CN112125800A - 钯催化的硫叶立德与溴代物的卡宾偶联反应用于合成三取代的烯烃 - Google Patents

钯催化的硫叶立德与溴代物的卡宾偶联反应用于合成三取代的烯烃 Download PDF

Info

Publication number
CN112125800A
CN112125800A CN202011062084.3A CN202011062084A CN112125800A CN 112125800 A CN112125800 A CN 112125800A CN 202011062084 A CN202011062084 A CN 202011062084A CN 112125800 A CN112125800 A CN 112125800A
Authority
CN
China
Prior art keywords
palladium
bromide
reaction
carbene
chem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011062084.3A
Other languages
English (en)
Other versions
CN112125800B (zh
Inventor
吴勇
海俐
李江联
严开川
何花
贺茂遥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202011062084.3A priority Critical patent/CN112125800B/zh
Publication of CN112125800A publication Critical patent/CN112125800A/zh
Application granted granted Critical
Publication of CN112125800B publication Critical patent/CN112125800B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及一种钯催化的硫叶立德与溴代物的卡宾偶联反应,通过该方法可以合成得到一系列三取代的烯烃。该方法采用安全、稳定,且容易制备的硫叶立德作为卡宾偶联反应的亲核试剂,在构建取代的碳碳双键领域具有良好的适用性。

