocycles from transition metal catalysis: formation and functionalization | |
Yan et al. | Cp* RhIII-catalyzed cascade annulation of arylimidates with pyridotriazoles toward isoquinolin-3-ol derivatives | |
Kumar et al. | Recent progress in the homogeneous gold-catalysed cycloisomerisation reactions | |
Kumaran et al. | [Cp* RhCl2] 2-catalyzed alkyne hydroamination to 1, 2-dihydroquinolines | |
CN109134372A (zh) | 一种吡啶并茚类化合物的制备方法 | |
CN104974156B (zh) | 1,5,9‑三氮杂蒄化合物及其合成方法 | |
CN109879792B (zh) | 一种多取代异吲哚类化合物及其制备方法 | |
CN105085553A (zh) | 邻菲啰啉桥联多核铜氮杂环卡宾化合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210618 Termination date: 20211225 |
|
CF01 | Termination of patent right due to non-payment of annual fee |