CN109546112A - 锡纳米球与碳纳米管复合的电极材料的制备方法及其产品和应用 - Google Patents

锡纳米球与碳纳米管复合的电极材料的制备方法及其产品和应用 Download PDF

Info

Publication number
CN109546112A
CN109546112A CN201811359351.6A CN201811359351A CN109546112A CN 109546112 A CN109546112 A CN 109546112A CN 201811359351 A CN201811359351 A CN 201811359351A CN 109546112 A CN109546112 A CN 109546112A
Authority
CN
China
Prior art keywords
tin
carbon nanotube
electrode material
nanotube
microporous polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811359351.6A
Other languages
English (en)
Other versions
CN109546112B (zh
Inventor
何丹农
陈振
林琳
王敬锋
徐少洪
金彩虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority to CN201811359351.6A priority Critical patent/CN109546112B/zh
Publication of CN109546112A publication Critical patent/CN109546112A/zh
Application granted granted Critical
Publication of CN109546112B publication Critical patent/CN109546112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种锡纳米球颗粒与碳纳米管复合的电极材料的制备方法及其产品和应用,借助微孔聚合物纳米空心管,微孔聚合物纳米空心管材料用作负载载体,通过高温碳化处理制备金属锡与碳纳米管复合的电极材料。本方法首次尝试将微孔聚合物纳米空心管材料用作负载载体,通过高温碳化处理制备金属锡与碳纳米管复合的电极材料。由于微孔碳纳米管是由微孔聚合物纳米管高温碳化而成,所以此纳米管的管壁也为微孔结构,此微孔结构可以牢固的将金属锡纳米颗粒稳定在管壁上,因此,此材料作为锂离子电池的负极材料可以有效防止金属锡在充放电过程中的团聚现象,提高充放电的循环稳定性。与此同时,碳材料还可以有利于提高锡基负极材料的导电性。

Description

锡纳米球与碳纳米管复合的电极材料的制备方法及其产品和 应用
技术领域
本发明涉及一种锡纳米球颗粒与碳纳米管复合的电极材料的制备方法及其产品和应用。具体涉及一种借助管直径约为50 nm的微孔聚合物纳米管为载体,合成高分散的直径约为10-40 nm的金属锡纳米球与碳纳米管复合的电极材料。
背景技术
由于金属锡等金属材料的储锂机理属于合金化储锂过程,此类金属材料在储锂时与锂离子发生反应生成各种锂基合金,与插入式储锂机理的石墨负极材料相比较,金属锡等金属材料具有更高的储锂容量,锡的理论容量可高达994 mAh/g。因此,锡基负极材料近年来受到广泛的关注。但由于金属锡在脱嵌锂的过程中体积膨胀非常严重,体积膨胀率可高达259%,因此在充放电过程中容易发生活性材料的粉化团聚等问题,造成容量衰减快,导致充放电的循环稳定性差。
为了解决锡材料在充放电过程中因体积膨胀导致的粉化团聚现象,人们采取了各种方法来提高锡纳米颗粒的分散性和稳定性,比如用碳材料包覆或者负载锡基纳米材料起到分散和锚定锡基纳米颗粒的作用,从而提高锡基材料在充放电过程中的循环稳定性。
微孔聚合物材料属于多孔有机聚合物材料中的一种,其本身含有孔径约2-3 nm的微孔结构,是一种特殊的多孔材料,将纳米颗粒负载到微孔的孔道中可以起到分散和锚定纳米颗粒的作用。在众多的微孔聚合物纳米材料中,微孔聚合物纳米空心管材料不仅管壁本身含有微孔结构,而且其管径约为50 nm左右,非常有利于溶液的浸润从而提高活性物质的负载率。
发明内容
针对锡基负极材料存在的问题及微孔聚合纳米空心管材料本身的结构特点,本发明目的在于提供一种锡纳米球与碳纳米管复合的电极材料的制备方法。
本发明的再一目的在于:提供一种上述方法制备的锡纳米球与碳纳米管复合的电极材料产品。
本发明的又一目的在于:提供一种上述产品的应用。
本发明目的通过下述方案实现:一种锡纳米球与碳纳米管复合的电极材料的制备方法,其特征在于借助微孔聚合物纳米空心管,微孔聚合物纳米空心管材料用作负载载体,通过高温碳化处理制备金属锡与碳纳米管复合的电极材料,技术方案如下:
a、锡盐的乙醇溶液的配制:配制100 ml浓度为50 mg/ml的锡盐的乙醇溶液加入到250ml的三颈烧瓶中;
b、氮气置换:通过抽真空-充氮气操作将上述溶液中的空气用氮气置换,使三颈烧瓶中保持氮气气氛;
c、微孔聚合物纳米管的加入:称取30 mg微孔聚合物纳米管加入到上述氮气保护的溶液中,氮气保护下室温搅拌6-8 h;
d、抽滤并干燥:将上述混合液抽滤并收集固体粉末,将收集到的固体粉末在60℃下真空干燥3h;
e、高温碳化处理:将上述干燥后的固体粉末在氮气保护下800℃高温碳化处理6h,得到锡纳米球与碳纳米管复合的电极材料。
所述的微孔聚合物纳米管为:聚合物纳米管的管壁为微孔结构,孔径范围2-3 nm,纳米管的管径范围10-50 nm。
所述的锡盐为可溶于乙醇的无机锡盐,或二丁基锡类的可溶于乙醇的有机锡盐。
所述的无机锡盐为SnCl2;所述的二丁基锡类的可溶于乙醇的有机锡盐为乙酸亚锡或二月桂酸二丁基锡。
本发明提供一种锡纳米球与碳纳米管复合的电极材料,根据上述任一所述方法制备得到;微孔碳纳米管负载的粒径为10-40 nm的金属锡纳米球的复合材料。
本发明提供一种锡纳米球与碳纳米管复合的电极材料在锂离子电池中作为负极材料的应用。
本发明提出了一种借助微孔聚合物纳米空心管制备锡纳米球与碳纳米管复合的电极材料的方法。本发明方法首先将微孔聚合物纳米空心管加入到溶解有锡盐离子的乙醇溶液中并搅拌一段时间,然后将吸附有锡盐离子乙醇溶液的微孔聚合物纳米管材料进行高温碳化处理,最终得到微孔碳纳米管负载的粒径约为10-40 nm的金属锡纳米球复合材料。在高温碳化的过程中,微孔聚合物纳米管会转变成微孔碳纳米管,微孔孔道中吸附的锡离子会被还原为金属Sn颗粒,由透射电镜TEM的结果可知,此金属锡纳米颗粒的形状为球形且高度分散在微孔碳纳米管的管壁上,没有发生团聚现象。由于微孔碳纳米管是由微孔聚合物纳米管高温碳化而成,所以此纳米管的管壁也为微孔结构,此微孔结构可以牢固的将金属锡纳米颗粒稳定在管壁上,可以有效防止金属锡在充放电过程的团聚现象,提高充放电的循环稳定性。与此同时,碳材料还可以有利于提高锡基负极材料的导电性。
本发明方法首次尝试将微孔聚合物纳米空心管材料用作负载载体,通过高温碳化处理制备金属锡与碳纳米管复合的电极材料。不仅提出了一种新的负载纳米颗粒的载体材料,还提供了一种新的制备碳纳米管材料的方法。通过本发明方法得到了一种微孔碳纳米管负载的粒径约为10-40 nm的金属锡纳米球的复合材料。由于微孔碳纳米管是由微孔聚合物纳米管高温碳化而成,所以此纳米管的管壁也为微孔结构,此微孔结构可以牢固的将金属锡纳米颗粒稳定在管壁上,因此,此材料作为锂离子电池的负极材料可以有效防止金属锡在充放电过程中的团聚现象,提高充放电的循环稳定性。与此同时,碳材料还可以有利于提高锡基负极材料的导电性。
附图说明
图1为本发明实施例1合成的锡纳米球颗粒与碳纳米管复合的电极材料的TEM图;
图2为本发明实施例2合成的锡纳米球颗粒与碳纳米管复合的电极材料的TEM图。
具体实施方式
本发明通过下面具体实施例进行详细的描述,但是本发明的保护范围不受限于这些实施例:
实施例1:
一种锡纳米球与碳纳米管复合的电极材料的制备方法,将微孔聚合物纳米空心管材料作为负载载体,通过高温碳化处理制备金属锡与碳纳米管复合的电极材料,包括如下步骤:
a、锡盐的乙醇溶液配制:配制100 ml浓度为50 mg/ml的SnCl2的乙醇溶液加入到250ml的三颈烧瓶中;
b、氮气置换:通过抽真空-充氮气操作将上述溶液中的空气用氮气置换,使三颈烧瓶中保持氮气气氛;
c、加入微孔聚合物纳米管:称取30 mg微孔聚合物纳米管加入到上述氮气保护的溶液中,氮气保护下室温搅拌6-8 h;
d、抽滤并干燥:将上述混合液抽滤并收集固体粉末,将收集到的固体粉末在60℃下真空干燥3h;
e、高温碳化处理:将上述干燥后的固体粉末在氮气保护下800℃高温碳化处理6h,得到锡纳米球与碳纳米管复合的电极材料的TEM图如图1所示,微孔碳纳米管负载的管径不足40nm,金属锡纳米颗粒稳定在管壁上。
实施例2
一种锡纳米球与碳纳米管复合的电极材料的制备方法,包括如下步骤:
a、锡盐的乙醇溶液配制:配制100 ml浓度为50 mg/ml的乙酸亚锡的乙醇溶液加入到250 ml的三颈烧瓶中;
b、氮气置换:通过抽真空-充氮气操作将上述溶液中的空气用氮气置换,使三颈烧瓶中保持氮气气氛;
c、加入微孔聚合物纳米管:称取30 mg微孔聚合物纳米管加入到上述氮气保护的溶液中,氮气保护下室温搅拌6-8 h;
d、抽滤并干燥:将上述混合液抽滤并收集固体粉末,将收集到的固体粉末在60℃下真空干燥3h;
e、高温碳化处理:将上述干燥后的固体粉末在氮气保护下800℃高温碳化处理6h,得到锡纳米球与碳纳米管复合的电极材料的TEM图如图2,微孔碳纳米管负载的管径不足50 nm,金属锡纳米颗粒稳定在管壁上。
实施例3
一种锡纳米球与碳纳米管复合的电极材料的制备方法,包括如下步骤:
a、锡盐的乙醇溶液配制:配制100 ml浓度为50 mg/ml的二月桂酸二丁基锡的乙醇溶液加入到250 ml的三颈烧瓶中;
b、氮气置换:通过抽真空-充氮气操作将上述溶液中的空气用氮气置换,使三颈烧瓶中保持氮气气氛;
c、加入微孔聚合物纳米管:称取30 mg微孔聚合物纳米管加入到上述氮气保护的溶液中,氮气保护下室温搅拌6-8 h;
d、抽滤并干燥:将上述混合液抽滤并收集固体粉末,将收集到的固体粉末在60℃下真空干燥3h;
e、高温碳化处理:将上述干燥后的固体粉末在氮气保护下800℃高温碳化处理6h,得到锡纳米球与碳纳米管复合的电极材料。

Claims (6)

1.一种锡纳米球与碳纳米管复合的电极材料的制备方法,其特征在于,将微孔聚合物纳米空心管材料作为负载载体,通过高温碳化处理制备金属锡与碳纳米管复合的电极材料,包括如下步骤:
a、锡盐的乙醇溶液配制:配制100 ml浓度为50 mg/ml的锡盐的乙醇溶液加入到250 ml的三颈烧瓶中;
b、氮气置换:通过抽真空-充氮气操作将上述溶液中的空气用氮气置换,使三颈烧瓶中保持氮气气氛;
c、加入微孔聚合物纳米管:称取30 mg微孔聚合物纳米管加入到上述氮气保护的溶液中,氮气保护下室温搅拌6-8 h;
d、抽滤并干燥:将上述混合液抽滤并收集固体粉末,将收集到的固体粉末在60℃下真空干燥3h;
e、高温碳化处理:将上述真空干燥后的固体粉末在氮气保护下800℃高温碳化处理6h,得到锡纳米球与碳纳米管复合的电极材料。
2.根据权利要求1所述的锡纳米球颗粒与碳纳米管复合的电极材料的制备方法,其特征在于,所述的微孔聚合物纳米管为:管壁为微孔结构的聚合物纳米管,孔径范围2-3 nm,纳米管的管径范围10-50 nm。
3.根据权利要求1所述的锡纳米球颗粒与碳纳米管复合的电极材料的制备方法,其特征在于,所述的锡盐为可溶于乙醇的无机锡盐,或二丁基锡类的可溶于乙醇的有机锡盐。
4.根据权利要求3所述的锡纳米球颗粒与碳纳米管复合的电极材料的制备方法,其特征在于所述的无机锡盐为SnCl2;所述的二丁基锡类的可溶于乙醇的有机锡盐为乙酸亚锡、二月桂酸二丁基锡。
5.一种锡纳米球与碳纳米管复合的电极材料,其特征在于根据权利要求1-4任一所述方法制备得到;微孔碳纳米管负载的粒径为10-40 nm的金属锡纳米球的复合材料。
6.一种根据权利要求5所述锡纳米球与碳纳米管复合的电极材料在锂离子电池中作为负极材料的应用。
CN201811359351.6A 2018-11-15 2018-11-15 锡纳米球与碳纳米管复合的电极材料的制备方法及其产品和应用 Active CN109546112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811359351.6A CN109546112B (zh) 2018-11-15 2018-11-15 锡纳米球与碳纳米管复合的电极材料的制备方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811359351.6A CN109546112B (zh) 2018-11-15 2018-11-15 锡纳米球与碳纳米管复合的电极材料的制备方法及其产品和应用

Publications (2)

Publication Number Publication Date
CN109546112A true CN109546112A (zh) 2019-03-29
CN109546112B CN109546112B (zh) 2021-07-16

Family

ID=65847438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811359351.6A Active CN109546112B (zh) 2018-11-15 2018-11-15 锡纳米球与碳纳米管复合的电极材料的制备方法及其产品和应用

Country Status (1)

Country Link
CN (1) CN109546112B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809305A (zh) * 2021-09-17 2021-12-17 青岛科技大学 一种锡/碳纳米管复合材料的制备方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207199A (zh) * 2007-12-14 2008-06-25 华南师范大学 一种锂离子电池锡-碳纳米管负极材料及其制备方法
US20110195311A1 (en) * 2010-02-08 2011-08-11 Beom-Kwon Kim Negative electrode for rechargeable lithium battery, method for manufacturing thereof, and rechargeable lithium battery comprising the same
CN104609462A (zh) * 2015-01-09 2015-05-13 陕西科技大学 钠离子电池负极用空心球状纳米锡电极材料的制备方法
CN106312082A (zh) * 2015-06-25 2017-01-11 云南锡业集团有限责任公司研究设计院 一种高纯锡粉的制备方法
CN106531969A (zh) * 2016-12-21 2017-03-22 盐城工学院 一种锂离子电池负极用柔性复合纳米材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207199A (zh) * 2007-12-14 2008-06-25 华南师范大学 一种锂离子电池锡-碳纳米管负极材料及其制备方法
US20110195311A1 (en) * 2010-02-08 2011-08-11 Beom-Kwon Kim Negative electrode for rechargeable lithium battery, method for manufacturing thereof, and rechargeable lithium battery comprising the same
CN104609462A (zh) * 2015-01-09 2015-05-13 陕西科技大学 钠离子电池负极用空心球状纳米锡电极材料的制备方法
CN106312082A (zh) * 2015-06-25 2017-01-11 云南锡业集团有限责任公司研究设计院 一种高纯锡粉的制备方法
CN106531969A (zh) * 2016-12-21 2017-03-22 盐城工学院 一种锂离子电池负极用柔性复合纳米材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MINGHAO WU等: "Sn/carbon nanotube composite anode with improved cycle performance for lithium-ion battery", 《IONICS》 *
QINGTANG ZHANG等: "Incorporation of MnO nanoparticles inside porous carbon nanotubes originated from conjugated microporous polymers for lithium storage", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
XINGKANG HUANG等: "A Hierarchical Tin/Carbon Composite as an Anode for Lithium-Ion Batteries with a Long Cycle Life", 《ANGEW.CHEM.INT.ED.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809305A (zh) * 2021-09-17 2021-12-17 青岛科技大学 一种锡/碳纳米管复合材料的制备方法及装置
CN113809305B (zh) * 2021-09-17 2022-12-27 青岛科技大学 一种锡/碳纳米管复合材料的制备方法及装置

Also Published As

Publication number Publication date
CN109546112B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
Li et al. Metal‐organic framework‐derived carbons for battery applications
CN107994225B (zh) 一种多孔硅碳复合负极材料及其制备方法、锂离子电池
CN104201359B (zh) 一种碳包覆纳米锑复合材料、其制备方法和应用
WO2019019412A1 (zh) 纳米碳颗粒-多孔骨架复合材料、其金属锂复合物、它们的制备方法及应用
JP2018533174A (ja) 改質した超疎水性材料により被覆されたリチウムイオン電池用高ニッケル正極材料及びその調製方法
CN108735983B (zh) 一种金属纳米颗粒负载于石墨烯水凝胶复合材料及其制备方法和应用
Sun et al. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@ Carbon anodes for lithium-ion batteries
WO2019019411A1 (zh) 具有疏水包覆层的金属锂-骨架碳复合材料、其制备方法与应用
Xu et al. In-situ TEM examination and exceptional long-term cyclic stability of ultrafine Fe3O4 nanocrystal/carbon nanofiber composite electrodes
CN106848199A (zh) 一种锂离子电池纳米硅/多孔碳复合负极材料及其制备方法和应用
Liu et al. Ultrafine SnO2 anchored in ordered mesoporous carbon framework for lithium storage with high capacity and rate capability
CN101665883B (zh) 一种制备铁锡金属间化合物多孔纳米方块的方法
US20170352446A1 (en) Graphene/porous iron oxide nanorod composite and manufacturing method thereof
WO2019019410A1 (zh) 改性无锂负极、其制备方法和含有其的锂离子电池
WO2019019414A1 (zh) 多孔碳骨架-纳米颗粒复合材料、其金属锂复合物、它们的制备方法及应用
CN100383037C (zh) 一种碳材料/纳米硅复合材料及其制备方法和应用
CN105609711A (zh) 一种微纳结构化硅碳复合微球及其制备方法和应用
CN108232135A (zh) 一种锂硫电池正极材料及其制备方法
CN106953079B (zh) 一种多级结构碳纳米管/二氧化锡复合材料及其制备方法
Lee et al. Graphite-nanofiber-supported porous Pt–Ag nanosponges: Synthesis and oxygen reduction electrocatalysis
CN112794305A (zh) 空心炭纳米球限域锡纳米簇复合材料的制备方法及应用
Wei et al. Three-dimensional porous SnO2@ NC framework for excellent energy conversion and storage
CN103500828B (zh) 一种碳/纳米NiO复合材料的制备方法
CN109546112A (zh) 锡纳米球与碳纳米管复合的电极材料的制备方法及其产品和应用
CN113113576B (zh) 一种Bi/ SnOx@C钠离子电池复合电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant