CN109604738A - 一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法 - Google Patents

一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法 Download PDF

Info

Publication number
CN109604738A
CN109604738A CN201910104150.XA CN201910104150A CN109604738A CN 109604738 A CN109604738 A CN 109604738A CN 201910104150 A CN201910104150 A CN 201910104150A CN 109604738 A CN109604738 A CN 109604738A
Authority
CN
China
Prior art keywords
worm gear
cutter
worm
contact point
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910104150.XA
Other languages
English (en)
Other versions
CN109604738B (zh
Inventor
孙全平
张政
吴海兵
杨帆
王昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201910104150.XA priority Critical patent/CN109604738B/zh
Publication of CN109604738A publication Critical patent/CN109604738A/zh
Application granted granted Critical
Publication of CN109604738B publication Critical patent/CN109604738B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F11/00Making worm wheels, e.g. by hobbing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/10Relieving by milling

Abstract

本发明公开了一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,包括以下步骤:(1)求解蜗杆齿面某接触点最大法曲率;(2)求解蜗杆与蜗轮两共轭齿面在某接触点沿接触线法向的诱导法曲率;(3)求解蜗轮齿面某接触点的最大法曲率与最小曲率半径;(4)求解蜗轮齿面最小曲率半径;(5)刀轨走刀步长的确定;(6)相邻刀轨行间距的确定;(7)求解端铣刀的刀轴矢量;(8)求解端铣刀的刀位点;(9)干涉检查及处理。本发明所提出的尼曼蜗轮高效侧刃精铣加工方法,有效的避免了点铣加工的周期长、成本高的问题。由于侧面铣削加工采用刀具侧面切削,在相等残留高度的前提下可有效减少走刀次数,从而提高了加工效率。