Description

钯催化的硫叶立德与溴代物的卡宾偶联反应用于合成三取代 的烯烃
技术领域
涉及一种钯催化的硫叶立德与溴代物的卡宾偶联反应构建C=C键,合成三取代的烯烃的合成新方法,属于有机化学技术领域。
背景技术
过去几十年以来,过渡金属催化的偶联反应已经成为构建C-C键和C-N键最有效的方法之一1。一般来说,一个偶联反应的反应底物包括一个亲核试剂和一个亲电试剂。其中,碳碳不饱和键以及金属有机物作为亲核试剂已经被广泛应用,比如赫克反应2、根岸偶联反应3、铃木-宫浦偶联反应4、熊田偶联反应5、施蒂勒反应6、桧山偶联反应7等。在偶联反应领域,虽然亲电试剂仍然主要是卤代物或者其类似物,但是亲核试剂的研究一直是偶联反应领域的主要工作之一8。过去二十年,金属卡宾以一种独特的插入迁移的机理引入到了卡宾偶联反应9。包括重偶氮化合物、腙、联烯、炔、环丙烯和含氮杂环在内的卡宾前体已经被开发作为卡宾偶联反应的亲核试剂9,10。然而,尽管硫叶立德已成为重氮化合物的稳定易得的卡宾替代品,但它的交叉偶联反应的研究却依旧较少11
另一方面,烯烃的合成由于其独特的性质引起了人们的广泛关注。烯烃复分解反应、维蒂希反应一直是最重要和最常用的方法12。此外,卡宾偶联反应也已经成功开发为构建碳碳双键的新方法,但是目前所使用的卡宾前体主要是不稳定且容易爆炸的重氮化合物。为了避免重氮化合物的使用,因此我们报道了一种钯催化的硫叶立德与溴代物的卡宾偶联反应构建C=C键,合成三取代烯烃的合成新方法。
发明内容
针对现存的通过卡宾偶联反应构建碳碳双键的方法存在的各种问题,本发明的目的是为了提供一种钯催化的硫叶立德的卡宾偶联反应用于构建碳碳双键,该方法是一种温和的替代传统的方法,原料稳定且容易得到、具有广阔的应用前景。
为实现上述目的,本发明采用以下技术方案:
以硫叶立德化合物和溴代物为起始原料,其化学反应式如下所示:
Figure 866741DEST_PATH_IMAGE001
其中:
R1为甲基、甲氧基、氰基、异丙基、卤素、叔丁基等基团。
R2为甲基、乙基、异丙基等基团。
R3为苯基、萘基、呋喃基、乙烯基、丙烯基、己烯基、1,3-二烯基等基团中的一种。
其制备步骤如下:
在氩气保护下,在洁净的反应器中依次加入硫叶立德化合物、溴代物、催化剂、配体、碱和溶剂,放入80℃油浴中反应24h。
反应结束后,减压除去溶剂,残留物采用硅胶柱层析纯化即得产品。
其特征在于催化剂为四(三苯基)膦钯、双(二亚苄基丙酮)钯(0)、醋酸钯、二(三苯基膦)氯化钯、1,1'-双(二苯基膦)二茂铁氯化钯二氯甲烷复合物、三(二亚苄基丙酮)二钯(0)中的一种;配体为三(2-呋喃基)膦、1,1'-双(二苯基膦)二茂铁、三环己基膦四氟硼酸盐、2-二环己基磷-2,4,6-三异丙基联苯、2-(二环己基膦)-3,6-二甲氧基-2',4',6'-三异丙基-11'-联苯中的一种或者几种;碱为叔丁醇锂、叔丁醇钠、三乙胺、碳酸钾、碳酸铯、特戊酸钠、醋酸钾、氢氧化钾、碳酸钠中的两种;溶剂为甲苯、苯、氯苯、四氢呋喃、1,2-二氯乙烷、二甲基亚砜中的一种。步骤(1)中硫叶立德化合物:溴代物:催化剂:配体:碱1:碱2的摩尔比为1:(1.0-2.0):(0.025-0.1):(0.025-0.2):(1.0-3.0):(0.25-0.1)。
本发明采取以上技术方案,其具有以下优点:相比于传统的卡宾偶联反应需要不稳定且容易爆炸的重氮化合物的问题,本发明原料稳定且易得,是一种温和的替代传统的卡宾偶联反应的方法,具有广阔的应用前景。
核磁共振氢谱(1H NMR)、碳谱(13C NMR)以及高分辨质谱证实了合成的烯烃的结构。其中核磁共振图采用Varian INOVA-400 型核磁共振仪测定,以四甲基硅烷(TMS)为内标(δ 0 ppm),氘代氯仿为溶剂;高分辨质谱用 Agilent 1946B 质谱仪测定。
具体实施方法
下面结合具体实施方式对本发明作进一步描述,有助于对本发明的理解。但并不能以此来限制本发明的权利范围,而本发明的权利范围应以权利要求书阐述的为准。
实施案例1:化合物1的合成
Figure 783882DEST_PATH_IMAGE002
(1) 氩气条件下,在洁净的反应器中依次加入α-苯基-α'-乙氧羰基硫叶立德(24 mg,0.1 mmol)、苄溴(25.4 mg,0.15 mmol)、醋酸钯(0.6 mg, 0.0025 mmol)、三(2-呋喃基)膦(0.58 mg, 0.0025 mmol)和叔丁醇锂(16 mg,0.2 mmol)、三乙胺(5.0 mg,0.05 mmol)、甲苯(1 ml),置于80℃油浴中搅拌24h。
(2) 反应结束后,减压除去溶剂,残留物采用硅胶柱层析纯化即得无色液体,收率为87%。1H NMR (400 MHz, Chloroform-d) δ 7.84 (s, 1H), 7.41 – 7.33 (m, 3H),7.25 – 7.13 (m, 5H), 7.08 – 7.03 (m, 2H), 4.28 (q, J = 7.1 Hz, 2H), 1.30 (t,J = 7.1 Hz, 3H); 13C NMR (101 MHz, Chloroform-d) δ 167.94, 140.20, 136.07,134.87, 133.02, 130.68, 129.94, 129.05, 128.67, 128.29, 127.86, 61.30, 14.41.HRMS (ESI): m/z计算值C17H17O2 +: 253.1223,实测值: 253.1224。
实施案例2:化合物2的合成
Figure 501302DEST_PATH_IMAGE003
(1) 氩气条件下,在洁净的反应器中依次加入α-对甲苯基-α'-乙氧羰基硫叶立德(25.4 mg,0.1 mmol)、苄溴(25.4 mg,0.15 mmol)、双(二亚苄基丙酮)钯(0)(1.43 mg,0.0025 mmol)、2-二环己基磷-2,4,6-三异丙基联苯(2.38 mg,0.005 mmol)和叔丁醇锂(16mg,0.2 mmol)、三乙胺(5.0 mg,0.05 mmol)、甲苯(1 ml),置于80℃油浴中搅拌24h。
(2) 反应结束后,减压除去溶剂,残留物采用硅胶柱层析纯化即得无色液体,收率为64%。1H NMR (400 MHz, Chloroform-d) δ 7.80 (s, 1H), 7.22 – 7.13 (m, 5H),7.12 – 7.04 (m, 4H), 4.26 (q, J = 7.1 Hz, 2H), 2.38 (s, 3H), 1.30 (t, J = 7.1Hz, 3H);13C NMR (101 MHz, Chloroform-d) δ 168.18, 139.95, 137.59, 135.03,132.96, 132.94, 130.68, 129.79, 129.45, 128.97, 128.28, 61.29, 21.51, 14.44.HRMS (ESI): m/z计算值C18H19O2 +: 267.1380, 实测值: 267.1385。
实施案例3:化合物3的合成
Figure 896511DEST_PATH_IMAGE004
(1) 氩气条件下,在洁净的反应器中依次加入α-对甲苯基-α'-异丁氧羰基硫叶立德(26.8 mg,0.1 mmol)、苄溴(25.4 mg,0.15 mmol)、醋酸钯(0.6 mg, 0.0025 mmol)、三(2-呋喃基)膦 (0.58 mg, 0.0025 mmol)和碳酸钾(27.6 mg,0.2 mmol)、三乙胺(5.0 mg,0.05mmol)、甲苯(1 ml),置于80℃油浴中搅拌24h。
