CN109595087A - 一种基于学习算法的喷油量波动补偿控制方法 - Google Patents

一种基于学习算法的喷油量波动补偿控制方法 Download PDF

Info

Publication number
CN109595087A
CN109595087A CN201910083467.XA CN201910083467A CN109595087A CN 109595087 A CN109595087 A CN 109595087A CN 201910083467 A CN201910083467 A CN 201910083467A CN 109595087 A CN109595087 A CN 109595087A
Authority
CN
China
Prior art keywords
value
neural network
pulsewidth
main jet
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910083467.XA
Other languages
English (en)
Inventor
刘奇芳
张亮
杨征
陈虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910083467.XA priority Critical patent/CN109595087A/zh
Publication of CN109595087A publication Critical patent/CN109595087A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1405Neural network control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/001Measuring fuel delivery of a fuel injector
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Artificial Intelligence (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

本发明公开了一种基于学习算法的喷油量波动补偿控制方法,以柴油机电磁阀喷油系统为研究对象,对系统喷油的瞬态过程进行分析,借助AMESim仿真软件搭建电磁阀喷油器仿真模型,通过仿真模型分析主喷油量波动影响因素;确定主预喷时间间隔、预喷脉宽、轨压大小是主喷油量波动的三个影响因子,基于LM‑BP神经网络构建波动影响因子与喷油量修正值之间的网络关系;通过遗传算法对LM‑BP神经网络初始权值阈值进行优化,通过一定数量的样本训练得到主喷脉宽修正因子的预测模型;获得补偿油量修正值,并通过查喷油脉宽map,插值得到主喷脉宽补偿值,对主喷脉宽进行补偿,进行修正并减小喷油量波动。为了描述本发明所提策略的适用性和有效性,以AMESim仿真软件中搭建的喷油器模型为研究实例,通过仿真技术给出控制性能验证结果。

Description

一种基于学习算法的喷油量波动补偿控制方法
技术领域
本发明的目的是针对高压燃油共轨系统多次喷射造成喷油量不精确问题提出一种油量补偿控制方法,具体涉及一种基于学习算法的喷油量波动补偿控制方法,属于汽车发动机控制技术。
背景技术
随着排放法规的日益严格,提升车辆内燃机的燃烧效率和改善尾气排放迫在眉睫。高压燃油共轨系统是直喷发动机性能提升的核心技术,能实现不同的喷油模式,在保证燃油经济性的情况下可通过提高喷射次数能够有效改善尾气排放效果。研究表明,预喷能够降低NOx,并改善柴油机的震动和噪声;后喷则能够有效降低颗粒物(PM)的排放。然而在多次喷射过程中,由于前一次喷射针阀关闭时的水击效应,使得共轨系统液压油路内部产生燃油压力波动,进而导致后续喷射油量的波动,喷油量的不精确直接造成混合气配比改变,燃烧不充分,排放性能下降。而且喷油量波动的幅度会随着针阀落座速度的提高而增加,尤其针对电磁阀式喷油系统,油量波动的影响问题更为突出。
针对此类型问题国内外主要提出的解决方案是通过实验标定各工况下的修正MAP,通过查表插值的方法来实现对油量的修正。上述策略是一种纯工程方案,不仅需要大量的标定实验,而且不同发动机型号的可移植性差,也不适用于燃烧控制性能的正向开发。本发明提出的喷油量波动补偿控制策略可基于仿真平台构建,降低了对实验工况的遍历标定要求,在确定波动影响因子的基础上,通过一定的激励数据样本即可构建喷油脉宽修正值的自学习系统,其中自学习系统基于遗传算法优化理论与BP神经网络方法实现。为了描述本发明所提策略的适用性和有效性,以AMESim仿真软件中搭建的喷油器模型为研究实例,通过仿真技术给出控制性能验证结果。
发明内容
本发明所要解决的技术问题是:以一次预喷加一次主喷为例,通过分析两次喷射中预喷射导致的轨压衰减震荡波动,确定影响因子,对其设计基于自学习的喷油量补偿算法策略,实现对主喷脉宽的修正。本发明提出的喷油量波动补偿控制策略可基于仿真平台构建,降低了对实验工况的遍历标定要求,在确定波动影响因子的基础上,通过一定的激励数据样本即可构建喷油脉宽修正值的自学习系统,其中自学习系统基于遗传算法优化理论与BP神经网络方法实现。
为达到本发明的目的,可以通过如下技术过程实现:
一种基于学习算法的喷油量波动补偿控制方法,包括以下步骤:
步骤一、以柴油机电磁阀喷油系统为研究对象,对系统喷油的瞬态过程进行分析,借助AMESim仿真软件搭建电磁阀喷油器仿真模型,通过仿真模型分析主喷油量波动影响因素;
步骤二、基于LM-BP神经网络算法的波动特性自学习:通过所述步骤一分析确定主预喷时间间隔、预喷脉宽、轨压大小是主喷油量波动的三个影响因子,基于LM-BP神经网络构建波动影响因子与喷油量修正值之间的网络关系;
步骤三、通过遗传算法对LM-BP神经网络初始权值阈值进行优化,通过一定数量的样本训练得到主喷脉宽修正因子的预测模型;
步骤四、通过所述步骤三得到的预测模型,获得补偿油量修正值,并通过查喷油脉宽map,插值得到主喷脉宽补偿值,对主喷脉宽进行补偿,进行修正并减小喷油量波动。
步骤五、通过AMESim喷油系统校验所设计补偿策略的实时性、可行性和合理性。
综上,由于采用了上述的技术方案,本发明带来的有益效果是:
1.本发明为高压燃油共轨系统提供了一种具有自学习能力的喷油量补偿控制策略,具有明确的工程应用价值。
2.本发明的发明内容不仅适用于该系统,同样可推广于车辆系统中需要基于大量数据进行标定和工况多变难以精确建模的控制系统设计中,具有可移植性和普适性。
附图说明
图1为本发明多次喷射油量补偿方案的整体结构图;
图2为100MPa轨压下不同预喷脉宽时喷油量波动曲线;
图3为150MPa轨压下不同预喷脉宽时喷油量波动曲线;
图4为遗传算法优化BP神经网络流程图;
图5为GA-LM-BP神经网络对喷油波动样本点的拟合效果图;
图6为100MPa轨压下喷油量补偿效果图;
图7为150MPa轨压下喷油量补偿效果图。
具体实施方式
以下结合技术方案和附图详细阐述本发明的具体实施方式。
在一个喷射周期中,同一喷油器的相邻两次喷射时间间隔很短时,前一次喷射引起的共轨管内压力波动会导致后一次喷射的油量出现偏差。为了分析影响喷油量波动的影响因素,并降低喷油量波动对发动机燃烧产生的影响,本发明所提出的多次喷射油量补偿方案框图如图1所示,经过一系列的仿真试验与分析,确定主预喷时间间隔、预喷脉宽、轨压值对油量波动产生影响的规律,采用有自学习能力的遗传算法BP神经网络对该规律进行训练学习,得到补偿策略中的油量修正值,并通过查喷油脉宽map,插值得到主喷脉宽补偿值,进行修正并减小喷油量波动。下面对实施过程进行详细阐述。
(1)油量波动因素分析
为了分析喷油量波动的影响因素,在AMESim中搭建的电磁阀喷油器模型中进行了下述仿真试验设计:
1)当发动机转速为5000r/s,设定轨压为100MPa时,保持主喷脉宽1.5ms恒定不变,主喷提前角固定,通过改变主预喷时间间隔在2ms~8ms范围变化,间隔步长为0.2ms,进行了预喷脉宽分别为0.2ms、0.3ms、0.4ms的喷油量波动试验,结果见图2,图中纵轴表示目标喷油量分别为82.4mm3、88.1mm3、93.8mm3时的实际喷油量波动值。可以看出,当固定预喷脉宽时,主喷波动量随两次喷射的时间间隔呈周期性波动变化形式,并存在一定的衰减性。当不同预喷相同主喷时,喷射油量波动幅度随预喷脉宽增大而增大。
2)改变设定轨压为150Mpa,保持发动机转速5000r/s、主喷脉宽1.5ms不变,重复上述试验,如图3所示,得到预喷脉宽分别为0.2ms、0.3ms、0.4ms的喷油量波动曲线对比图,可以看出油量波动受轨压大小影响。
综上所述,主喷油量波动影响因素有主预喷时间间隔、预喷脉宽、轨压值。
(2)基于LM神经网络算法的波动特性自学习
主预喷时间间隔、预喷脉宽、轨压大小是导致喷油量波动的三个重要影响因子,且每种组合对应一个喷油量波动值。考虑到油量波动为离散性、非线性、且数据带标签的特点,可以采用监督学习中的BP神经网络设计油量波动值预测机制,对主喷脉宽进行补偿。
BP神经网络由输入层、隐含层、输出层构成,是按误差反向传播训练的多层前馈网络,通过一个目标函数最小化进行训练,在本问题中,目标函数选取是:
式中:Yi—目标喷油波动量;Yi′—实际的喷油波动量输出;P—训练样本数目;w—学习的权值和阈值向量;ei(w)—喷油波动量学习误差,i—第i个样本,
权重系数采用传统的梯度下降法进行调整
其中,η为学习速率,学习权值会顺着与误差梯度相反的方向变化,直到误差达到最小值。这种BP神经网络的训练时间较长,迭代次数也比较多,具有陷入局部最小值的缺点。针对上述问题,本文采用阻尼最小二乘算法(Leverberg Maquardt,LM)对网络进行训练,并克服这些缺陷。它是梯度下降和高斯-牛顿法的结合,也可以称为是高斯-牛顿法的改进形式,该算法兼具局部快速收敛特性和全局搜索特性。在LM方法中,权值增量Δw计算公式如下:
Δw=[JT(w)J(w)+μI]-1JT(w)e(w) (3)
式中,I-单位矩阵;μ—定义的学习率;e(w)为喷油波动量学习误差,J(w)—Jacobian矩阵,即:
设wk表示第k次迭代的权值和阈值所组成的向量,新的权值和阈值所组成的向量wk +1,则可通过如下式子进行计算:
wk+1=wk+Δw (5)
从(3)式可看出,如果比例系数μ=0,则为高斯—牛顿法;如果μ取值很大,则LM算法接近梯度下降法,每迭代成功一步,则μ减小一些,这样在接近误差目标的时候,逐渐与高斯—牛顿法相似。但是,与其他训练算法相比,LM算法需要大量内存,因此其更适用于训练权值和阈值数目不超过几百的神经网络。根据本文待解问题的特征,可以选用LM算法作为BP神经网络预测模型的训练方法。
LM算法计算步骤为:
S1:给出训练最大迭代次数n,以及初始化权值向量w(0),令k=0,μ=μ0
S2:计算网络输出和误差指标函数E(wk);
S3:按式(4)计算Jacobian矩阵J(wk);
S4:分别按式(3)、(5)、(1)计算Δw、wk+1、E(wk+1);
S5:若E(wk+1)<E(wk)转到S6;否则不更新权值,令wk+1=wk,μ=μ*10,跳到S4;
S6:判断迭代次数是否达到n,如果达到,算法停止;否则令k=k+1,μ=μ/10,跳到S2。
(3)基于遗传算法的LM-BP神经网络优化
BP神经网络的权值和阈值对神经网络的训练效果影响较大,而且是无法准确获取的。针对这个问题,采用遗传算法优化来得到最佳的初始权值和阈值。遗传算法是一种面向全局的优化搜索人工智能算法,且具有鲁棒性强的优势。
基于遗传算法(GA)优化LM-BP网络主要分为三部分:网络拓扑结构的确定、GA优化初始权值和阈值、更新权值和阈值后的网络进行预测。具体的实现流程如图4所示:
S1:确定LM-BP神经网络拓扑结构,初始化权值和阈值。
S2:种群初始化。任意产生LM-BP神经网络的初始权值和阈值向量Xi,,创建初始种群PX={X1,X2,…,Xn},n是种群大小,并使用实数对种群个体进行编码。
S3:计算种群适应度值。将LM-BP神经网络训练的误差定义为适应度函数,染色体的适应度
越小成为下一代的概率就越大。
其中,F是适应度函数,dp是p节点的理想值;yp是p节点的预测值;k是适应度系数,取值区间是[0,1]。
S4:形成“交配池”。个体被选择的概率和适应度大小就是成正比的,形式如下:
S5:从上面的“交配池”中选择任意两个染色体进行交叉操作。通过比较父、子染色体适应度函数的大小。如果求得的适应度是减少的,则继续保留父染色体,否则就用子染色体替换父染色体
S6:从“交配池”中以相应的概率任意选择一个染色体进行变异操作,生成子染色体。如果子染色体的适应度大于父染色体,则保留子染色体。否则就是保留父染色体。
S7:一旦迭代次数达到最大值,就得到最优权值和阈值,否则跳转到S3,继续进行优化。
S8:采用上面GA优化得到权值和阈值参数对网络的训练样本进行学习,从而得到LM-BP神经网络预测模型。
S9:将测试样本集输入到LM-BP神经网络预测模型,对预测准确率进行验证,预测准确率达到要求就结束,否则跳到S1进行重复执行。
(4)通过LM-BP神经网络预测模型,获得补偿油量修正值,并通过查喷油脉宽map,插值得到主喷脉宽补偿值,对主喷脉宽进行补偿,减小喷油量波动。
(5)控制效果验证
根据上述方法设计了基于遗传算法LM-BP神经网络的喷油量补偿策略,首先针对本模型三个特征输入的情况确定网络的拓扑结构,考虑模型的复杂性,经过试验分析,当网络结构为三层、隐含层神经元个数为20个时,能达到期望要求。将输入特征(主预喷时间间隔、预喷脉宽、轨压)输入到油量补偿神经网络模型中,得到的拟合曲线与实际曲线对比情况如图5所示,可以看出拟合效果较好,平均拟合误差小于0.6。应用给出的测试数据,固定发动机转速5000r/s和主喷脉宽1.5ms,改变三个特征值对预测模型进行测试,数据对比表如表1所示,可以看出平均预测误差小于2,具有一定的预测效果。最后将该喷油量补偿算法放入在AMESim中搭建的电磁阀喷油器模型中进行了仿真验证。如图6所示为当轨压为100MPa时(训练数据),针对预喷脉宽分别为0.2ms、0.3ms、0.4ms下的油量修正效果,能够看出对多次喷射油量不精确问题可以进行有效控制,控制误差<1。如图7所示,当设定轨压为150MPa(测试数据),针对不同预喷脉宽情况,可以对多次喷射油量不精确进行较有效控制,控制误差<2。该喷油量补偿策略能有效降低喷油波动。
表1 GA-LM-BP神经网络对测试样本点训练的数据对比表

Claims (4)

1.一种基于学习算法的喷油量波动补偿控制方法,其特征在于,包括以下步骤:
步骤一、以柴油机电磁阀喷油系统为研究对象,对系统喷油的瞬态过程进行分析,借助AMESim仿真软件搭建电磁阀喷油器仿真模型,通过仿真模型分析主喷油量波动影响因素;
步骤二、基于LM-BP神经网络算法的波动特性自学习:通过所述步骤一分析确定主预喷时间间隔、预喷脉宽、轨压大小是主喷油量波动的三个影响因子,基于LM-BP神经网络构建波动影响因子与喷油量修正值之间的网络关系;
步骤三、通过遗传算法对LM-BP神经网络初始权值阈值进行优化,通过一定数量的样本训练得到主喷脉宽修正因子的预测模型;
步骤四、通过所述步骤三得到的预测模型,获得补偿油量修正值,并通过查喷油脉宽map,插值得到主喷脉宽补偿值,对主喷脉宽进行补偿,减小喷油量波动。
2.如权利要求1所述的一种基于学习算法的喷油量波动补偿控制方法,其特征在于,所述步骤二包括以下过程:
BP神经网络由输入层、隐含层、输出层构成,是按误差反向传播训练的多层前馈网络,通过一个目标函数最小化进行训练,目标函数选取是:
式中:Yi—目标喷油波动量;Yi′—实际的喷油波动量输出;P—训练样本数目;w—学习的权值和阈值向量;ei(w)—喷油波动量学习误差,i—第i个样本,
权重系数采用梯度下降法进行调整:
其中,η为学习速率;
采用LM算法对BP网络进行训练。
3.如权利要求2所述的一种基于学习算法的喷油量波动补偿控制方法,其特征在于,所述采用LM算法对BP网络进行训练的计算步骤为:
权值增量Δw计算公式如下:
Δw=[JT(w)J(w)+μJ]-1JT(w)e(w)
式中,I-单位矩阵;μ—定义的学习率;e(w)为喷油波动量学习误差,J(w)—Jacobian矩阵,即:
设wk表示第k次迭代的权值和阈值所组成的向量,新的权值和阈值所组成的向量wk+1,则可通过如下式子进行计算:
wk+1=wk+Δw
S1:给出训练最大迭代次数n,以及初始化权值向量w(0),令k=0,μ=μ0
S2:计算网络输出和误差指标函数E(wk);
S3:计算Jacobian矩阵J(wk);
S4:分别计算Δw、wk+1、E(wk+1);
S5:若E(wk+1)<E(wk)转到S6;否则不更新权值,令wk+1=wk,μ=μ*10,跳到S4;
S6:判断迭代次数是否达到n,如果达到,算法停止;否则令k=k+1,μ=μ/10,跳到S2。
4.如权利要求1所述的一种基于学习算法的喷油量波动补偿控制方法,其特征在于,所述步骤三通过遗传算法对LM-BP神经网络初始权值阈值进行优化包括以下过程:
S1:确定LM-BP神经网络拓扑结构,初始化权值和阈值;
S2:种群初始化:任意产生LM-BP神经网络的初始权值和阈值向量Xi,创建初始种群PX={X1,X2,…,Xn},n是种群大小,并使用实数对种群个体进行编码;
S3:计算种群适应度值;将LM-BP神经网络训练的误差定义为适应度函数F:
其中,dp是p节点的理想值;yp是p节点的预测值;k是适应度系数,取值区间是[0,1]
S4:形成“交配池”:个体被选择的概率和适应度大小就是成正比的,形式如下:
S5:从“交配池”中选择任意两个染色体进行交叉操作:通过比较父、子染色体适应度函数的大小,如果求得的适应度是减少的,则继续保留父染色体,否则就用子染色体替换父染色体;
S6:从“交配池”中以相应的概率任意选择一个染色体进行变异操作,生成子染色体,如果子染色体的适应度大于父染色体,则保留子染色体,否则就是保留父染色体;
S7:一旦迭代次数达到最大值,就得到最优权值和阈值,否则跳转到S3,继续进行优
S8:采用上述优化得到权值和阈值参数对网络的训练样本进行学习,从而得到LM-BP神经网络预测模型;
S9:将测试样本集输入到LM-BP神经网络预测模型,对预测准确率进行验证,预测准确率达到要求就结束,否则跳到S1进行重复执行。
CN201910083467.XA 2019-01-29 2019-01-29 一种基于学习算法的喷油量波动补偿控制方法 Pending CN109595087A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910083467.XA CN109595087A (zh) 2019-01-29 2019-01-29 一种基于学习算法的喷油量波动补偿控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910083467.XA CN109595087A (zh) 2019-01-29 2019-01-29 一种基于学习算法的喷油量波动补偿控制方法

Publications (1)

Publication Number Publication Date
CN109595087A true CN109595087A (zh) 2019-04-09

Family

ID=65966711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910083467.XA Pending CN109595087A (zh) 2019-01-29 2019-01-29 一种基于学习算法的喷油量波动补偿控制方法

Country Status (1)

Country Link
CN (1) CN109595087A (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068759A (zh) * 2019-05-22 2019-07-30 四川华雁信息产业股份有限公司 一种故障类型获得方法及装置
CN110080896A (zh) * 2019-04-24 2019-08-02 河南省图天新能源科技有限公司 一种基于遗传算法的沼气发动机空燃比控制方法
CN110821696A (zh) * 2019-11-21 2020-02-21 南京邮电大学 控制发动机高压油管油压的方法
CN112231905A (zh) * 2020-10-14 2021-01-15 哈尔滨工程大学 一种高压共轨喷油器高速电磁阀动态响应特性计算方法
CN112446109A (zh) * 2020-11-04 2021-03-05 潍柴动力股份有限公司 一种发动机喷油压力的标定方法和装置
CN112780432A (zh) * 2021-01-04 2021-05-11 潍柴动力股份有限公司 发动机主喷油量的修正方法及装置
CN112855375A (zh) * 2021-02-18 2021-05-28 中国第一汽车股份有限公司 一种喷油器的控制方法、装置、电子设备及存储介质
CN112879174A (zh) * 2021-01-27 2021-06-01 东风汽车集团股份有限公司 汽油机喷射模式切换燃油补偿控制方法、系统及存储介质
CN113202669A (zh) * 2021-06-10 2021-08-03 哈尔滨工程大学 一种电控喷油器性能的多目标优化方法
CN113343572A (zh) * 2021-06-18 2021-09-03 中国北方发动机研究所(天津) 基于bp神经网络的高原增压参数与喷油参数的匹配方法
CN113971517A (zh) * 2021-10-25 2022-01-25 中国计量大学 一种基于ga-lm-bp神经网络的水质评价方法
CN114370349A (zh) * 2022-01-07 2022-04-19 江苏大学 一种柴油机远后喷控制方法及系统
CN114460843A (zh) * 2022-01-10 2022-05-10 西南交通大学 基于条件与性能匹配的车内压力波动迭代学习控制方法
CN114704405A (zh) * 2022-04-11 2022-07-05 哈尔滨工程大学 一种以燃油系统压力波动为输入的燃油喷射量前馈pid闭环控制方法
CN114839869A (zh) * 2022-04-11 2022-08-02 哈尔滨工程大学 基于高压天然气循环喷气量实时检测的adrc喷气量闭环控制方法
CN115750114A (zh) * 2022-11-15 2023-03-07 潍柴动力股份有限公司 发动机参数的修正方法、修正装置与修正系统
CN116291931A (zh) * 2023-04-17 2023-06-23 一汽解放汽车有限公司 燃料喷射器供给量的校正方法、装置和计算机设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661221A (zh) * 2004-02-27 2005-08-31 日产自动车株式会社 发动机燃料喷射控制部件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661221A (zh) * 2004-02-27 2005-08-31 日产自动车株式会社 发动机燃料喷射控制部件

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
孙倩: "基于LM-BP神经网络的推荐算法的研究与应用", 《中国优秀硕士学位论文全文数据库(信息科技辑)》 *
权凌霄等: "采用"GA+LM"优化BP神经网络的电液伺服阀故障诊断", 《中国机械工程》 *
蔡珍辉等: "基于AMESim的高压共轨喷油器的建模及分析", 《柴油机设计与制造》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110080896A (zh) * 2019-04-24 2019-08-02 河南省图天新能源科技有限公司 一种基于遗传算法的沼气发动机空燃比控制方法
CN110068759B (zh) * 2019-05-22 2021-11-09 华雁智能科技(集团)股份有限公司 一种故障类型获得方法及装置
CN110068759A (zh) * 2019-05-22 2019-07-30 四川华雁信息产业股份有限公司 一种故障类型获得方法及装置
CN110821696A (zh) * 2019-11-21 2020-02-21 南京邮电大学 控制发动机高压油管油压的方法
CN110821696B (zh) * 2019-11-21 2022-05-03 南京邮电大学 控制发动机高压油管油压的方法
CN112231905A (zh) * 2020-10-14 2021-01-15 哈尔滨工程大学 一种高压共轨喷油器高速电磁阀动态响应特性计算方法
CN112446109A (zh) * 2020-11-04 2021-03-05 潍柴动力股份有限公司 一种发动机喷油压力的标定方法和装置
CN112446109B (zh) * 2020-11-04 2022-10-28 潍柴动力股份有限公司 一种发动机喷油压力的标定方法和装置
CN112780432A (zh) * 2021-01-04 2021-05-11 潍柴动力股份有限公司 发动机主喷油量的修正方法及装置
CN112879174A (zh) * 2021-01-27 2021-06-01 东风汽车集团股份有限公司 汽油机喷射模式切换燃油补偿控制方法、系统及存储介质
CN112855375A (zh) * 2021-02-18 2021-05-28 中国第一汽车股份有限公司 一种喷油器的控制方法、装置、电子设备及存储介质
CN112855375B (zh) * 2021-02-18 2022-05-24 中国第一汽车股份有限公司 一种喷油器的控制方法、装置、电子设备及存储介质
CN113202669A (zh) * 2021-06-10 2021-08-03 哈尔滨工程大学 一种电控喷油器性能的多目标优化方法
CN113202669B (zh) * 2021-06-10 2022-07-15 哈尔滨工程大学 一种电控喷油器性能的多目标优化方法
CN113343572A (zh) * 2021-06-18 2021-09-03 中国北方发动机研究所(天津) 基于bp神经网络的高原增压参数与喷油参数的匹配方法
CN113971517A (zh) * 2021-10-25 2022-01-25 中国计量大学 一种基于ga-lm-bp神经网络的水质评价方法
CN114370349A (zh) * 2022-01-07 2022-04-19 江苏大学 一种柴油机远后喷控制方法及系统
CN114370349B (zh) * 2022-01-07 2024-01-05 江苏大学 一种柴油机远后喷控制方法及系统
CN114460843A (zh) * 2022-01-10 2022-05-10 西南交通大学 基于条件与性能匹配的车内压力波动迭代学习控制方法
CN114460843B (zh) * 2022-01-10 2023-09-01 西南交通大学 基于条件与性能匹配的车内压力波动迭代学习控制方法
CN114704405A (zh) * 2022-04-11 2022-07-05 哈尔滨工程大学 一种以燃油系统压力波动为输入的燃油喷射量前馈pid闭环控制方法
CN114839869A (zh) * 2022-04-11 2022-08-02 哈尔滨工程大学 基于高压天然气循环喷气量实时检测的adrc喷气量闭环控制方法
CN114839869B (zh) * 2022-04-11 2022-12-27 哈尔滨工程大学 基于高压天然气循环喷气量实时检测的adrc喷气量闭环控制方法
CN115750114A (zh) * 2022-11-15 2023-03-07 潍柴动力股份有限公司 发动机参数的修正方法、修正装置与修正系统
CN116291931A (zh) * 2023-04-17 2023-06-23 一汽解放汽车有限公司 燃料喷射器供给量的校正方法、装置和计算机设备
CN116291931B (zh) * 2023-04-17 2024-06-04 一汽解放汽车有限公司 燃料喷射器供给量的校正方法、装置和计算机设备

Similar Documents

Publication Publication Date Title
CN109595087A (zh) 一种基于学习算法的喷油量波动补偿控制方法
CN109420424A (zh) 一种石灰石-石膏湿法烟气脱硫系统节能优化方法
CN114462319B (zh) 航空发动机燃烧性能主动调控方法及智能预测模型
JP2009180217A (ja) 内燃機関の制御装置
JP2009180218A (ja) 内燃機関の制御装置
Nikzadfar et al. Investigating a new model-based calibration procedure for optimizing the emissions and performance of a turbocharged diesel engine
CN112131670B (zh) 一种基于混合自适应差分进化的航空发动机模型迭代算法
CN111680357B (zh) 一种变循环发动机机载实时模型的部件级无迭代构建方法
CN110059435A (zh) 一种非纯二氧化碳混相驱最小混相压力gwo-lssvm预测方法
CN113656892A (zh) 一种船用双燃料发动机的性能与排放实时仿真模型构建方法
CN114626573A (zh) 基于改进多元宇宙算法优化极限学习机的负荷预测方法
JP2011132915A (ja) 物理量推定装置
CN114934848B (zh) 一种面向柴油机燃烧性能优化控制的模糊神经网络建模方法
Xia et al. Constrained optimization of fuel efficiency for RCCI engines
CN110096790A (zh) 一种基于强化学习的不规则缺陷漏磁信号反演方法
Malan et al. Cycle to cycle closed-loop combustion control through virtual sensor in a diesel engine
CN113569319B (zh) 基于pso_de智能算法的航空发动机模型自适应修正器设计方法
CN113202669B (zh) 一种电控喷油器性能的多目标优化方法
Ventura et al. Air path and combustion controls coordination in diesel engine
Feng et al. Application of improved DBD algorithm based bp neural network on fault diagnosis for fuel supply system in a certain diesel engine
Nishii et al. Study on Automatic Adaptation for Control-Oriented Model of Advanced Diesel Engine
Jianan et al. Online automatic adaptation for model-based control of diesel engine
Gu et al. Real-time modelling and parallel optimisation of a gasoline direct injection engine
Cao et al. Model Based Control with Online Automatic Adaptation by Neural Network for Advanced Diesel Combustion
Palanivelu et al. A Review of Technical Literature and Trends Related to Automotive Engine Modelling by ANN

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190409

WD01 Invention patent application deemed withdrawn after publication