Description

一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法
技术领域
本发明属于CAM技术领域,具体涉及一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法。
背景技术
随着计算机和控制技术的进步,数字化制造技术得到了快速发展,制造业的生产方式、产业结构等也发生了深刻变革,现代制造业面貌焕然一新。尼曼蜗杆副传动具有传动精度高、传动效率高、使用寿命长等优点,目前在冶金、矿山、环保等行业得到广泛应用。尼曼蜗杆副由德国尼曼教授发明(又称为ZC1蜗杆传动),是一种两次包络的圆柱蜗杆传动,蜗杆齿面由圆弧面砂轮包络而成,呈圆弧形凹面形状。蜗轮齿面由蜗杆包络而成,是一种复杂的空间曲面,通过凹凸齿廓啮合,综合曲率半径大。
目前,针对小型尼曼蜗杆副,蜗轮常采用范成法加工,在单品种大批量生产中具有较高的经济效益。但因市场对中大型尼曼蜗杆副具有多规格、小批量、高精度的要求,即五轴数控加工是制造中大型尼曼蜗轮的最佳途径。由于尼曼蜗轮齿面的复杂特性,目前在生产实践中,齿面精加工多采用球形刀点铣加工,但这种加工方法存在加工周期长、成本高等问题。针对点铣存在的问题,又试用商业软件进行侧刃精铣刀轨研究,发现在软件中生成的侧刃精铣刀轨有局限性,如存在欠加工和刀具摆角范围过大的问题,导致被加工的表面质量低甚至不符合实际加工环境。
发明内容
要解决的技术问题
针对上述问题,本技术方案在尼曼蜗杆副数学模型的基础上,对蜗轮齿面侧刃精铣算法进行研究,并开发出一种采用端铣刀精加工蜗轮齿面的方法,以提高尼曼蜗轮的加工效率。
技术方案
一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,包括以下步骤:
步骤1:求解蜗杆齿面某接触点最大法曲率;
步骤2:求解蜗杆与蜗轮两共轭齿面在某接触点沿接触线法向的诱导法曲率;
步骤3:求解蜗轮齿面某接触点的最大法曲率与最小曲率半径;
步骤4:求解蜗轮齿面最小曲率半径;
步骤5:确定刀轨走刀步长;
步骤6:确定相邻刀轨行间距;
步骤7:获得蜗轮齿面的刀触点和法向量及合理划分刀具切削刃;
步骤8:求解端铣刀的刀轴矢量;
步骤9:求解端铣刀的刀位点;
步骤10:干涉检查及处理后生成刀位文件;操作完成。
进一步的,所述的步骤1中求解最大法曲率是基于齿轮啮合与微积分几何原理,在三维软件中建立尼曼蜗杆副的数学模型,通过基本量的计算公式可分别求出曲面第一和第二基本量;接着将计算出的基本量带入微积分求极法的公式中求解出该点主曲率的最大值和最小值,经数值比较后,获得蜗杆曲面在该点的最大法曲率kgn;设kgn沿着主方向
进一步的,所述的步骤2中求解诱导法曲率是先通过下列公式算出蜗杆齿面上的点沿蜗杆与蜗轮啮合时的相对速度方向的法曲率和短程挠率,公式如下:
上式中为蜗杆齿面上点沿方向的法曲率和短程挠率,为砂轮面上点沿方向的法曲率和短程挠率, 为砂轮与蜗杆啮合时的诱导法曲率和诱导短程挠率;
在求出法曲率和短程挠率后,再通过公式:
求解出蜗杆与蜗轮两共轭齿面在接触点沿接触线法向的诱导法曲率
上式中:
式中,由上述算法可得,为单位时间内蜗杆绕中心轴回转的角度,分别为蜗轮蜗杆的角速度,式中可令 其中分别为接触点在蜗杆、蜗轮坐标系中的径矢,为蜗杆相对蜗轮的速度,的速度分量,为齿面任一点处的法向量,nx1、ny1、nz1三个方向的分量。
进一步的,所述的步骤3中求解最大法曲率与最小曲率半径是将所述的诱导法曲率和最大法曲率kgn带入公式中,求得该啮合点在蜗轮齿面沿方向的法曲率kln,依据啮合原理可知,kln即为该啮合点在蜗轮齿面的最大法曲率;
再将最大法曲率kln带入公式中,求得该点最小的法曲率半径。
进一步的,所述的步骤4中求解蜗轮齿面最小曲率半径是通过步骤1-3,依次求得尼曼蜗杆副上啮合点的最小曲率半径Rn,经数值比较后,得到蜗轮齿面的最小法曲率半径Rmin
然后再依次求得尼曼蜗杆副上啮合点的最小曲率半径Rn,经数值比较后,得到蜗轮齿面的最小法曲率半径Rmin
进一步的,所述的步骤5中确定刀轨走刀步长是将步骤4中求解出的蜗轮齿面的最小法曲率半径Rmin带入式中,求解出在规定逼近误差εS内的相邻刀触点间的走刀步长LS;接着利用三维软件,沿着蜗轮轴向以小于LS的距离去截取齿面。
进一步的,所述的步骤6中确定相邻刀轨行间距是将步骤4中求解出的蜗轮齿面的最小法曲率半径Rmin带入公式
中,求解出满足一定残差Δ的刀路相邻轨迹间的距离τ;再利用三维软件,从齿顶到齿根以小于τ的距离均匀划分刀路轨迹。
进一步的,所述的步骤7中合理划分刀具切削刃是将所述的走刀步长LS和刀轨间距τ带入三维软件,对修形蜗轮齿面进行离散化,获得刀触点坐标与法向量数据;接着利用三维软件将刀触点坐标拟合成刀轨,然后根据齿面的刀轨行数,将刀具的切削刃进行划分。
进一步的,所述的步骤8中求解端铣刀的刀轴矢量是根据所述的刀触点坐标与法向量数据,计算得出刀轴矢量
进一步的,所述的步骤9求解端铣刀的刀位点是在获得蜗轮齿面的刀触点、刀触点的法向量、刀轴矢量后,再根据下列公式将刀轴矢量的相反矢量、刀触点法向量单位化;将刀轴矢量的相反矢量、刀触点法向量单位化的公式如下:
然后将单位化的刀触点法向量和刀触点坐标带入公式
中,偏移距离为刀具半径r,得到与刀轴线的交点;然后将单位化的刀轴矢量的相反矢量和刀轴线的交点带入下式中,偏移距离为交点距刀具底面的最短距离Dmin,求解出端铣刀的刀位点p。
进一步的,所述的步骤10中干涉检查及处理是将刀位点p和刀轴矢量以及另一齿面带入公式中,对另一齿面S内任意一点m进行干涉检测,直至计算结果满足上式,则判定侧铣精铣刀轨不存在干涉情况;最后利用CAM技术将蜗轮齿面无干涉的刀位数据生成刀位文件;操作完成。
有益效果
(1)本发明所提出的尼曼蜗轮高效侧刃精铣加工方法,有效的避免了点铣加工的周期长、成本高的问题。由于侧面铣削加工采用刀具侧面切削,在相等残留高度的前提下可有效减少走刀次数,从而提高了加工效率。
(2)本发明所提出的尼曼蜗轮高效侧刃精铣加工方法,不仅摆脱了蜗轮加工受飞刀和滚刀的依赖,而且还弥补了三维软件生成的侧刃精铣刀轨的局限性,具有较强的应用性。
(3)本发明所提出的尼曼蜗轮高效侧刃精铣加工方法,采用蜗轮齿面最小的曲率半径作为计算走刀步长、相邻刀轨间距的依据,从而有效的提高了加工表面质量。
(4)本发明所提出的尼曼蜗轮高效侧刃精铣加工方法,将刀具的切削刃进行合理划分,基本实现每条刀轨对应切削刃上不同的切削点,有效提高了刀具的使用寿命。