(2) 反应结束后,减压除去溶剂,残留物采用硅胶柱层析纯化即得无色液体,收率为65%。1H NMR (400 MHz, Chloroform-d) δ 7.84 (s, 1H), 7.42 – 7.28 (m, 4H),7.23 – 7.10 (m, 4H), 7.05 (d, J = 7.0 Hz, 2H), 3.98 (d, J = 6.4 Hz, 2H), 1.99– 1.86 (m, 1H), 0.88 (d, J = 6.8 Hz, 6H); 13C NMR (101 MHz, Chloroform-d) δ167.96, 140.18, 136.14, 134.80, 133.00, 130.72, 129.83, 129.08, 128.63,128.29, 127.79, 71.31, 27.90, 19.18. HRMS (ESI): m/z计算值C19H21O2 +: 281.1536,实测值: 281.1537。
实施案例4:化合物4的合成
Figure 710884DEST_PATH_IMAGE005
(1) 氩气条件下,在洁净的反应器中依次加入α-对甲苯基-α'-乙氧羰基硫叶立德(18.1 mg,0.1 mmol)、烯丙基溴(25.4 mg,0.15 mmol)、醋酸钯(0.6 mg, 0.0025 mmol)、三(2-呋喃基)膦 (0.58 mg, 0.0025 mmol)和叔丁醇锂(16 mg,0.2 mmol)、三乙胺(5.0 mg,0.05 mmol)、乙腈(1 ml),置于80℃油浴中搅拌24h。
(2) 反应结束后,减压除去溶剂,残留物采用硅胶柱层析纯化即得无色液体,收率为55%。1H NMR (400 MHz, Chloroform-d) δ 7.43 (d, J = 11.4 Hz, 1H), 7.42 –7.30 (m, 3H), 7.22 (d, J = 6.5 Hz, 2H), 6.46 – 6.33 (m, 1H), 5.66 (dd, J =17.0, 1.8 Hz, 1H), 5.41 (dd, J = 10.0, 1.8 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H),1.29 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, Chloroform-d) δ 167.52, 140.46,135.08, 133.70, 133.41, 130.30, 128.05, 127.84, 125.61, 61.17, 14.41. HRMS(ESI): m/z计算值C13H15O2 +: 203.1067, 实测值: 203.1068。
实施案例5:化合物5的合成
Figure 533346DEST_PATH_IMAGE006
(1) 氩气条件下,在洁净的反应器中依次加入α-对甲苯基-α'-乙氧羰基硫叶立德(18.1 mg,0.1 mmol)、对溴溴苄(37.5 mg,0.15 mmol)、醋酸钯(0.6 mg, 0.0025 mmol)、2-(二环己基膦)-3,6-二甲氧基-2',4',6'-三异丙基-11'-联苯(1.34 mg,0.0025 mmol)和叔丁醇锂(16 mg,0.2 mmol)、三乙胺(5.0 mg,0.05 mmol)、甲苯(1 ml),置于80℃油浴中搅拌24h。
(2) 反应结束后,减压除去溶剂,残留物采用硅胶柱层析纯化即得无色液体,收率为55%。1H NMR (400 MHz, Chloroform-d) δ 7.74 (s, 1H), 7.36 (dd, J = 5.3, 2.0Hz, 3H), 7.30 – 7.25 (m, 2H), 7.23 – 7.15 (m, 2H), 6.89 (d, J = 8.3 Hz, 2H),4.26 (q, J = 7.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H); 13C NMR (151 MHz,Chloroform-d) δ 167.70, 138.82, 135.64, 133.78, 133.75, 132.06, 131.56,129.79, 128.82, 128.11, 123.34, 61.45, 14.39. HRMS (ESI): m/z计算值C17H16BrO2 +:331.0328, 实测值: 331.0331。
参考文献
1. (a) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417-92. (b) Johansson Seechurn, C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus,V. Angew. Chem. Int. Ed.2012, 51, 5062-85. (c) Handbook of OrganopalladiumChemistry for Organic Synthesis (Ed.: E. Negishi), Wiley, Hoboken, NJ, 2002(d) de Meijere, A., Diederich, F., Eds. Metal-Catalyzed Cross-CouplingReactions, 2nd Completely Revised and Enlarged ed., Vol.1; Wiley-VCH:Weinheim, Germany, 2004. (e) Diederich, F., Stang, P. J., Eds. Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH: Weinhein, Germany, 1998.
2. (a) Beller, M.; Zapf, A.; Riermeier T.H. in Transition Metals for Organic Synthesis, 2nd ed., Vol. 1 (Eds.: M. Beller, C. Bohm), Wiley-VCH,Weinheim, 2004, pp. 271-305. (b) Braese, S.; Meijere A. de in Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Vol. 1 (Eds.: A. de Meijere, F.Diederich), Wiley-VCH, Weinheim, 2004, pp. 217-315. (c) Trzeciak, A. M.;Ziolkowski, J. J. Coord. Chem. Rev., 2005, 249, 2308-2322. (d) Whitcombe, N.J.; Hii, K. K.; Gibson, S. E. Tetrahedron, 2001, 57, 7449-7446. (e) Heck, R.F. Acc. Chem. Res.1979, 12, 146-151.
3. (a) King, O.; Okukado, N.; Negishi, E. J. Chem. Soc. Chem. Commun.1977, 683-684. (b) Negishi, E. Acc. Chem. Res. 1982, 15, 340–348. (c)Phapale, V. B.; Cardenas, D. J. Chem. Soc. Rev. 2009,38, 1598-607. (d)Heravi, M. M.; Hashemi, E.; Nazari, N. Mol. Divers. 2014,18, 441-72.
4. (a) Miyaura, N. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.;de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 1, pp41-124. (b) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron2002, 58, 9633-9695. (c) Miyaura, N.; Suzuki, A. Chem. Rev.1995, 95, 2457-2483. (d) Suzuki,A. Angew. Chem. Int. Ed. 2011, 50, 6722-37.
5. (a) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94,4374. (b) Heravi, M. M.; Zadsirjan, V.; Hajiabbasi, P.; Hamidi, H. Monatsh. Chem.2019, 150, 535-591. (c) Kumada, M. Pure Appl. Chem.1980, 52, 669-679.
6. (a) Stille, J. K. Angew. Chem. Int. Ed.1986, 25, 508-524.
7. (a) Hiyama, T.; Hatanaka, Y. Pure Appl. Chem. 1994, 66, 1471-1478. (b)Denmark, S. E.;Ober, M. H. Aldrichimica Acta2003, 36, 75
8. (a) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.;Snieckus, V. Angew. Chem., Int. Ed.2012, 51, 5062−5085. (b) Knappke, C. E.I.; von Wangelin, A. J. Chem. Soc. Rev. 2011, 40, 4948−4962.
9. (a) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810−13889. (b)Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res.2013, 46, 236–247. (c) Greenman,K. L.; Carter, D. S.; Van Vranken, D. L. Tetrahedron 2001, 57, 5219-5225. (d)Xia, Y.; Zhang, Y.; Wang, J. ACS Catal.2013, 3, 2586−2598. (e) Zhang, Y.;Wang, J. Eur. J. Org. Chem. 2011, 1015–1026. (f) Liu, Z.; Wang, J. J. Org. Chem. 2013, 78, 10024−10030.
10. (a) Barluenga, J.; Valdes, C.,. Angew. Chem. Int. Ed.2011, 50, 7486-7500. (b) Shao, Z.; Zhang, H., Chem. Soc. Rev.2012, 41, 560-72. (c) Gao, Y.;Wu, G.; Zhou, Q.; Wang, J., Angew. Chem. Int. Ed. 2018, 57, 2716-2720. (d)Xiao, Q.; Ma, J.; Yang, Y.; Zhang, Y.; Wang, J. Zhang, Y.; Wang, J. AlkeneSynthesis Through Transition Metal-Catalyzed Cross-Coupling of N-Tosylhydrazones. In Stereoselective Alkene Synthesis, Wang, J., Ed. SpringerBerlin Heidelberg: Berlin, Heidelberg, 2012; pp 239-269. Org. Lett.2009, 11,4732-4735. (e) Barluenga, J.; Moriel, P.; Valdes, C.; Aznar, F. Angew. Chem. Int. Ed. 2007, 46, 5587 –5590. (f) Xia, Y.; Xia, Y.; Ge, R.; Liu, Z.; Xiao,Q.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed.2014, 53, 3917−3921. (g) Ma,S.; Zhang, J. Chem. Commun. 2000, 117−118. (h) Zhang, H.; Wang, B.; Wang, K.;Xie, G.; Li, C.; Zhang, Y.; Wang, J. Chem. Commun. 2014, 50, 8050−8052. (i)Selander, N.; Worrell, B. T.; Chuprakov, S.; Velaparthi, S.; Fokin, V. V. J. Am. Chem. Soc.2012, 134, 14670−14673. (j) Zhao, X.; Wu, G.; Yan, C.; Lu, K.;Li, H.; Zhang, Y.; Wang, J. Org. Lett.2010, 12, 5580−5583.
11. (a) Janot, C.; Palamini, P.; Dobson, B. C.; Muir, J.; Aissa, C. Org. Lett.2019, 21, 296-299. (b) Janot, C.; Chagnoleau, J. B.; Halcovitch, N. R.;Muir, J.; Aissa, C. J. Org. Chem. 2020, 85, 1126-1137. (c) Shu, B.; Wang, X.-T.; Shen, Z.-X.; Che, T.; Zhong, M.; Song, J.-L.; Kang, H.-J.; Xie, H.;Zhang, L.; Zhang, S.-S. Org. Chem. Front. 2020, 7, 1802-1808.
12. MARYANOFF, B. E.; REITZ, A. B. Chem. Rev.1989, 89, 863-927. (b)Murphy, B. P. J.; Brennan, J. Chem. Soc. Rev. 1988, 17, 1-30. (c) Lao, Z.;Toy, P. H. Beilstein. J. Org. Chem.2016, 12, 2577-2587. (d) Mukherjee, N.;Planer, S.; Grela, K. Org. Chem. Front. 2018, 5, 494-516. (e) Ogba, O. M.;Warner, N. C.; O'Leary, D. J.; Grubbs, R. H. Chem. Soc. Rev. 2018, 47, 4510-4544。

Claims (7)

1.一种钯催化的硫叶立德与溴代物的卡宾偶联反应用于构建C=C键,合成多取代烯烃的新方法,其特征在于以硫叶立德化合物作为偶联试剂,而且其机理涉及到一个卡宾迁移转移反应,其化学反应式为
Figure 786723DEST_PATH_IMAGE001
其中:
R1为甲基、甲氧基、氰基、异丙基、卤素、叔丁基中的一种;
R2为甲基、乙基、异丙基中的一种;
R3为苯基、萘基、呋喃基、乙烯基、丙烯基、己烯基、1,3-二烯基等基团中的一种。
2.根据权利要求1所述的方法,其特征在于采用如下制备步骤:
在氩气保护下,在洁净的反应器中依次加入硫叶立德化合物、溴代物、催化剂、配体、碱和溶剂,放入80℃油浴中反应24h;
反应结束后,减压除去溶剂,残留物采用硅胶柱层析纯化即得产品。
3.根据权利要求2所述的制备方法,其特征在于催化剂为四(三苯基)膦钯、双(二亚苄基丙酮)钯(0)、醋酸钯、二(三苯基膦)氯化钯、1,1'-双(二苯基膦)二茂铁氯化钯二氯甲烷复合物、三(二亚苄基丙酮)二钯(0)中的一种。
4.根据权利要求2所述的制备方法,其特征在于配体为三(2-呋喃基)膦、1,1'-双(二苯基膦)二茂铁、三环己基膦四氟硼酸盐、2-二环己基磷-2,4,6-三异丙基联苯、2-(二环己基膦)-3,6-二甲氧基-2',4',6'-三异丙基-1,1'-联苯中的一种或者几种。
5.根据权利要求2所述的制备方法,其特征在于碱为叔丁醇锂、叔丁醇钠、三乙胺、碳酸钾、碳酸铯、特戊酸钠、醋酸钾、氢氧化钾、碳酸钠中的两种。
6.根据权利要求2所述的制备方法,其特征在于溶剂为甲苯、苯、氯苯、四氢呋喃、1,2-二氯乙烷、二甲基亚砜中的一种。
7.根据权利要求2所述的制备方法,步骤(1)中硫叶立德化合物:溴代物:催化剂:配体:碱1:碱2的摩尔比为1:(1.0-2.0):(0.025-0.1):(0.025-0.2):(1.0-3.0):(0.25-0.1)。
CN202011062084.3A 2020-09-30 2020-09-30 钯催化的硫叶立德与溴代物的卡宾偶联反应用于合成三取代的烯烃 Expired - Fee Related CN112125800B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011062084.3A CN112125800B (zh) 2020-09-30 2020-09-30 钯催化的硫叶立德与溴代物的卡宾偶联反应用于合成三取代的烯烃

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011062084.3A CN112125800B (zh) 2020-09-30 2020-09-30 钯催化的硫叶立德与溴代物的卡宾偶联反应用于合成三取代的烯烃

Publications (2)

Publication Number Publication Date
CN112125800A true CN112125800A (zh) 2020-12-25
CN112125800B CN112125800B (zh) 2021-06-04

Family

ID=73844972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011062084.3A Expired - Fee Related CN112125800B (zh) 2020-09-30 2020-09-30 钯催化的硫叶立德与溴代物的卡宾偶联反应用于合成三取代的烯烃

Country Status (1)

Country Link
CN (1) CN112125800B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444406A (zh) * 2023-05-12 2023-07-18 四川大学 一种氧硫叶立德经由重排反应构建叔碳或季碳化合物的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608395A (zh) * 2018-12-25 2019-04-12 四川大学 过渡金属催化的c-h活化/环合反应高效合成异喹啉衍生物的绿色合成新方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608395A (zh) * 2018-12-25 2019-04-12 四川大学 过渡金属催化的c-h活化/环合反应高效合成异喹啉衍生物的绿色合成新方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANG WANG等: "Palladium-Catalyzed Reductive Cross-Coupling Reaction of Aryl Chromium(0) Fischer Carbene Complexes with Aryl Iodides》", 《ORGANOMETALLICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444406A (zh) * 2023-05-12 2023-07-18 四川大学 一种氧硫叶立德经由重排反应构建叔碳或季碳化合物的方法
CN116444406B (zh) * 2023-05-12 2024-05-07 四川大学 一种氧硫叶立德经由重排反应构建叔碳或季碳化合物的方法

Also Published As

Publication number Publication date
CN112125800B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
Yu et al. Palladium‐Catalyzed Cross‐Coupling of Internal Alkenes with Terminal Alkenes to Functionalized 1, 3‐Butadienes Using C H Bond Activation: Efficient Synthesis of Bicyclic Pyridones
JP5766717B2 (ja) Rompとrcm反応に対する高効率複分解触媒
Baxendale et al. A concise synthesis of carpanone using solid-supported reagents and scavengers
Mohammadi et al. Polystyrene-resin supported N-heterocyclic carbene-Pd (II) complex based on plant-derived theophylline: A reusable and effective catalyst for the Suzuki-Miyaura cross-coupling reaction of arenediazonium tetrafluoroborate salts with arylboronic acids
Xiao et al. Ready access to organoiodides: Practical hydroiodination and double-iodination of carbon-carbon unsaturated bonds with I2
Cui et al. A palladium-catalyzed regiocontrollable hydroarylation reaction of allenamides with B 2 pin 2/H 2 O
Yang et al. Iron-catalyzed alkylation of α-oxo ketene dithioacetals
CN112125800B (zh) 钯催化的硫叶立德与溴代物的卡宾偶联反应用于合成三取代的烯烃
CN104496736B (zh) 一种基于稀土金属化合物的交叉偶联反应及应用
Chang et al. Pd-Catalyzed decarboxylative alkynylation of alkynyl carboxylic acids with arylsulfonyl hydrazides via a desulfinative process
US7485744B2 (en) Iron-catalyzed allylic alkylation
Högermeier et al. Nonaflates from 8‐Oxabicyclo [3.2. 1] oct‐6‐en‐3‐ones as Building Blocks for Diversity‐Orientated Synthesis: Preparation, Heck‐Couplings and Subsequent Diels–Alder Reactions
Khan et al. Palladium catalyzed synthesis of poly-substituted and poly-functionalised conjugated 1, 3-dienes from allyl bromides and α-diazoesters
CN106928273B (zh) 一种合成含磷有机物的方法
Li et al. Palladium-catalyzed heck-type cascade cyclization of (Z)-1-iodo-1, 6-dienes with N-tosyl hydrazones
Wu et al. Synthesis of difluoromethylated enynes by the reaction of α-(trifluoromethyl) styrenes with terminal alkynes
JP4590637B2 (ja) ベンゼン誘導体の製造方法
Toyota et al. Unexpected formation of 4, 7-dihalobenzo [b] thiophenes using Ohira-Bestmann reagent and reactivity of the halogen-substituted benzo [b] thiophenes in Suzuki-Miyaura coupling with phenylboronic acid
Su et al. Convenient protocols for Mizoroki–Heck reactions of aromatic bromides and polybromides with fluorous alkenes of the formula H 2 C [double bond, length as m-dash] CH (CF 2) n− 1 CF 3 (n= 8, 10)
JP6532737B2 (ja) ヘテロアセン化合物の製造方法
KR101150970B1 (ko) 신규한 2-아릴 알렌오에이트 유도체와 이의 제조방법
Wu et al. BF3· OEt2-catalyzed intermolecular reactions of arylmethylenecyclopropanes with (E)-1, 1, 3-triarylprop-2-en-1-ols
US6864394B2 (en) Method for producing ketones from carboxylic acid anhydrides
JP6413848B2 (ja) 含フッ素対称オレフィンの製造方法
CN110015946B (zh) 一种1,5-二芳基-4-戊烯-1-醇化合物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210604

CF01 Termination of patent right due to non-payment of annual fee