CN109536195A - 一种生物质和煤的转化工艺 - Google Patents

一种生物质和煤的转化工艺 Download PDF

Info

Publication number
CN109536195A
CN109536195A CN201811457149.7A CN201811457149A CN109536195A CN 109536195 A CN109536195 A CN 109536195A CN 201811457149 A CN201811457149 A CN 201811457149A CN 109536195 A CN109536195 A CN 109536195A
Authority
CN
China
Prior art keywords
biomass
coal
reaction
conversion process
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811457149.7A
Other languages
English (en)
Other versions
CN109536195B (zh
Inventor
林科
郭立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Haixin Energy Technology Co ltd
Original Assignee
Beijing SJ Environmental Protection and New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201811457149.7A priority Critical patent/CN109536195B/zh
Application filed by Beijing SJ Environmental Protection and New Material Co Ltd filed Critical Beijing SJ Environmental Protection and New Material Co Ltd
Priority to FIEP18916677.0T priority patent/FI3613830T3/fi
Priority to EP18916677.0A priority patent/EP3613830B1/en
Priority to SG11202000176XA priority patent/SG11202000176XA/en
Priority to PCT/CN2018/122669 priority patent/WO2019205682A1/zh
Priority to MYPI2019007762A priority patent/MY193483A/en
Publication of CN109536195A publication Critical patent/CN109536195A/zh
Priority to US16/427,218 priority patent/US11198820B2/en
Application granted granted Critical
Publication of CN109536195B publication Critical patent/CN109536195B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明属于生物质利用、能源、化工技术领域,具体涉及一种生物质和煤的转化工艺。该转化工艺采用铁氧化合物、铁氧化合物的脱硫废剂或铁氧化合物的脱硫废剂的再生物中的至少一种作为催化剂,并采用含水浆液,同时控制反应体系中铁元素与硫元素的摩尔比,发现在CO存在下能有效地利用羰基化阻断生物质在裂解过程中的自由基缩聚,并实现CO和水的变换活性氢加氢,在该转化反应中,生物质固体无需脱水、可直接进行转化反应,在提高液化收率的同时,还能提高所制得油品的发热量,转化反应结束后,不会产生大量废水。