(5)本发明所提出的尼曼蜗轮高效侧刃精铣加工方法,实现了加工时的4轴联动,从而提高了零件的加工速度。
(6)本发明所提出的尼曼蜗轮高效侧刃精铣加工方法,可以应用于类似的复杂曲面零件的侧铣加工,为复杂曲面零件加工提供了一种新的途径。
附图说明
图1为本发明的高效侧刃精铣加工刀轨算法流程图。
图2为本发明的尼曼蜗杆副数学模型示意图。
图3为本发明的蜗轮齿面走刀步长截取示意图。
图4为本发明的端铣刀侧铣加工蜗轮齿面示意图。
图5为本发明的蜗轮齿面刀路轨迹划分示意图。
图6为本发明的刀具切削刃合理划分示意图。
图7为本发明的刀轴矢量求解示意图。
图8为本发明的刀位点求解示意图。
图9为本发明的刀具干涉检测和处理示意图。
图10为本发明的蜗轮侧刃精铣加工刀轨示意图。
附图中的标记:1-齿面、2-截交线、3-刀轨、4-截平面、5-切平面、6-刀触点、7-刀位点、8-轴线交点、9-刀具、91-R刀具、92-r刀具。
具体实施方式:
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。在不脱离本发明设计构思的前提下,本领域普通人员对本发明的技术方案做出的各种变型和改进,均应落入到本发明的保护范围。
实施例:
一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,包括以下步骤:
步骤1:求解蜗杆齿面某啮合点最大法曲率;
基于齿轮啮合与微积分几何原理,在三维软件中建立尼曼蜗杆副的数学模型,为蜗杆齿面方程,其中ψ表示蜗杆齿面上点的径向位置,表示蜗杆齿面上点的轴向位置。通过已知的蜗杆齿面方程和某接触点坐标,结合基本量计算公式求出的曲面第一和第二基本量;接着将求出的基本量带入下式,计算出该点在蜗杆齿面的主曲率的kg1、kg2
其中,kn为曲率值,kn 2为曲率值的平方,E、F、G、L、M、N分别为曲面第一和第二基本量;将计算出的基本量带入上式中求解出该点的两个主曲率kg1、kg2,因主曲率kg1、kg2是法曲率的最小值与最大值,经数值比较,则得出蜗杆曲面在该点的最大法曲率kgn。设kgn沿着主方向
步骤2:求解蜗杆与蜗轮两共轭齿面在某啮合点沿接触线法向的诱导法曲率;
计算诱导法曲率分为两步进行计算,首先先算出蜗杆齿面上的点沿蜗杆与蜗轮啮合时的相对速度方向的法曲率和短程挠率,计算如下:
上式中为蜗杆齿面上点沿方向的法曲率和短程挠率,为砂轮面上点沿方向的法曲率和短程挠率, 为砂轮与蜗杆啮合时的诱导法曲率和诱导短程挠率。其中 分别为:
上式中KS1、KS2为砂轮表面的两主曲率,为主方向的有向角,Ψ(u1)为砂轮表面与蜗杆齿面共轭时的一类界限函数,表达式为:其中等于0, 在A式和B式中,分别为砂轮相对于蜗杆的速度分量,c为砂轮圆弧中心与砂轮回转轴的距离,γu为蜗杆与砂轮轴线间交错角,ω(1)为蜗杆的角速度。
接着在蜗杆齿面上的点沿蜗杆与蜗轮啮合时的相对速度方向的法曲率和短程挠率的基础上,求解出蜗杆与蜗轮两共轭齿面在接触点沿接触线法向的诱导法曲率,计算如下:
上式中:
式中,由上述算法可得,为单位时间内蜗杆绕中心轴回转的角度,分别为蜗轮蜗杆的角速度,式中可令 其中分别为接触点在蜗杆、蜗轮坐标系中的径矢,为蜗杆相对蜗轮的速度,的速度分量,为齿面任一点处的法向量,nx1、ny1、nz1三个方向的分量。