Description

一种生物质和煤的转化工艺
技术领域
本发明属于生物质利用、能源、化工技术领域,具体涉及一种生物质和煤的转化工艺。
背景技术
随着社会经济的快速发展,煤炭、原油、天然气、油页岩等化石类非再生能源日趋枯竭,与此同时,此种化石类非再生能源燃烧后所产生的CO2、SO2、NOx等污染物所造成的环境污染也日益严重,这迫使人类不得不思考获取能源的途径及改善环境的方法。
目前,生物质液化技术成为获取能源的一种新的手段,该技术是生物质资源利用中的重要组成部分,其液化机理如下:生物质首先裂解成低聚体,然后再经脱水、脱羟基、脱氢、脱氧和脱羧基而形成小分子化合物,小分子化合物接着通过缩合、环化、聚合等反应而生成新的化合物。目前该技术主要分为间接液化和直接液化两大类,其中,生物质直接液化技术是指在溶剂或催化剂的作用下,采用水解、超临界液化或通入氢气、惰性气体,在适当的温度、压力下将生物质直接从固体液化成液体。整个过程中,主要涉及热解液化、催化液化和加压加氢液化等。
上述生物质液化工艺中,在进行液化之前,均需要对生物质原料进行脱水处理,增加了干燥成本,即便干燥,在整个工艺结束后,也会产生大量废水。再者上述液化工艺对反应气氛和催化剂要求严格,一般要采用纯氢气氛和贵金属催化剂,经济性较差。此外,上述液化工艺得到的油品的发热量偏低。
发明内容
因此,本发明要解决的技术问题在于克服现有的生物质液化工艺中,生物质原料需要脱水、反应气氛和催化剂要求严格、油品的发热量偏低及废水产生量大的缺陷,进而提供一种能耗低、固含量高、反应性能好、生物质原料无需脱水、反应气氛采用含CO的气氛、油品的发热量高、废水产生量低、甚至无废水产生的生物质和煤的转化工艺。
为此,本发明解决上述问题所采用的技术方案如下:
本发明所提供的生物质和煤的转化工艺,包括如下步骤:
1)配制含有催化剂、煤和生物质的含水浆液,包括:
生物质预处理:收集生物质,粉碎至粒径为0.2μm-5cm;
生物质压缩:将粉碎后的生物质进行压缩成型;
生物质二次粉碎:将压缩成型后的生物质再次粉碎处理,粉碎至粒径为0.1-500μm,得生物质粉末;
煤预处理:收集煤,粉碎至粒径为0.1-500μm;
将生物质粉末、煤粉与溶剂油混合,制浆,得到含水浆液;
其中,所述催化剂在上述步骤的中的任一步骤中加入,所述催化剂为铁氧化合物、铁氧化合物的脱硫废剂或铁氧化合物的脱硫废剂的再生物中的至少一种;
2)将所述含水浆液与纯CO或含CO的气体混合进行转化反应,反应体系中铁元素与硫元素的摩尔比为1:(0.5~5),制得油品。
进一步地,向所述催化剂中加入含硫化合物至反应体系中铁元素与硫元素的摩尔比为1:(0.5~5),优选为1:(0.5-2),更优选为1:(1-2)。
进一步地,所述含硫化合物为硫磺、硫化氢、二硫化碳或其他常用含硫化合物中的至少一种。
进一步地,所述含CO的气体中CO的体积含量不小于15%,优选为不小于25%,最优选为不小于50%。
进一步地,所述含CO的气体为CO与H2的混合气或者合成气。
进一步地,所述铁氧化合物的脱硫废剂为以氧化铁为活性组分的脱硫剂的废剂、以Fe21.333O32为活性组分的脱硫剂的废剂、以FeOOH为活性组分的脱硫剂的废剂中的至少一种;或,
所述铁氧化合物的脱硫废剂的再生物为以氧化铁为活性组分的脱硫剂的废剂的再生物、以Fe21.333O32为活性组分的脱硫剂的废剂的再生物、以FeOOH为活性组分的脱硫剂的废剂的再生物中的至少一种。
进一步地,所述氧化铁为三氧化二铁和/或四氧化三铁。
进一步地,所述三氧化二铁为α-Fe2O3、α-Fe2O3.H2O、γ-Fe2O3、γ-Fe2O3.H2O、无定形Fe2O3、无定形Fe2O3.H2O中的至少一种;
所述四氧化三铁为立方晶系的四氧化三铁;
所述FeOOH为α-FeOOH、β-FeOOH、γ-FeOOH、δ-FeOOH、θ-FeOOH和无定形FeOOH中的至少一种。
进一步地,所述铁氧化合物的脱硫废剂的再生物是通过浆液法对铁氧化合物的脱硫废剂进行氧化、硫化和氧化后得到的再生物。
进一步地,所述铁氧化合物的脱硫废剂的再生方法,包括如下步骤:
将所述铁氧化合物的脱硫废剂与水或碱溶液混合,配制成浆液;
向所述浆液中添加氧化剂,发生一次氧化反应;
向所述氧化反应后的浆液中添加硫化剂,发生硫化反应;
向所述硫化反应后的浆液中添加氧化剂,发生二次氧化反应;
循环进行所述硫化反应和所述二次氧化反应;
对所述二次氧化反应后的浆液进行固液分离,得到所述铁氧化合物的脱硫废剂的再生物。
进一步地,所述转化反应的反应压力为5-22MPa,反应温度为200-500℃。
进一步地,所述转化反应的反应时间不小于15min,优选为15-120min。
进一步地,所述催化剂的平均粒径为0.1μm-5mm,优选为5μm-100μm,最优选为5-50μm。
进一步地,将所述含水浆液与纯CO或含CO的气体混合进行转化反应,包括如下步骤:
将纯CO或含CO的气体加压至5-22MPa、加温至150-600℃后,通入反应体系中,并与进入反应体系中的所述生物质浆料发生转化反应。
进一步地,将所述含水浆液与纯CO或含CO的气体混合进行转化反应,包括如下步骤:
将部分纯CO或含CO的气体加压至5-22MPa、加温至150-600℃后,通入所述含水浆液中,并随所述含水浆液进入反应体系中发生转化反应;
其余部分加压至5-22MPa、加温至300-600℃后,通入反应体系中,并与进入其中的所述生物质浆料发生转化反应。
进一步地,所述纯CO或含CO的气体与所述浆液的体积比为(50-10000):1,优选为(100-5000):1
进一步地,所述反应体系是在反应器中进行,所述反应器为悬浮床反应器、浆态床反应器、鼓泡床反应器、沸腾床反应器、单釜反应器中的任一种;或者,
所述反应器为悬浮床反应器、浆态床反应器、鼓泡床反应器、沸腾床反应器、单釜反应器中的任一种或多种中的一个或多个进行串联或并联。
进一步地,所述压缩成型后物料的真密度在0.75-2.0kg/m3之间。
进一步地,所述压缩步骤中,压缩压力为0.5-10MPa,压缩温度为30-70℃。所述压缩成型为压片成型、压块成型或压条成型。进一步地,可以采用压片机、压块机或压条机进行压缩成型。
进一步地,以生物质粉末与煤粉的总质量计,生物质粉末的质量占5-99wt%;
所述催化剂的用量为含水浆液的0.1-8%。
进一步地,所述含水浆液中生物质粉末和煤粉的含量为10~60wt%,水含量为1-18wt%
进一步地,所述制浆为研磨制浆,所述研磨制浆为搅拌制浆,分散制浆,乳化制浆,剪切制浆,均质制浆或胶体磨制浆。
进一步地,所述研磨制浆的时间为8-60分钟。
进一步地,所述生物质为农作物秸秆、木屑、油渣、树叶、餐厨垃圾、粪便、动物尸体或藻类中的一种或多种;所述农作物秸秆为粮食作物秸秆、油料作物秸秆、棉秆、烟秸秆、麻类秸秆、糖料作物秸秆中的一种或多种,其中粮食作物秸秆包括水稻、小麦、大麦、玉米、大豆、蚕豌豆、薯类秸秆等,油料作物秸秆包括花生、油菜籽、芝麻秸秆等,糖料作物秸秆主要为甘蔗秸秆。所述木屑可以来源于废旧家具、废旧木质建材等,油渣常规的为花生油油渣、大豆油油渣、菜籽油油渣、棉籽油油渣、蓖麻油油渣、葵花籽油油渣、玉米油油渣、亚麻油油渣或米糠油油渣中的一种或两种以上的混合物;藻类主要为红藻、绿藻、褐藻等。
所述溶剂油为动植物油、石油中的馏分油、煤焦油或自身加工产生的油品。
进一步地,所述粉碎过程为锤片式磨粉碎、球磨粉碎、棒磨粉碎、超微粉碎或气流粉碎。可以采用锤片式磨机、球磨机、棒磨机、超微粉碎机或气流粉碎机等进行粉碎。
进一步地,所述含水浆液中的水来自生物质本身自带的水,以所述生物质的总重计,所述生物质的含水率为500ppm-20%,优选为2%-10%;或,
所述含水浆液中的水来自外界添加的水。
本发明的上述技术方案具有如下优点:
1、本发明所提供的生物质和煤的转化工艺,该工艺中采用铁氧化合物、铁氧化合物的脱硫废剂或铁氧化合物的脱硫废剂的再生物中的至少一种作为催化剂,并采用含水浆液,同时控制反应体系中铁元素与硫元素的摩尔比,发现在CO存在下能有效地利用羰基化阻断生物质在裂解过程中的自由基缩聚,并实现CO和水的变换活性氢加氢,在该转化反应中,生物质固体无需脱水、可直接进行转化反应,在提高液化收率的同时,还能提高所制得油品的发热量,转化反应结束后,不会产生大量废水。
2、本发明提供的生物质和煤的转化工艺,进一步地,铁氧化合物的脱硫废剂为以氧化铁为活性组分的脱硫剂的废剂、以Fe21.333O32为活性组分的脱硫剂的废剂、以FeOOH为活性组分的脱硫剂的废剂中的至少一种;铁氧化合物的脱硫废剂的再生物为以氧化铁为活性组分的脱硫剂的废剂的再生物、以Fe21.333O32为活性组分的脱硫剂的废剂的再生物、以FeOOH为活性成分的脱硫剂的废剂的再生物中的至少一种,通过利用上述催化剂配入适量硫磺,发现在CO气氛下,这些催化剂首先与CO结合,形成羰基化合物,再通过该羰基化合物将碳原子接枝在生物质热裂解后所形成的小分子活性位上,同时,在铁、硫元素的催化作用下还实现CO变换原位产氢以及催化加氢脱氧的效果,降低了油品的氧含量,大大提高了固体生物质的液化收率和长分子链向小分子转化的油品收率;
铁氧化合物的脱硫废剂的再生物是通过浆液法将铁氧化合物交替进行硫化和氧化再生后得到的再生物,进一步地,通过多次硫化-氧化反应,在该过程中铁氧化合物与铁硫化合物晶相经历重构和转化,加之S2-离子半径(0.18nm)大于O2-离子半径(0.14nm),故随着Fe-O键和Fe-S键之间的转化,铁氧化合物的晶胞也经历收缩和膨胀,进而造成原本结构稳定的铁氧化合物结晶颗粒变得疏松并崩裂,产生大量纳米铁化合物,该纳米铁化合物亲硫性好,极易被硫化。同时,该纳米铁化合物表面覆盖一层非极性的单质硫层,该单质硫层不仅能阻碍纳米铁化合物颗粒间的团聚长大,大大提高了其分散性,而且可以利用物质间存在的相似相容特性,使纳米铁化合物高度分散在非极性的油品中;再者,硫覆盖的纳米铁化合物因为硫-铁紧密相连和纳米铁化合物本身较小的粒径,从而使硫与纳米铁化合物在低温下就可以反应生成具有劣质重油加氢活性的磁黄铁矿(Fe1-xS),最终使此种方法得到的再生物粒径小,亲油性好,其结构成片状纳米结构,片与片之间被吸附的硫阻隔,避免了其团聚,大大提高了CO的吸附能力,增强了羰基化、变换产氢及加氢催化能力。
3、本发明提供的生物质和煤的转化工艺,通过特定的含水浆料的配浆方法,先将收集的生物质和煤分别粉碎;将粉碎后的生物质进行压缩成型;将压缩成型后的生物质和煤再次粉碎处理,得生物质粉末和煤粉;并在任一步骤中加入催化剂。该工艺中,不需要对生物质进行干燥处理,降低了能耗;通过各步骤的配合,尤其是对两次粉碎步骤中粒度的控制、以及压缩和研磨制浆步骤的控制,能够使生物质物料粒子在机械作用下产生机械镶嵌,纤维素、木质素结构被破坏并且相互缠绕,颗粒间的孔隙大幅缩小,物料之间结合紧密,驱除大量孔隙中的空气,使松散的生物质固体先后经历坍塌、闭合等重新排位、机械变形的阶段,使得生物质固体的体积大幅度降低,由此可减少生物质的孔隙率,增大其密度和比重,使之有利于成浆。同时由于浆液中生物质固体浓度的增加也必然会提高泵在单位时间内对生物质固体的输送量,从而提高整个液化工艺的效率、降低了工业成本和能耗;此外,生物质固体比重的增加还有利于生物质固体在浆液中的悬浮与分散,由此可降低浆液的粘度,实现浆液在管道中的顺利流动,避免堵塞管道,实现了泵的平稳运转与输送。
该工艺在配浆中掺杂少量的煤,是考虑到生物质中普遍含有的木质素,木质素在热解时可以形成苯氧自由基以及其他反应性自由基,此些自由基在低温下对于煤基有着很重要的热解作用。这些自由基是高效的活性中间体,能够使得煤中的亚甲基断裂,从而促进煤的解聚,进而实现降低成本的效果。
4、本发明提供的生物质和煤的转化工艺,通过控制原料压缩的温度、压力及再粉碎的粒度等参数,还可以实现调整浆液的粘度。随着压缩压力和温度的提高,物料内部孔隙结构被破坏得更加彻底,物料间结合得更为致密,同时随着再粉碎粒度的控制,在配浆时固液结合更好,从而降低浆液的粘度,增加浆液整体的流动性。
5、本发明提供的生物质和煤的转化工艺,将反应原料与含CO的气体,输送至反应器中,在合适的温度、压力、气液比和催化剂的条件下,在反应器内发生裂化、羰基化、变换、加氢等反应;进一步地通过采用浆态床反应器,先将反应原料由反应器底部送入态床反应器中以发生反应,同时再向反应器内注入含CO的气体,如此在反应器内可以依靠气体、液体、固体各物料的不同比重并配合反应后轻质油品的产量所引起的比重差变化,实现各相态流速的差异性控制,使得生物质固体原料在反应器内由下至上发生裂化、羰基化、变换、加氢、反应,在此过程中即便比重大的生物质固体和催化剂固体颗粒随着气体和轻质油品上升,但在上部的含CO的气体作用下又回返至底部再次参与反应,根据反应器上、中、下部的物料密度适当调整进入反应器的浆液中的含CO的气体及其注入量,从而实现未转化的生物质在反应器内部的循环以及催化剂的平衡排出,由此可确保各种反应的充分进行,从而有利于提高生物质的转化率和生物油收率
6、本发明提供的生物质和煤的转化工艺,生物质不需要脱水,降低干燥的成本;在反应过程中用的是含CO的气体,该含CO的气体既可以是纯的CO,也可以不纯,比如除了含有CO,还可以含有氢气、硫化氢、甲烷等,还可以是煤炭、生物质、天然气、矿物油气化产的合成气,合成气中除了CO外,剩余部分气体可为含氢、二氧化碳或甲烷、乙烷的混合物,气体制造成本大大降低;在进行反应的过程中,用含CO的气体,并采用价格低廉的铁基催化剂或废剂作用下,实现裂解反应、羰基化反应、变换反应、加氢反应等联合工艺,容易提供充足的自由基团,避免生物质的碳化结焦,生物质转换率及液体收率高,反应温度和压力得到降低;该液化工艺产生的油品也可以用于前续工艺来配制含水浆液。
具体实施方式
下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供了一种生物质和煤的转化工艺,包括如下步骤:
催化剂:
催化剂为以氧化铁为活性组分的脱硫剂的废剂,其中,所述以氧化铁为活性组分的脱硫剂中,碳酸氢钙为10g,碱式碳酸铜12g,γ-Fe2O3 18g,MnO2为8g,NiO为5g;
上述以氧化铁为活性组分的脱硫剂的脱硫过程,概述如下:
1)收集中低温煤焦油经固定床加氢催化后产生的尾气;
2)将本实施例的脱硫剂制成直径为1mm、长度为15mm柱状催化剂颗粒,并填充于脱硫塔内,形成脱硫层;
3)将上述尾气以2000h-1的空速通过脱硫层,并与脱硫层内的脱硫剂于50℃下发生脱硫反应,脱除尾气中硫化氢,待反应结束,取出反应后的脱硫剂的废剂,冷却至室温,即为本申请中的以氧化铁为活性组分的脱硫剂的废剂;
加入硫磺:检测本实施例中以氧化铁为活性组分的脱硫剂的废剂中铁元素与硫元素的摩尔比,若铁元素与硫元素的摩尔比未达到1:1,则向上述催化剂中掺入固体硫磺粉末至其中铁元素与硫元素的摩尔比为1:1,从而保证反应体系中铁元素与硫元素的摩尔比为1:1;
若铁元素与硫元素的摩尔比大于1:1,可通过溶剂萃取或者加热熔硫等常规方式,脱除多余的硫;
含水浆液的配制:
(1)收集玉米秸秆,其含水率为5-20wt%,然后采用超微粉碎机粉碎至粒径为0.2μm-5cm;
(2)将步骤(1)粉碎后的秸秆采用压条机进行压缩成型,压缩压力为2.5MPa,压缩温度为45℃,压缩至真密度为1.0kg/m3
(3)将步骤(2)压缩成型后的秸秆采用气流粉碎机再次粉碎处理,粉碎至粒径为0.1-500μm,得秸秆粉末;
(4)收集烟煤,并粉碎至粒径为0.1-500μm,得到煤粉;
(5)先将95kg秸秆粉末和5kg的煤粉混合,然后再与80kg的蒽油在1KPa的负压下混合;
(6)将步骤(5)所得混合物与8kg的水混合,采用胶体磨进行研磨制浆,研磨制浆的时间为15分钟,然后与1kg上述催化剂混合均匀,所投加的催化剂的平均粒径为10μm,得到水含量为10wt%的含水浆液。
转化反应:
将CO与H2的混合气(CO占比60%和H2占比为40%)中部分加压至22MPa、加温至350℃后,通入输送所述含水浆液的管道中,其余部分加压至22MPa、加温至500℃后,由浆态床反应器入口注入浆态床反应器内,并与进入其中的所述含水浆液发生裂解、羰基化、变换和加氢反应,控制转化反应的反应压力为22MPa、反应温度为450℃,反应时间为60min,所述CO与H2的混合气与所述含水浆液的体积比为3000:1,制得油品。
实施例2
本实施例提供了一种生物质和煤的转化工艺,包括如下步骤:
催化剂:
催化剂为无定形FeOOH;加入硫磺:向上述催化剂中掺入固体硫磺粉末至其中铁元素与硫元素的摩尔比为1:2,从而保证反应体系中铁元素与硫元素的摩尔比为1:2;
含水浆液的配制:
(1)收集玉米秸秆,其含水率为5-20wt%,然后采用超微粉碎机粉碎至粒径为0.2μm-5cm;
(2)将步骤(1)粉碎后的秸秆采用压条机进行压缩成型,压缩压力为2.5MPa,压缩温度为45℃,压缩至真密度为1.0kg/m3
(3)将步骤(2)压缩成型后的秸秆采用气流粉碎机再次粉碎处理,粉碎至粒径为0.1-500μm,得秸秆粉末;
(4)收集瘦煤,并粉碎至粒径为0.1-500μm,得到煤粉;
(5)先将50kg秸秆粉末和50kg的煤粉混合,然后再与30kg的废润滑油在70KPa的负压下混合;
(6)将步骤(5)所得混合物与8kg的水混合,然后再与50kg的废润滑油混合,采用胶体磨进行研磨制浆,研磨制浆的时间为15分钟,然后与6kg上述催化剂混合均匀,所投加的催化剂的平均粒径为10μm,得到水含量为4wt%的含水浆液。
转化反应:
将CO与H2的混合气(CO占比60%和H2占比为40%)中部分加压至19MPa、加温至400℃后,通入输送所述含水浆液的管道中,其余部分加压至19MPa、加温至520℃后,由悬浮床反应入口注入悬浮床反应器内,并与进入其中的所述含水浆液发生裂解、羰基化、变换和加氢反应,控制转化反应的反应压力为18MPa、反应温度为430℃,反应时间为30min,所述CO与H2的混合气与所述含水浆液的体积比为2000:1,制得油品。
实施例3
本实施例提供了一种生物质和煤的转化工艺,包括如下步骤:
催化剂:
催化剂为以羟基氧化铁为活性组分的脱硫剂的废剂的再生物,其中,以羟基氧化铁为活性组分的脱硫剂的总质量计,α-FeOOH为30g,无定形羟基氧化铁为20g,氧化钾8g,粘结剂高岭土10g;
上述以羟基氧化铁为活性组分的脱硫剂用于工业中中低温煤焦油加氢提质后产生的尾气的脱硫过程如下:
1)收集中低温煤焦油经固定床加氢催化后产生的尾气;
2)将本实施例的脱硫剂制成直径为1mm、长度为15mm柱状催化剂颗粒,并填充于脱硫塔内,形成脱硫层;
3)将上述尾气以2000h-1的空速通过脱硫层,并与脱硫层内的脱硫剂于50℃下发生脱硫反应,脱除尾气中硫化氢,待反应结束,取出反应后的脱硫剂的废剂,冷却至室温,即为本申请中的活性组分的脱硫剂的废剂;
上述废剂的再生方法,包括如下步骤:
1)将上述废剂与氢氧化钠的水溶液在浆液箱中搅拌配制成浆液,维持浆液的pH值为8.0,所述浆液的固含量为4wt%;
2)向上述浆液中通入空气,并于90℃、0.1MPa下进行氧化反应,以氧化再生;
3)再向氧化后的所述浆液中通入硫化氢,并于10℃、5MPa下进行硫化反应;
4)向硫化后的所述浆液中通入空气,并于90℃、0.1MPa下进行氧化反应,以氧化再生;
5)重复步骤3)和4)一次,使所述氧化反应后的浆液中铁元素与硫元素的摩尔比为1:2;
6)对所述氧化反应后的浆液进行固液分离,得到上述废剂的再生物;
含水浆液的配制:
(1)收集红藻,其含水率为70-90wt%,风干至其含水率低于20wt%,粉碎至粒径为0.2μm-5cm;
(2)将步骤(1)粉碎后的红藻采用压片机进行压缩成型,压缩压力为3MPa,压缩温度为40℃,压缩至真密度为0.95kg/m3
(3)将步骤(2)压缩成型后的红藻采用气流粉碎机再次粉碎处理,粉碎至粒径为0.1-500μm,将56kg红藻粉末与1kg催化剂混合,得红藻混合粉末;
(4)收集长焰煤,并粉碎至粒径为0.1-500μm,得到煤粉;
(5)先将红藻混合粉末和4kg的煤粉混合,然后再与10kg的废机油在50KPa的负压下混合;
(6)将步骤(5)所得混合物与5kg的水混合,然后与40kg废机油混合,采用胶体磨进行研磨制浆,研磨制浆的时间为12分钟,得到水含量为15wt%的含水浆液。
加入硫磺:向上述废剂的再生物中掺入固体硫磺粉末至其中铁元素与硫元素的摩尔比为1:2.5,从而保证反应体系中铁元素与硫元素的摩尔比为1:2.5;
转化反应:
将CO与H2的混合气(CO占比60%和H2占比为40%)中部分加压至17MPa、加温至250℃后,通入输送所述含水浆液的管道中,其余部分加压至17MPa、加温至550℃后,由沸腾床反应器入口注入沸腾床反应器内,并与进入其中的所述含水浆液发生裂解、羰基化、变换和加氢反应,控制转化反应的反应压力为16MPa、反应温度为420℃,反应时间为40min,所述CO与H2的混合气与所述含水浆液的体积比为1000:1,制得油品。
实施例4
本实施例提供了一种生物质和煤的转化工艺,包括如下步骤:
催化剂:
催化剂为以氧化铁为活性组分的脱硫剂的废剂的再生物,其中,所述以氧化铁为活性组分的脱硫剂中,立方晶系的四氧化三铁12g、无定形Fe2O3 24g、无定形Fe2O3.H2O 39g和NiO为5g;
上述脱硫剂脱除废气中H2S的基体过程,包括如下步骤:将H2S含量为5500mg/cm3的废气以3000h-1的空速通入脱硫段,于30℃下进行脱硫反应,在所述脱硫段出口气中H2S的含量≤0.01ppm时,收集所述脱硫段内的废弃物;
上述以氧化铁为活性组分的脱硫剂的废剂的再生方法,包括如下步骤:
上述废剂的再生方法,包括如下步骤:
1)将上述废剂用水洗涤后,在湿式球磨机中带水研磨成200目的颗粒得到废剂粉;
2)将所述废剂粉配成固体质量百分含量为7%的水悬浮液,通入压缩空气,进行反应;
3)对反应后的水悬浮液进行过滤,将所述固体物料置于浮选槽中,加入水,然后通入空气,容器下部的沉淀物烘干后即为上述废剂的再生物;
加入硫磺:向上述再生物中掺入固体硫磺粉末至其中铁元素与硫元素的摩尔比为1:0.9,从而保证反应体系中铁元素与硫元素的摩尔比为1:2;
含水浆液的配制:
(1)收集玉米秸秆,其含水率为5-20wt%,然后采用超微粉碎机粉碎至粒径为0.2μm-5cm;
(2)将步骤(1)粉碎后的秸秆采用压条机进行压缩成型,压缩压力为2.5MPa,压缩温度为45℃,压缩至真密度为1.0kg/m3
(3)将步骤(2)压缩成型后的秸秆采用气流粉碎机再次粉碎处理,粉碎至粒径为0.1-500μm,得秸秆粉末;
(4)收集烟煤,并粉碎至粒径为0.1-500μm,得到煤粉;
(5)先将5kg催化剂和10kg的煤粉混合,然后与80kg的蒽油混合,最后与90kg秸秆粉末在1KPa的负压下混合;
(6)将步骤(5)所得混合物与8kg的水混合,采用胶体磨进行研磨制浆,研磨制浆的时间为15分钟,得水含量为8wt%的含水浆液。
转化反应:
将合成气(其中CO的体积占比为20%)加压至18.2MPa、加温至450℃后,由鼓泡床反应器侧壁和底部上的4个注入口注入鼓泡床反应器内,并与进入其中的所述浆液发生裂解、羰基化、变换和加氢反应,控制转化反应的反应压力为18MPa、反应温度为380℃,反应时间为100min,所述合成气与所述含水浆液的体积比为950:1,制得油品。
实施例5
本实施例提供了一种生物质和煤的转化工艺,包括如下步骤:
催化剂:
催化剂为以FeOOH为活性组分的脱硫剂的废剂,其中,所述以FeOOH为活性组分的脱硫剂中,无定形羟基氧化铁70g、Co2O3为25g和NiO为5g;
上述以FeOOH为活性组分的脱硫剂脱除废气中H2S的基本过程,包括如下步骤:将H2S含量为5500mg/cm3的废气以3000h-1的空速通入脱硫段,于30℃下进行脱硫反应,在所述脱硫段出口气中H2S的含量≤0.01ppm时,收集所述脱硫段内的废弃物,即为本实施例中的以FeOOH为活性组分的脱硫剂的废剂;
加入硫磺:向上述废剂中掺入固体硫磺粉末至其中铁元素与硫元素的摩尔比为1:3,从而保证反应体系中铁元素与硫元素的摩尔比为1:3;
含水浆液的配制:
(1)收集玉米秸秆,其含水率为5-20wt%,然后采用超微粉碎机粉碎至粒径为0.2μm-5cm;
(2)将步骤(1)粉碎后的秸秆采用压条机进行压缩成型,压缩压力为2.5MPa,压缩温度为45℃,压缩至真密度为1.0kg/m3
(3)将步骤(2)压缩成型后的秸秆采用气流粉碎机再次粉碎处理,粉碎至粒径为0.1-500μm,得秸秆粉末;
(4)收集烟煤,并粉碎至粒径为0.1-500μm,得到煤粉;
(5)先将5kg催化剂和20kg的煤粉混合,然后与80kg的蒽油混合,最后与80kg秸秆粉末在1KPa的负压下混合;
(6)将步骤(5)所得混合物与8kg的水混合,采用胶体磨进行研磨制浆,研磨制浆的时间为15分钟,得水含量为13wt%的含水浆液。
液化反应:
将CO与H2的混合气(其中混合气中CO的体积占比为50%)加压至17.5MPa、加温至380℃后,由浆态床反应器底部和侧壁上的5个注入口注入浆态床反应器内,并与进入其中的所述含水浆液发生裂解、羰基化、变换和加氢反应,控制反应压力为17MPa、反应温度为420℃,反应时间为50min,所述CO与H2的混合气与所述含水浆液的体积比为1500:1,制得油品。
实施例6
本实施例提供了一种生物质液化工艺,包括如下步骤:
催化剂:
催化剂为以FeOOH为活性组分的脱硫剂的废剂,其中,所述以FeOOH为活性组分的脱硫剂中,可溶性铁盐Fe(NO3)3·9H2O为6g,铁盐络合剂三乙醇胺9g,无定形羟基氧化铁15g;
上述以FeOOH为活性组分的脱硫剂用于脱除废气中H2S的过程如下:将H2S含量为5500mg/cm3的废气以3000h-1的空速通入脱硫段,于30℃下进行脱硫反应,在所述脱硫段出口气中H2S的含量≤0.01ppm时,收集所述脱硫段内的废弃物,即为本实施例中的以FeOOH为活性组分的脱硫剂的废剂;
加入硫磺:检测本实施例中以FeOOH为活性组分的脱硫剂的废剂中铁元素与硫元素的摩尔比,若铁元素与硫元素的摩尔比未达到1:2,则向上述催化剂中掺入固体硫磺粉末至其中铁元素与硫元素的摩尔比为1:2,从而保证反应体系中铁元素与硫元素的摩尔比为1:2;
若铁元素与硫元素的摩尔比大于1:2,可通过溶剂萃取或者加热熔硫等常规方式,脱除多余的硫;
含水浆液的配制:
(1)收集玉米秸秆,其含水率为5-20wt%,然后采用超微粉碎机粉碎至粒径为0.2μm-5cm;
(2)将步骤(1)粉碎后的秸秆采用压条机进行压缩成型,压缩压力为2.5MPa,压缩温度为45℃,压缩至真密度为1.0kg/m3
(3)将步骤(2)压缩成型后的秸秆采用气流粉碎机再次粉碎处理,粉碎至粒径为0.1-500μm,得秸秆粉末;
(4)收集烟煤,并粉碎至粒径为0.1-500μm,得到煤粉;
(5)先将5kg催化剂和30kg的煤粉混合,然后与80kg的地沟油混合,最后与70kg秸秆粉末在1KPa的负压下混合;
(6)将步骤(5)所得混合物与8kg的水混合,采用胶体磨进行研磨制浆,研磨制浆的时间为15分钟,得水含量为18wt%的含水浆液。
转化反应:
将CO与H2的混合气(CO占比80%和H2占比为20%)中部分加压至19.5MPa、加温至300℃后,通入输送所述含水浆液的管道中,其余部分加压至19.3MPa、加温至480℃后,由浆态床反应器底部和侧壁上的3个注入口注入浆态床反应器内,并与进入其中的所述含水浆液发生裂解、羰基化、变换和加氢反应,控制反应压力为19MPa、反应温度为390℃,反应时间为100min,所述CO与H2的混合气与所述含水浆液的体积比为800:1,制得油品。
实施例7
本实施例提供了一种生物质液化工艺,包括如下步骤:
催化剂:
催化剂为含有FeOOH的脱硫剂废剂的再生物,其中,以含有FeOOH的脱硫剂的总质量计,所述含有FeOOH的脱硫剂中γ-FeOOH的含量为45%,α-FeOOH的含量为35%,载体分子筛的含量为15%,粘结剂田菁粉的含量为5%;
上述催化剂脱除废气中H2S的基本过程,包括如下步骤:将H2S含量为5500mg/cm3的废气以3000h-1的空速通入脱硫段,于30℃下进行脱硫反应,在所述脱硫段出口气中H2S的含量≤0.01ppm时,收集所述脱硫段内的废弃物即为脱硫剂废剂;
上述脱硫剂废剂的再生方法为:将所述脱硫剂废剂用水洗涤后,在湿式球磨机中带水研磨成80目的颗粒得到废剂粉;将所述废剂粉配成固体质量百分含量为8%的水悬浮液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成H2S时,则废剂中的铁硫化物完全转化为羟基氧化铁和单质硫,形成含所述羟基氧化铁和单质硫的浆液,过滤所述浆液得到固体物料,用CC14萃取过滤后得到的固体物料,共萃取三次合并萃取液,用蒸馏的方法回收溶剂同时得到结晶的单质硫,而萃取液分出后剩余的固体与粘结剂田菁粉混合,制得上述脱硫剂废剂的再生物,其中粘结剂田菁粉的用量为所述固体质量的5%。
加入二硫化碳:向上述催化剂中加入二硫化碳至其中铁元素与硫元素的摩尔比为1:2,从而保证反应体系中铁元素与硫元素的摩尔比为1:2;
含水浆液的配制:
(1)收集花生油渣,其含水率为5-15wt%,然后采用超微粉碎机粉碎至粒径为0.2μm-5cm;
(2)将步骤(1)粉碎后的花生油渣采用压条机进行压缩成型,压缩压力为2.5MPa,压缩温度为50℃,压缩至真密度为1.2kg/m3
(3)将步骤(2)压缩成型后的花生油渣采用气流粉碎机再次粉碎处理,粉碎至粒径为0.1-500μm,得花生油渣粉末;
(4)收集焦煤,并粉碎至粒径为0.1-500μm,得到煤粉;
(5)先将30kg花生油渣粉末和70kg的煤粉混合,然后再与100kg的蒽油在30KPa的负压下混合;
(6)将步骤(5)所得混合物与8kg的水混合,采用胶体磨进行研磨制浆,研磨制浆的时间为16分钟,然后与16kg上述催化剂混合均匀,得到含水浆液,所投加的催化剂的平均粒径为5mm。
转化反应:
将CO与H2的混合气(CO占比60%和H2占比为40%)加压20.4MPa、加温至500℃后,由浆态床反应器侧壁上的3个注入口注入浆态床反应器内,并与进入其中的所述浆液发生裂解、羰基化、变换和加氢反应,控制反应压力为20MPa、反应温度为430℃,反应时间为110min,所述CO与H2的混合气与所述浆液的体积比为650:1,制得油品。
实施例8
本实施例提供了一种生物质液化工艺,包括如下步骤:
催化剂:
催化剂为含有Fe21.333O32的脱硫剂的废剂的再生物,其中,所述含有Fe21.333O32的脱硫剂中,磁性氧化铁红Fe21.333O32为55g,氧化铜12g,载体三氧化二铁21g;
上述催化剂对含硫化氢的煤热解气的脱硫过程如下:
(1)经压缩后的煤热解气降温至30~35℃,与空气泵来的空气混合进入填充上述主要以氧化铁为活性成分的脱硫剂的脱硫塔中,采用下进上出的流程,以避免有液态水进入脱硫剂床层脱除硫化氢;
(2)上述脱硫剂经多次使用后成为废剂,从脱硫剂床层取出,即为本申请中的含有Fe21.333O32的脱硫剂的废剂;
上述含有Fe21.333O32的脱硫剂的废剂的再生方法,包括如下步骤:
1)将上述废剂分散于水中,形成浆液;
2)将上述浆液在常压下加热至60℃,然后采用蠕动泵向浆液中加入双氧水,流量控制为500mL/min,磁力搅拌以促进反应进行,反应时间为10min;
3)反应完成后,过滤反应液,将得到的沉淀用水洗涤2次,自然凉干,得到上述废剂的再生物;
含水浆液的配制:
(1)收集红藻,其含水率为70-90wt%,风干至其含水率低于20wt%,粉碎至粒径为0.2μm-5cm;
(2)将步骤(1)粉碎后的红藻采用压片机进行压缩成型,压缩压力为3MPa,压缩温度为40℃,压缩至真密度为0.95kg/m3
(3)将步骤(2)压缩成型后的90kg红藻与3kg催化剂混合,采用气流粉碎机再次粉碎处理,粉碎至粒径为0.1-500μm,得红藻混合粉末;
(4)收集长焰煤,并粉碎至粒径为0.1-500μm,得到煤粉;
(5)先将红藻混合粉末和10kg的煤粉混合,然后再与40kg的废机油在50KPa的负压下混合;
(6)将步骤(5)所得混合物与5kg的水混合,然后与60kg废机油混合,采用胶体磨进行研磨制浆,研磨制浆的时间为12分钟,得到含水浆液,所投加的催化剂的平均粒径为300μm。
转化反应:
将纯CO气体中部分加压至18MPa、加温至250℃后,通入所述含水浆液中,其余部分加压至18MPa、加温至500℃后,由浆态床反应器底部和侧壁上的4个注入口注入浆态床反应器内,并与进入其中的所述含水浆液裂解、羰基化、变换和加氢反应,控制反应压力为17MPa、反应温度为400℃,反应时间为40min,所述纯CO气体与所述含水浆液的体积比为950:1,制得油品。
对比例1
本对比例提供了一种生物质和煤的转化工艺,其转化工艺与实施例2相同,不同之处在于:本对比例中玉米秸秆和煤进行烘干处理,其含水率为80ppm;反应体系中铁元素与硫元素的摩尔比为1:0.1。
试验例
对采用本发明的实施例1-8的方法与对比例1制备的产物的分布进行对比,产物的测试方法如下:
固体有机质转化率%=(原料中固体有机质的总质量-反应产物中残存的固体有机质质量)/原料中固体有机质的总质量,所述固体有机质转化率中的“固体有机质”均指无水、无灰基(以下同);
固体有机质转化油产率%=固体有机质转化为产物中常温常压下是液相油品的质量/原料中固体有机质总进料质量;
反应生成水率%=(反应产物的水质量-反应起始加入或原料带入的水的总质量)/原料总进料质量。当此值<0时,记为“无”;
相应的测试结果如表1所示:
表1固体有机质转化效果对比
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (23)

1.一种生物质和煤的转化工艺,其特征在于,包括如下步骤:
1)配制含有催化剂、煤和生物质的含水浆液,包括:
生物质预处理:收集生物质,粉碎至粒径为0.2μm-5cm;
生物质压缩:将粉碎后的生物质进行压缩成型;
生物质二次粉碎:将压缩成型后的生物质再次粉碎处理,粉碎至粒径为0.1-500μm,得生物质粉末;
煤粉碎至粒径为0.1-500μm,得煤粉;
将生物质粉末、煤粉与溶剂油混合,制浆,得到含水浆液;
其中,所述催化剂在上述步骤的中的任一步骤中加入,所述催化剂为铁氧化合物、铁氧化合物的脱硫废剂或铁氧化合物的脱硫废剂的再生物中的至少一种;
2)将所述含水浆液与纯CO或含CO的气体混合进行转化反应,反应体系中铁元素与硫元素的摩尔比为1:(0.5~5),制得油品。
2.根据权利要求1所述的生物质和煤的转化工艺,其特征在于,向所述催化剂中加入含硫化合物至反应体系中铁元素与硫元素的摩尔比为1:(0.5~5),优选为1:(0.5-2),更优选为1:(1-2)。
3.根据权利要求2所述的生物质和煤的转化工艺,其特征在于,所述含硫化合物为硫磺、硫化氢、二硫化碳或其他常用含硫化合物中的至少一种。
4.根据权利要求1-3中任一项所述的生物质和煤的转化工艺,其特征在于,所述含CO的气体中CO的体积含量不小于15%,优选为不小于25%,最优选为不小于50%。
5.根据权利要求4所述的生物质和煤的转化工艺,其特征在于,所述含CO的气体为CO与H2的混合气或者合成气。
6.根据权利要求1-5中任一项所述的生物质和煤的转化工艺,其特征在于,所述铁氧化合物的脱硫废剂为以氧化铁为活性组分的脱硫剂的废剂、以Fe21.333O32为活性组分的脱硫剂的废剂、以FeOOH为活性组分的脱硫剂的废剂中的至少一种;或,
所述铁氧化合物的脱硫废剂的再生物为以氧化铁为活性组分的脱硫剂的废剂的再生物、以Fe21.333O32为活性组分的脱硫剂的废剂的再生物、以FeOOH为活性组分的脱硫剂的废剂的再生物中的至少一种。
7.根据权利要求6所述的生物质和煤的转化工艺,其特征在于,所述氧化铁为三氧化二铁和/或四氧化三铁。
8.根据权利要求7所述的生物质和煤的转化工艺,其特征在于,所述三氧化二铁为α-Fe2O3、α-Fe2O3.H2O、γ-Fe2O3、γ-Fe2O3.H2O、无定形Fe2O3、无定形Fe2O3.H2O中的至少一种;
所述四氧化三铁为立方晶系的四氧化三铁;
所述FeOOH为α-FeOOH、β-FeOOH、γ-FeOOH、δ-FeOOH、θ-FeOOH和无定形FeOOH中的至少一种。
9.根据权利要求1-8中任一项所述的生物质和煤的转化工艺,其特征在于,所述铁氧化合物的脱硫废剂的再生物是通过浆液法对铁氧化合物的脱硫废剂进行氧化、硫化和氧化后得到的再生物。
10.根据权利要求9所述的生物质和煤的转化工艺,其特征在于,所述铁氧化合物的脱硫废剂的再生方法,包括如下步骤:
将所述铁氧化合物的脱硫废剂与水或碱溶液混合,配制成浆液;
向所述浆液中添加氧化剂,发生一次氧化反应;
向所述氧化反应后的浆液中添加硫化剂,发生硫化反应;
向所述硫化反应后的浆液中添加氧化剂,发生二次氧化反应;
循环进行所述硫化反应和所述二次氧化反应;
对所述二次氧化反应后的浆液进行固液分离,得到所述铁氧化合物的脱硫废剂的再生物。
11.根据权利要求1-10中任一项所述的生物质和煤的转化工艺,其特征在于,所述转化反应的反应压力为5-22MPa,反应温度为200-500℃。
12.根据权利要求11所述的生物质和煤的转化工艺,其特征在于,所述转化反应的反应时间不小于15min,优选为15-120min。
13.根据权利要求1-12中任一项所述的生物质和煤的转化工艺,其特征在于,所述催化剂的平均粒径为0.1μm-5mm,优选为5μm-100μm,最优选为5-50μm。
14.根据权利要求1-13中任一项所述的生物质和煤的转化工艺,其特征在于,将所述含水浆液与纯CO或含CO的气体混合进行转化反应,包括如下步骤:
将纯CO或含CO的气体加压至5-22MPa、加温至150-600℃后,通入反应体系中,并与进入反应体系中的所述含水浆液发生转化反应。
15.根据权利要求1-13中任一项所述的生物质和煤的转化工艺,其特征在于,将所述含水浆液与纯CO或含CO的气体混合进行转化反应,包括如下步骤:
将部分纯CO或含CO的气体加压至5-22MPa、加温至150-600℃后,通入所述含水浆液中,并随所述含水浆液进入反应体系中发生转化反应;
其余部分加压至5-22MPa、加温至300-600℃后,通入反应体系中,并与进入其中的所述生物质浆料发生转化反应。
16.根据权利要求1-15中任一项所述的生物质和煤的转化工艺,其特征在于,所述纯CO或含CO的气体与所述含水浆液的体积比为(50-10000):1,优选为(100-5000):1。
17.根据权利要求1-16中任一项所述的生物质和煤的转化工艺,其特征在于,所述反应体系是在反应器中进行,所述反应器为悬浮床反应器、浆态床反应器、鼓泡床反应器、沸腾床反应器、单釜反应器中的任一种;或者,
所述反应器为悬浮床反应器、浆态床反应器、鼓泡床反应器、沸腾床反应器、单釜反应器中的任一种或多种中的一个或多个进行串联或并联。
18.根据权利要求1-17中任一项所述的生物质和煤的转化工艺,其特征在于,所述压缩成型后物料的真密度在0.75-2.0kg/m3之间。
19.根据权利要求1-18中任一项所述的生物质和煤的转化工艺,其特征在于,所述压缩步骤中,压缩压力为0.5-10MPa,压缩温度为30-70℃。
20.根据权利要求1-19中任一项所述的生物质和煤的转化工艺,其特征在于,以生物质粉末与煤粉的总质量计,生物质粉末的质量占5-99wt%,;和/或,
所述催化剂的用量为含水浆液的0.1-8%;和/或,
所述含水浆液中生物质粉末和煤粉的含量为10~60wt%,水含量为1-18wt%。
21.根据权利要求1-20中任一项所述的生物质和煤的转化工艺,其特征在于,所述制浆为研磨制浆,所述研磨制浆为搅拌制浆,分散制浆,乳化制浆,剪切制浆,均质制浆或胶体磨制浆。
22.根据权利要求21所述的生物质和煤的转化工艺,其特征在于,所述研磨制浆的时间为8-60分钟。
23.根据权利要求1-22中任一项所述的生物质和煤的转化工艺,其特征在于,所述生物质为农作物秸秆、木屑、油渣、树叶、餐厨垃圾、粪便、动物尸体或藻类中的一种或多种;
所述溶剂油为动植物油、石油中的馏分油、煤焦油或自身加工产生的油品。
CN201811457149.7A 2018-04-28 2018-11-30 一种生物质和煤的转化工艺 Active CN109536195B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201811457149.7A CN109536195B (zh) 2018-11-30 2018-11-30 一种生物质和煤的转化工艺
EP18916677.0A EP3613830B1 (en) 2018-04-28 2018-12-21 Conversion process for organic matter
SG11202000176XA SG11202000176XA (en) 2018-04-28 2018-12-21 Conversion process for organic material
PCT/CN2018/122669 WO2019205682A1 (zh) 2018-04-28 2018-12-21 一种有机质转化工艺
FIEP18916677.0T FI3613830T3 (fi) 2018-04-28 2018-12-21 Orgaanisen aineksen konversioprosessi
MYPI2019007762A MY193483A (en) 2018-04-28 2018-12-21 Conversion process for organic material
US16/427,218 US11198820B2 (en) 2018-04-28 2019-05-30 Conversion process for an organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811457149.7A CN109536195B (zh) 2018-11-30 2018-11-30 一种生物质和煤的转化工艺

Publications (2)

Publication Number Publication Date
CN109536195A true CN109536195A (zh) 2019-03-29
CN109536195B CN109536195B (zh) 2020-12-08

Family

ID=65852553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811457149.7A Active CN109536195B (zh) 2018-04-28 2018-11-30 一种生物质和煤的转化工艺

Country Status (1)

Country Link
CN (1) CN109536195B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110240920A (zh) * 2019-05-08 2019-09-17 北京三聚环保新材料股份有限公司 一种生物质的配浆方法
CN111349460A (zh) * 2020-03-17 2020-06-30 中国神华煤制油化工有限公司 低凝柴油及其制备方法和装置
CN111924821A (zh) * 2020-06-22 2020-11-13 中国科学院广州能源研究所 一种煤/生物质共炼中回收可资源化物质并生产清洁活化炭的方法
CN112254146A (zh) * 2020-10-15 2021-01-22 深圳市捷晶能源科技有限公司 用于高含水率渣态固废的多级破碎智能化处理装置及方法
CN112403480A (zh) * 2019-08-23 2021-02-26 中国石油化工股份有限公司 耐硫变换催化剂及其制备方法
CN112403484A (zh) * 2019-08-23 2021-02-26 中国石油化工股份有限公司 耐硫变换催化剂保护剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265967A (zh) * 2013-05-03 2013-08-28 浙江大学 一种生物质高效水热液化制备生物油的方法
CN108165290A (zh) * 2016-12-07 2018-06-15 西宁晶海科教化玻仪器有限公司 生物质水热液化生产燃料油的方法
CN108219819A (zh) * 2017-12-26 2018-06-29 北京三聚环保新材料股份有限公司 一种煤与生物质的一锅法液化工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265967A (zh) * 2013-05-03 2013-08-28 浙江大学 一种生物质高效水热液化制备生物油的方法
CN108165290A (zh) * 2016-12-07 2018-06-15 西宁晶海科教化玻仪器有限公司 生物质水热液化生产燃料油的方法
CN108219819A (zh) * 2017-12-26 2018-06-29 北京三聚环保新材料股份有限公司 一种煤与生物质的一锅法液化工艺

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110240920A (zh) * 2019-05-08 2019-09-17 北京三聚环保新材料股份有限公司 一种生物质的配浆方法
CN112403480A (zh) * 2019-08-23 2021-02-26 中国石油化工股份有限公司 耐硫变换催化剂及其制备方法
CN112403484A (zh) * 2019-08-23 2021-02-26 中国石油化工股份有限公司 耐硫变换催化剂保护剂及其制备方法
CN112403484B (zh) * 2019-08-23 2023-03-28 中国石油化工股份有限公司 耐硫变换催化剂保护剂及其制备方法
CN111349460A (zh) * 2020-03-17 2020-06-30 中国神华煤制油化工有限公司 低凝柴油及其制备方法和装置
CN111924821A (zh) * 2020-06-22 2020-11-13 中国科学院广州能源研究所 一种煤/生物质共炼中回收可资源化物质并生产清洁活化炭的方法
CN112254146A (zh) * 2020-10-15 2021-01-22 深圳市捷晶能源科技有限公司 用于高含水率渣态固废的多级破碎智能化处理装置及方法
CN112254146B (zh) * 2020-10-15 2021-07-27 深圳市捷晶能源科技有限公司 用于高含水率渣态固废的多级破碎智能化处理装置及方法

Also Published As

Publication number Publication date
CN109536195B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
CN109536195A (zh) 一种生物质和煤的转化工艺
CN102002381A (zh) 一种藻类生物质直接催化液化法制备生物油的方法
Zhuang et al. Influences of microstructural alternations and inorganic catalysis on the thermochemical conversion of biowaste-derived hydrochar
CN110540857B (zh) 生物质制取化工原料和液体燃料的方法
CN108285808A (zh) 一种煤与生物质的多级液化工艺
CN108998357A (zh) 一种餐厨垃圾与秸秆合成乙二醇联产lng的系统和方法
CN108929737A (zh) 生物质固体清洁燃料及其制备方法和应用
CN110408420A (zh) 一种有机质转化工艺
CN108192652A (zh) 一种煤与生物质的共同液化工艺
CN108219819A (zh) 一种煤与生物质的一锅法液化工艺
CN109536197A (zh) 一种生物质液化工艺
CN109355098A (zh) 一种劣质油品多级转化工艺
CN109536193A (zh) 一种生物质两级转化精制工艺
US11198820B2 (en) Conversion process for an organic material
CN110404538A (zh) 废剂的新用途
CN108277037A (zh) 一种煤与生物质液化生产轻质油的方法
CN108277038A (zh) 一种煤与生物质的共同水解加氢工艺
CN109456801A (zh) 生物质富氢高能燃气联产纳米二氧化硅复合材料的方法
CN109536196A (zh) 一种生物质两级转化工艺
CN110760329B (zh) 一种生物质二级转化产轻质油的工艺
CN110747001B (zh) 一种生物质二级转化工艺
CN109355085B (zh) 一种固体生物质转化工艺
CN108315041A (zh) 一种煤与生物质直接液化的方法
CN108203590B (zh) 一种煤与生物质直接液化的方法
CN109593562A (zh) 一种生物质燃气的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 100080 9th floor, Dahang Jiye building, No.1 building, 33 Renmin North Road, Haidian District, Beijing

Patentee after: Beijing Haixin Energy Technology Co.,Ltd.

Address before: 100044 Beijing Haidian District Xizhimen North Street a 43 Jinyun building A block 9.

Patentee before: BEIJING SANJU ENVIRONMENTAL PROTECTION & NEW MATERIALS Co.,Ltd.