步骤3:求解蜗轮齿面某啮合点的最大法曲率与最小法曲率半径;
尼曼蜗杆副的啮合面凹向相同,两共轭齿面在任意啮合点的主方向相同,即令结合步骤(2)中的算法,可求得尼曼蜗杆副在某啮合点沿方向的诱导法曲率由步骤(1)中算法可得蜗杆齿面的在该点最大法曲率为kgn,并沿着主方向kgn带入下式中可求得该啮合点在蜗轮齿面沿方向的法曲率kln,依据啮合原理可知,kln即为该啮合点在蜗轮齿面的最大法曲率。
将kln带入下式中,求得该点最小的法曲率半径。
步骤4:求解蜗轮齿面最小法曲率半径;
通过步骤(1)(2)(3)中的算法依次求得尼曼蜗杆副上每个啮合点的最小曲率半径Rn,接着将每个啮合点的最小曲率半径Rn进行大小比较,即得到蜗轮齿面的最小曲率半径Rmin
步骤5:确定刀轨走刀步长;
将步骤(4)中求解出的尼曼蜗轮最小法曲率半径Rmin带入下式中,可求解出在规定逼近误差εs内的相邻刀触点间的走刀步长LS。接着利用三维软件,沿着蜗轮轴向以小于LS的距离去截取齿面。
步骤6:确定相邻刀轨行间距;
将(4)中求解出的尼曼蜗轮最小法曲率半径Rmin带入下式中,可求解出满足一定残差Δ的刀路相邻轨迹间的距离τ。同样利用三维软件,从齿顶到齿根以小于τ的距离均匀划分刀路轨迹。
步骤7:获得蜗轮齿面的刀触点和法向量及合理划分刀具切削刃;
经三维软件引擎,利用上述走刀步长与刀轨间距,对修形蜗轮齿面进行离散化,获得刀触点坐标与法向量数据。接着利用三维软件将刀触点拟合成刀轨,然后根据齿面的刀轨行数,将刀具的切削刃进行合理划分,基本实现每条刀轨对应切削刃上不同的切削点,有效提高了刀具的使用寿命。
步骤8:求解端铣刀的刀轴矢量;
由(7)可获得刀触点坐标与法向量数据,然后根据刀触点的法向量可得过刀触点的切平面∑1方程、过刀触点且垂直于蜗轮的回转轴的平面∑2方程,接着计算∑1和∑2的截交线方程,最后根据截交线方程易得出刀轴矢量
步骤9:求解端铣刀的刀位点;
由步骤1-7可得蜗轮齿面的刀触点、刀触点的法向量、刀轴矢量,首先根据下列公式将刀轴矢量的相反矢量、刀触点法向量单位化,计算公式如下:
式中,i、j、k是刀轴矢量值,U、V、W是单位向量。接着先将单位化的刀触点法向量和刀触点坐标带入下式中,偏移距离为刀具半径r,得到与刀轴线的交点,然后将单位化的刀轴矢量的相反矢量和刀轴线的交点带入下式中,偏移距离为交点距刀具底面的最短距离Dmin,求解出端铣刀的刀位点p。
式中:x、y、z是偏移前点的坐标,xmov、ymov、zmov是偏移后点的坐标,dis是点的偏移量。
步骤10:刀具干涉检查及处理;
尼曼蜗轮齿面是凸曲面,曲面与任意切平面只有一个切点,使用平底刀加工时,如果以切点为切削点,并且使刀具位于切平面之上,此时平底刀不会与加工曲面发生干涉。但因蜗轮齿槽有两个齿面,加工时易产生刀头干涉,为防止加工过程中刀具对另一个齿面产生干涉,需要对其进行干涉检查。
因蜗轮齿面的刀位数据p和已由步骤(8)、(9)解出,即另一齿面S内任意一点m可通过下式进行刀具干涉检测。
式中,r的值为刀具半径,若计算结果不满足上式,则未通过干涉检查,存在刀头干涉;则需要选择半径较小的刀具消除干涉。若计算结果满足上式,则说明侧铣精铣刀轨不存在干涉情况。最后利用CAM技术将蜗轮齿面无干涉的刀位数据生成刀位文件;生产刀位文件后,操作完成。

Claims (10)

1.一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,其特征在于:包括以下步骤:
步骤1:求解蜗杆齿面某接触点最大法曲率;
步骤2:求解蜗杆与蜗轮两共轭齿面在某接触点沿接触线法向的诱导法曲率;
步骤3:求解蜗轮齿面某接触点的最大法曲率与最小曲率半径;
步骤4:求解蜗轮齿面最小曲率半径;
步骤5:确定刀轨走刀步长;
步骤6:确定相邻刀轨行间距;
步骤7:获得蜗轮齿面的刀触点和法向量及合理划分刀具切削刃;
步骤8:求解端铣刀的刀轴矢量;
步骤9:求解端铣刀的刀位点;
步骤10:干涉检查及处理后生成刀位文件;操作完成。
2.根据权利要求1所述的一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,其特征在于:所述的步骤1中求解最大法曲率是基于齿轮啮合与微积分几何原理,在三维软件中建立尼曼蜗杆副的数学模型,通过基本量的计算公式可分别求出曲面第一和第二基本量;接着将计算出的基本量带入公式中求解出该点主曲率的最大值和最小值,经数值比较后,获得蜗杆齿面在该点的最大法曲率kgn,设kgn沿着主方向
3.根据权利要求2所述的一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,其特征在于:所述的步骤2中求解诱导法曲率是先通过下列公式算出蜗杆齿面上的点沿蜗杆与蜗轮啮合时的相对速度方向的法曲率和短程挠率,公式如下:
上式中为蜗杆齿面上点沿方向的法曲率和短程挠率,为砂轮面上点沿方向的法曲率和短程挠率, 为砂轮与蜗杆啮合时的诱导法曲率和诱导短程挠率;
在求出法曲率和短程挠率后,再通过公式:
求解出蜗杆与蜗轮两共轭齿面在接触点沿接触线法向的诱导法曲率
上式中:
式中,由上述算法可得,为单位时间内蜗杆绕中心轴回转的角度,分别为蜗轮蜗杆的角速度,式中可令 其中分别为接触点在蜗杆、蜗轮坐标系中的径矢,为蜗杆相对蜗轮的速度,的速度分量,为齿面任一点处的法向量,nx1、ny1、nz1三个方向的分量。
4.根据权利要求3所述的一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,其特征在于:所述的步骤3中求解最大法曲率与最小曲率半径是将所述的诱导法曲率和最大法曲率带入公式
中,求得该啮合点在蜗轮齿面沿方向的法曲率kln,依据啮合原理可知,kln即为该啮合点在蜗轮齿面的最大法曲率;
再将最大法曲率带入公式中,求得该点最小的法曲率半径。
5.根据权利要求4所述的一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,其特征在于:所述的步骤4中求解蜗轮齿面最小曲率半径是通过步骤1-3,依次求得尼曼蜗杆副上啮合点的最小曲率半径Rn,经数值比较后,得到蜗轮齿面的最小法曲率半径Rmin
6.根据权利要求5所述的一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,其特征在于:所述的步骤5中确定刀轨走刀步长是将步骤4中求解出的蜗轮齿面的最小法曲率半径Rmin带入 式中,求解出在规定逼近误差εs内的相邻刀触点间的走刀步长Ls;接着利用三维软件,沿着蜗轮轴向以小于LS的距离去截取齿面;
所述的步骤6中确定相邻刀轨行间距是将步骤4中求解出的蜗轮齿面的最小法曲率半径Rmin带入公式
中,求解出满足一定残差Δ的刀路相邻轨迹间的距离τ;再利用三维软件,从齿顶到齿根以小于τ的距离均匀划分刀路轨迹。
7.根据权利要求6所述的一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,其特征在于:所述的步骤7中合理划分刀具切削刃是将所述的走刀步长LS和刀轨间距τ带入三维软件,对修形蜗轮齿面进行离散化,获得刀触点坐标与法向量数据;接着利用三维软件将刀触点坐标拟合成刀轨,然后根据齿面的刀轨行数,将刀具的切削刃进行划分。
8.根据权利要求7所述的一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,其特征在于:所述的步骤8中求解端铣刀的刀轴矢量是通过刀触点坐标和法向量数据,计算得出刀轴矢量
9.根据权利要求8所述的一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,其特征在于:所述的步骤9求解端铣刀的刀位点是在获得蜗轮齿面的刀触点、刀触点的法向量、刀轴矢量后,先将刀轴矢量的相反矢量、刀触点法向量单位化,然后根据单位化的刀触点法向量和刀触点坐标得到与刀轴线的交点;最后根据单位化的刀轴矢量的相反矢量和刀轴线的交点求解出端铣刀的刀位点。
10.根据权利要求9所述的一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法,其特征在于:所述的步骤10中干涉检查及处理是将刀位点和刀轴矢量,以及另一齿面内任意一点带入公式 中,即可对另一齿面进行干涉检测;直至计算结果满足上式,则判定侧铣精铣刀轨不存在干涉情况;最后利用CAM技术将蜗轮齿面无干涉的刀位数据生成刀位文件;操作完成。
CN201910104150.XA 2019-02-01 2019-02-01 一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法 Active CN109604738B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910104150.XA CN109604738B (zh) 2019-02-01 2019-02-01 一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910104150.XA CN109604738B (zh) 2019-02-01 2019-02-01 一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法

Publications (2)

Publication Number Publication Date
CN109604738A true CN109604738A (zh) 2019-04-12
CN109604738B CN109604738B (zh) 2020-05-26

Family

ID=66018785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910104150.XA Active CN109604738B (zh) 2019-02-01 2019-02-01 一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法

Country Status (1)

Country Link
CN (1) CN109604738B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125490A (zh) * 2019-05-17 2019-08-16 淮阴工学院 一种平底锥度铣刀全刀刃侧刃精铣尼曼蜗轮齿面的算法
CN110262399A (zh) * 2019-05-17 2019-09-20 淮阴工学院 一种螺旋锥齿轮齿面侧刃铣的加工方法
CN113124800A (zh) * 2021-04-20 2021-07-16 重庆大学 阿基米德螺旋面蜗轮滚剃加工精度检测方法
CN114382871A (zh) * 2021-12-22 2022-04-22 淮阴工学院 一种重载尼曼型蜗杆齿轮减速机温控自适应润滑装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB532100A (en) * 1939-04-22 1941-01-17 Monarch Tool Company Ltd An improvements in or relating to tools for finishing the teeth of worm wheels
CN102430817A (zh) * 2011-10-27 2012-05-02 上海交通大学 平面二次包络环面蜗杆五轴侧铣加工方法
CN103744349A (zh) * 2013-10-08 2014-04-23 华中科技大学 一种平头立铣刀加工过渡曲面的无干涉刀具路径生成方法
CN104907617A (zh) * 2015-06-15 2015-09-16 西安交通大学 基于分区域切削的离心压缩机叶轮五坐标铣削方法
CN106874596A (zh) * 2017-02-15 2017-06-20 淮阴工学院 一种尼曼蜗轮的精确建模方法
CN108204441A (zh) * 2018-01-08 2018-06-26 海安县申菱电器制造有限公司 一种弧形齿圆柱蜗杆齿面可控修型方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB532100A (en) * 1939-04-22 1941-01-17 Monarch Tool Company Ltd An improvements in or relating to tools for finishing the teeth of worm wheels
CN102430817A (zh) * 2011-10-27 2012-05-02 上海交通大学 平面二次包络环面蜗杆五轴侧铣加工方法
CN103744349A (zh) * 2013-10-08 2014-04-23 华中科技大学 一种平头立铣刀加工过渡曲面的无干涉刀具路径生成方法
CN104907617A (zh) * 2015-06-15 2015-09-16 西安交通大学 基于分区域切削的离心压缩机叶轮五坐标铣削方法
CN106874596A (zh) * 2017-02-15 2017-06-20 淮阴工学院 一种尼曼蜗轮的精确建模方法
CN108204441A (zh) * 2018-01-08 2018-06-26 海安县申菱电器制造有限公司 一种弧形齿圆柱蜗杆齿面可控修型方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125490A (zh) * 2019-05-17 2019-08-16 淮阴工学院 一种平底锥度铣刀全刀刃侧刃精铣尼曼蜗轮齿面的算法
CN110262399A (zh) * 2019-05-17 2019-09-20 淮阴工学院 一种螺旋锥齿轮齿面侧刃铣的加工方法
CN113124800A (zh) * 2021-04-20 2021-07-16 重庆大学 阿基米德螺旋面蜗轮滚剃加工精度检测方法
CN114382871A (zh) * 2021-12-22 2022-04-22 淮阴工学院 一种重载尼曼型蜗杆齿轮减速机温控自适应润滑装置
CN114382871B (zh) * 2021-12-22 2024-03-26 淮阴工学院 一种重载尼曼型蜗杆齿轮减速机温控自适应润滑装置

Also Published As

Publication number Publication date
CN109604738B (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
CN109604738A (zh) 一种基于尼曼蜗轮数学模型的高效侧刃精铣加工方法
Chen et al. A study on the design of error-free spur slice cutter
CN104635619A (zh) 基于刀具矢量插补的五轴数控加工方法
CN111644909B (zh) 一种木工成型铣刀的后刀面的磨削轨迹求解方法
CN110399681B (zh) 一种圆弧头立铣刀刀刃曲线的参数化建模方法
CN102637216A (zh) 一种复杂组合曲面的数控侧铣加工刀轨生成方法
CN103777568B (zh) 一种基于刃磨过程的整体式立铣刀容屑槽建模方法
Chen et al. A novel mathematical model for grinding ball-end milling cutter with equal rake and clearance angle
CN112989517B (zh) 一种采用平行砂轮磨削球头后刀面的轨迹求解方法
Guo et al. Influences of tool setting errors on gear skiving accuracy
CN115032945B (zh) 复杂曲面零件慢刀伺服磨削加工刀具轨迹规划方法
CN108109199A (zh) 一种端铣加工平面成形表面三维建模方法
CN106312850A (zh) 螺杆磨削刀具的设计方法
CN112705794A (zh) 一种用于摆线轮加工的剐齿刀具及其设计方法
Chen et al. A novel CNC grinding method for the rake face of a taper ball-end mill with a CBN spherical grinding wheel
Wei et al. Force predictive model for five-axis ball end milling of sculptured surface
CN113204852A (zh) 一种球头铣刀铣削加工表面形貌预测方法及系统
Guo et al. Force prediction model for five-axis flat end milling of free-form surface based on analytical CWE
Yang et al. A profile dressing method for grinding worm used for helical gear with higher order modification profile
CN113065205B (zh) 一种采用平行砂轮磨削圆弧头后刀面的轨迹求解方法
Wei et al. Prediction of cutting force of ball-end mill for pencil-cut machining
Liu et al. A novel CNC machining method for enveloping surface
CN110162873A (zh) 一种立铣刀用变螺距螺旋曲面数字化模型精确建模方法
Chen et al. Design and NC machining of concave-arc ball-end milling cutters
CN107766647A (zh) 一种加工椭圆螺旋转子的成形铣刀廓形数值计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant