CN109534407B - 一种棒状磁性四氧化三铁材料的制备方法及其应用 - Google Patents

一种棒状磁性四氧化三铁材料的制备方法及其应用 Download PDF

Info

Publication number
CN109534407B
CN109534407B CN201910008668.3A CN201910008668A CN109534407B CN 109534407 B CN109534407 B CN 109534407B CN 201910008668 A CN201910008668 A CN 201910008668A CN 109534407 B CN109534407 B CN 109534407B
Authority
CN
China
Prior art keywords
magnetic
rod
preparation
ferroferric oxide
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910008668.3A
Other languages
English (en)
Other versions
CN109534407A (zh
Inventor
冯欢欢
刘宇环
马星
郑婷婷
赵巍维
张嘉恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Harbin Institute of Technology
Original Assignee
Shenzhen Graduate School Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Harbin Institute of Technology filed Critical Shenzhen Graduate School Harbin Institute of Technology
Priority to CN201910008668.3A priority Critical patent/CN109534407B/zh
Publication of CN109534407A publication Critical patent/CN109534407A/zh
Priority to US16/734,970 priority patent/US11512007B2/en
Application granted granted Critical
Publication of CN109534407B publication Critical patent/CN109534407B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0063Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • H01F1/0081Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures in a non-magnetic matrix, e.g. Fe-nanowires in a nanoporous membrane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Compounds Of Iron (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及一种棒状磁性四氧化三铁材料的制备方法及其应用,制备时包括如下步骤:步骤1:磁性Fe3O4纳米粒子的制备;步骤2:磁性Fe3O4@SiO2纳米颗粒自组装成为棒状磁性材料。应用时将由权利要求1的制备方法制出的棒状磁性四氧化三铁材料用于微纳米马达,在外磁场作用下可实现旋转、偏移。本发明提供一种棒状磁性四氧化三铁材料的制备方法,该制备方法制备出来的棒状磁性四氧化三铁材料,具有可辨认的磁矩方向,磁性强,磁响应性好,而且工艺简单,成本低,适用于工业级别的大规模生产。

Description

一种棒状磁性四氧化三铁材料的制备方法及其应用
技术领域
本发明涉及磁性复合材料的制备领域,尤其涉及一种棒状磁性四氧化三铁材料的制备方法及其应用。
背景技术
市场上目前存在的磁性四氧化三铁的结构主要为颗粒球状结构,颗粒球状结构相对简单单一,且没有可辨认的磁矩方向,不能充分利用和实现在磁场作用下的精密操控。例如:现有的颗粒球状磁性材料只能实现由于磁力吸引导致的运动和富集等操作,没有实现更为精确的磁取向、旋转等执行性复杂操作。这一结果导致磁性材料的在应用端口的低端化和严重同质化,也大大限制了磁性材料在磁响应作用下的可操作性,导致磁控系统在各个领域都难以实现大规模、高端化及复杂化的广泛应用。
发明内容
针对现有技术中存在的缺陷或不足,本发明提供一种棒状磁性四氧化三铁材料的制备方法,该制备方法制备出来的棒状磁性四氧化三铁材料颗粒尺寸均匀,单分散性非常好,粒径可调,具有可辨认的磁矩方向,磁性强,磁响应性好,而且工艺简单,成本低,适用于工业级别的大规模生产。
为了实现上述目的,本发明采取的技术方案为提供一种棒状磁性四氧化三铁材料的制备方法,包括如下步骤:
步骤1:磁性Fe3O4纳米粒子的制备
(1)将0.675g的FeCl3·6H2O溶于35mL的乙二醇中,混合得到溶液A1;
(2)将1.925gCH3COONH4加入溶液A1中并搅拌30分钟,得到溶液A2;
(3)将溶液A2置入反应器中,加热至200℃,恒温加热反应12小时,冷却至室温,离心洗涤4-6次,在空气中室温内干燥,得到粒径为200nm-400nm的Fe3O4纳米粒子;
步骤2:棒状磁性Fe3O4@SiO2纳米颗粒材料的制备
(1)将4mg由步骤1得到的Fe3O4溶于由5mL去离子水和25mL异丙醇组成的混合液中,超声30min,得到混合溶液B1;
(2)向混合溶液B1中加入0.5mL的氨水和30μL的正硅酸乙酯引发反应,并置于滚式摇床上,在常温下反应6h,得到反应物B2;
(3)反应结束后,过滤得到滤物,用乙醇和去离子水各清洗两次,得到粒径为250nm-400nm的磁性Fe3O4@SiO2纳米颗粒;若磁性Fe3O4@SiO2纳米颗粒暂时不使用时,将其储存在30mL乙醇中备用;
(4)棒状结构的形成是由于磁性颗粒自组装形成的次稳定结构在SiO2层包覆的过程中被固化形成了永久固定的结构。
进一步的,所述FeCl3·6H2O的用量还可以是0.81g、0.945g、1.08g、1.215g或1.35g。
进一步的,所述Fe3O4纳米粒子的粒径为200nm-400nm。
本发明的另一个目的,在于利用棒状磁性四氧化三铁材料具有可辨认的磁矩方向、磁性强、磁响应性好等优点,用作微纳米马达探针,在磁场作用下能够实现偏转、改变方向甚至旋转等复杂的磁性操控。
本发明的有益效果是:
1、本发明的方法制备合成了棒状的一维磁性四氧化三铁材料,通过调控FeCl3、乙二醇、异丙醇等的用量,可有效可控合成具有可辨认的磁矩方向,磁性强,磁响应性好等诸多优点的棒状一维磁性材料,所制的棒状一维磁性材料其磁矩方向和棒状一维方向一致,长度可调,具有很大的应用前景和潜力。
2、在制备复合磁性结构材料时主要利用了磁性材料自组装的性质,在磁性材料自组装的模板上进行二氧化硅壳层生长来固定这一结构,本方法原料廉价易得、成本低、合成工艺简单高效、产品质量稳定且重复性好,易于实现大批量生产棒状一维磁性材料的制备,所获棒状一维磁性材料在微马达领域应用较多,应用面比较广。
3、在磁场作用下能够实现偏转、改变方向甚至旋转等复杂的磁性操控。通过磁性颗粒之间的自组装实现其一维方向的长度可调,可以实现不同长径比适应不同应用场景的需求,而且合成制备方法具有大规模工业化生产的潜力能实现工业级别的放大化生产。
附图说明
图1a、图1b、图1c、图1d、图1e、图1f分别是本发明制备出的6批粒径不同Fe3O4磁性材料结构示意图;
图2本发明制备出的Fe3O4@SiO2磁性材料过程的示意图;
图3a、图3b、图3c、图3d、图3e、图3f分别本发明的制备出的6批长度不同的Fe3O4@SiO2磁性材料结构示意图;
图4a为实施例1中磁性Fe3O4的SEM图;
图4b为实施例1中Fe3O4@SiO2的SEM图;
图4c为实施例1中Fe3O4@SiO2@Ag的SEM和SERS图;
图4e、图4f、图4g和图4h为实施例1中Fe3O4@SiO2@Ag的SEM及EDS图;
图5A-1是本发明的Fe3O4的粒径对磁性棒状马达长度的影响图;
图5A-2是与图5A-1所示的Fe3O4的粒径对磁性棒状马达转动时候的实时分时截图;
图5B是本发明的棒状一维磁性材料在磁场作用下改变取向偏转示意图;
图6A是本发明的棒状一维磁性材料在定速旋转磁场作用下的旋转曲线示意图;
图6B是本发明的棒状一维磁性材料在定速旋转磁场作用下的旋转柱状示意图。
具体实施方式
下面结合附图说明及具体实施方式对本发明进一步说明。
实施例1
一种棒状磁性四氧化三铁材料的制备方法,包括如下步骤:
1、磁性Fe3O4纳米粒子的制备
在本实施例中利用磁性四氧化三铁材料的制备磁性纳米四氧化三铁颗粒的制备采用水热法合成。
具体过程是:将0.675gFeCl3·6H2O溶于35mL乙二醇中,同时进行20kHz超声处理,混合得到溶液A1,再将将1.925gCH3COONH4加入混合得到溶液A1中并搅拌30分钟,得到溶液A2;将溶液A2装入反应器中并在200℃加热12小时以完全反应;却至室温,离心洗涤4-6次,在空气中室温干燥,得到粒径为250-400nm的Fe3O4纳米粒子。
2、棒状一维磁性四氧化三铁材料的制备
本实施例的棒状一维磁性四氧化三铁材料的制备是指磁性核壳纳米颗粒Fe3O4@SiO2的制备,采用溶胶凝胶法制成。
具体过程是:将4mg由步骤1(水热法)制备得到的Fe3O4溶于由5mL去离子水和25mL100%纯度的异丙醇组成的混合液中,超声30min,得到混合溶液B1;向混合溶液液B1中加入0.5mL的氨水和30μL的正硅酸乙酯引发反应,并置于滚式摇床上,在常温下反应6h,得到反应物B2;反应结束后,过滤得到滤物,用乙醇和去离子水各清洗两次,得到粒径为250nm-400nm的磁性Fe3O4@SiO2纳米颗粒;若磁性Fe3O4@SiO2纳米颗粒暂时不使用时,将其储存在30mL乙醇中备用。
3、棒状磁性Fe3O4@SiO2纳米复合结构材料的制备
在本实施例中主要利用了磁性材料自组装的性质,在磁性材料自组装的模板上进行二氧化硅壳层生长来固定得到棒状磁性Fe3O4@SiO2纳米复合结构。
通过棒状一维化实现了磁性材料磁矩可辨认性,大大提升了磁性材料的应用范围和磁相应方式,能实现旋转等复杂的精密磁控运动
实验验证:
1、不同粒径磁性颗粒的粒径表征和分散性验证:
采用实施例1中同样的方法,加入不同质量(0.675g,0.81g,0.945g,1.08g,1.215g,1.35g)的FeCl3制备6批粒径范围可在250nm-400nm范围变化的磁性Fe3O4纳米粒子。制备完成好,通过扫描电子显微镜(SEM)观察得到如图1a-图1f,从图1a-图1f的图形中可以清晰的看到,本发明的方法能够实现不同粒径大小的磁性颗粒的合成,而且通过本发明的方法制备出的磁性颗粒粒径分布很均匀,也表明改变FeCl3的量就可以调节制备得到的Fe3O4的粒径大小,而且在六个条件下制备出来的Fe3O4的粒径分布都很好,分散性也很好,没有出现颗粒粘连团聚等现象。
2、长度可调和磁矩可辨认性验证
进一步的,采用实施例1制备得到的棒状一维磁性四氧化三铁材料(采用不同的量分别制备6批),在利用磁性颗粒自组装后将其固定化,制备得到6批不同的棒状一维磁性材料。图3a-图3f为制备出的6批具有相当多数量的棒状结构(比例尺均为5μm),从图3a-图3f中可看出随着磁性颗粒粒径变小,棒状一维结构的含量逐渐降低,表明用本发明方法制备的磁性四氧化三铁材料长度可调,分散性好。棒状材料在磁场作用下随着磁场的方向旋转取向,表明本发明通过棒状一维化实现了磁性材料磁矩可辨认性,大大提升了磁性材料的应用范围和磁相应方式,可用于实现旋转等复杂的精密磁控运动。
进一步的,通过6组实验来统计棒状一维结构的百分含量随磁性颗粒粒径的变化规律,得到如图5A-1所示的Fe3O4的粒径对磁性棒状马达长度的影响图(图上的每一个粒径对应的柱状图都是每一个单独的实验后统计马达长度得到的实验数据)。图5A-2棒状马达转动时候的实时分时截图,和图5A-1的转动数据相匹配。从图5A-1可以清晰的看到随着磁性颗粒减小,当颗粒粒径为250nm时磁性材料的棒状一维结构含量较高,气人棒状结构长径比也较高,棒状结构较长;另外随着磁性颗粒粒径增加到400nm,棒状结构含量降低,棒状结构长径比降低,棒状结构越来越短,最后基本回到了球形的原始结构,由此可知本发明的方法制备得到200nm-400nm范围内粒径可调。
3、偏转、改变方向甚至旋转等复杂的磁性操控方面应用的验证
作为本发明的另一个改进在于将本发明的棒状磁性Fe3O4材料应用于微纳米马达,在外磁场作用下可实现旋转、偏移;具体是利用本发明制备出的棒状磁性Fe3O4材料具有可辨认的磁矩方向、磁性强、磁响应性好等优点,用作微纳米马达探针,在磁场作用下能够实现偏转、改变方向甚至旋转等复杂的磁性操控。具体通过以下两组实验进行验证:
(1)磁场作用下的偏转
实验条件:采用实施例1制备出的棒状磁性Fe3O4@SiO2纳米复合结构材料(也为棒状一维磁性材料)
实验过程:将实施例1中由磁性颗粒自组装制备成的棒状一维磁性材料放在实验台上,通过改变磁场的方向来偏转其方向,实现调整其取向的能力,通过显微镜观察拍照,得到如图5B所示棒状一维磁性材料在磁场作用下改变取向偏转(顺时针方向)图,即在磁场作用时间分别在0s、2s、4s、6s时分别偏转的角度。图5B中有两颗棒状一维磁性材料,在90高斯强度磁场的作用下,两颗棒状一维磁性材料均随着磁场方向而改变自己的取向方向,从显微镜下观察得到在0s、2s、4s、6s时用相位坐标表示时偏转的角度分别为6°、-18°、-78°、-116°,充分说明了我们的材料具有一维可见的磁矩方向。
(2)磁场作用下的旋转
我们进一步将棒状一维磁性材料置于定速旋转的磁场中,检验其定速旋转的性能。结果得到如图6A和6B所示,我们选择了三个转速进行测试分别为0、21rpm、41rpm,103rpm。我们使用视频软件记录其旋转速度并和时间做图,可以看到在40-200RPM转速范围内,我们的棒状一维磁性材料在90高斯强度的磁场作用下旋转性能良好,未出现失步现象。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (3)

1.一种棒状磁性四氧化三铁材料的制备方法,其特征在于:包括如下步骤:
步骤1:磁性Fe3O4纳米粒子的制备
(1)将0.675g的FeCl3·6H2O溶于35mL的乙二醇中,混合得到溶液A1;
(2)将1.925gCH3COONH4加入溶液A1中并搅拌30分钟,得到溶液A2;
(3)将溶液A2置入反应器中,加热至200℃,恒温加热反应12小时,冷却至室温,离心洗涤4-6次,在空气中室温内干燥,得到粒径为200nm-400nm的Fe3O4纳米粒子;
步骤2:棒状磁性Fe3O4@SiO2纳米颗粒材料的制备
(1)将4mg步骤1得到的Fe3O4溶于由5mL去离子水和25mL异丙醇组成的混合液中,超声30min,得到混合溶液B1;
(2)向混合溶液B1中加入0.5mL的氨水和30μL的正硅酸乙酯引发反应,并置于滚式摇床上,在常温下反应6h,得到反应物B2;
(3)反应结束后,过滤得到滤物,用乙醇和去离子水各清洗两次,得到棒状的磁性Fe3O4@SiO2材料;若磁性Fe3O4@SiO2材料暂时不使用时,将其储存在30mL乙醇中备用;
(4)棒状结构的形成是由于在磁性材料自组装的模板上进行二氧化硅壳层生长来固定得到棒状磁性Fe3O4@SiO2复合结构。
2.根据权利要求1所述的棒状磁性四氧化三铁材料的制备方法,其特征在于:所述FeCl3·6H2O的用量还可以是0.81g、0.945g、1.08g、1.215g或1.35g。
3.一种棒状磁性四氧化三铁材料的应用,其特征在于:将由权利要求1的制备方法制出的棒状磁性四氧化三铁材料用于磁控微纳米马达时,在外磁场作用下实现平行运动、偏转运动和旋转运动。
CN201910008668.3A 2019-01-04 2019-01-04 一种棒状磁性四氧化三铁材料的制备方法及其应用 Active CN109534407B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910008668.3A CN109534407B (zh) 2019-01-04 2019-01-04 一种棒状磁性四氧化三铁材料的制备方法及其应用
US16/734,970 US11512007B2 (en) 2019-01-04 2020-01-06 Process for preparing rodlike magnetiic ferroferric oxide material and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910008668.3A CN109534407B (zh) 2019-01-04 2019-01-04 一种棒状磁性四氧化三铁材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109534407A CN109534407A (zh) 2019-03-29
CN109534407B true CN109534407B (zh) 2022-07-08

Family

ID=65834408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910008668.3A Active CN109534407B (zh) 2019-01-04 2019-01-04 一种棒状磁性四氧化三铁材料的制备方法及其应用

Country Status (2)

Country Link
US (1) US11512007B2 (zh)
CN (1) CN109534407B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203880B (zh) * 2019-06-04 2022-11-11 百色学院 一种光驱磁控一体化微纳马达的制备方法
CN110987819B (zh) * 2019-10-31 2022-01-04 武汉理工大学 一种高灵敏度光子晶体pH比色传感器及其制备方法
CN112299490A (zh) * 2020-09-16 2021-02-02 闽江学院 一种磁屏蔽功能掺杂铁氧体纳米材料的制备方法
CN116930481A (zh) * 2023-09-12 2023-10-24 重庆医科大学绍兴柯桥医学检验技术研究中心 一种磁场驱动微纳米马达的跨分子检测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409463B1 (en) * 2007-07-16 2013-04-02 University Of Central Florida Research Foundation, Inc. Aqueous method for making magnetic iron oxide nanoparticles
EP2683648B1 (en) * 2011-03-07 2017-09-20 The Regents of The University of California Magnetically responsive photonic nanochains
CN102381729B (zh) * 2011-07-27 2013-08-14 绍兴文理学院 一种球状四氧化三铁的制备方法
CN102623125B (zh) * 2012-03-28 2015-10-28 东华大学 一种含多磁性内核的Fe3O4/SiO2纳米粒的制备方法
CN104759260B (zh) * 2015-04-14 2018-04-20 河海大学 一种氨基功能化磁性二氧化硅‑四氧化三铁复合纳米材料及其制备方法
CN105776350B (zh) * 2016-03-17 2018-01-23 中国科学院宁波材料技术与工程研究所 一种空心棒状四氧化三铁及其复合物的制备方法
CN107601576B (zh) * 2017-10-23 2020-01-31 广东顺德工业设计研究院(广东顺德创新设计研究院) 四氧化三铁空心磁性纳米颗粒及其制备方法
CN108704602A (zh) * 2018-06-04 2018-10-26 梁瀚予 一种Fe3O4@SiO2纳米磁珠的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bilayer Tubular Micromotors for Simultaneous Environmental Monitoring and Remediation;Chunyan Liang et al.;《ACS Applied Materials & Interfaces》;20180924;第10卷;第35102页左栏第1段及图2 *
Magnetic colloidosomes fabricated by Fe3O4-SiO2 hetero-nanorods;Lu Zhang et al.;《Soft Matter》;20110714;第7卷;第7376页左栏第3段、右栏第2段及第7376页右栏第5段-第7377页左栏第1段 *
溶剂热法合成纳米结构四氧化三铁空心微球磁性研究;吕庆荣等;《人工晶体学报》;20111231;第40卷(第6期);第2部分实验及第3.1、3.3节 *

Also Published As

Publication number Publication date
US11512007B2 (en) 2022-11-29
CN109534407A (zh) 2019-03-29
US20200216328A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
CN109534407B (zh) 一种棒状磁性四氧化三铁材料的制备方法及其应用
CN107210107B (zh) 包含ε氧化铁的取向体和其的制造方法以及制造装置
CN101289314B (zh) 一种尖晶石型铁氧体纳米空心微球的制备方法
EP2709117B1 (en) Ferrite magnet with salt and manufacturing method of the same
JP6947490B2 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
CN103274477B (zh) 一种超顺磁Fe3O4微球的制备方法
CN105489330A (zh) 一种壳聚糖基磁性纳米材料的超重力制备方法
Shao et al. Monodispersed magnetite/silica composite microspheres: preparation and application for plasmid DNA purification
Nguyen et al. Analysis on development of magnetite hollow spheres through one‐pot solvothermal process
CN107376824A (zh) CuO@NiO核壳结构的复合磁性材料的制备及其应用
CN105289456B (zh) 一种超顺磁Fe3O4纳米材料的制备方法和应用
CN112645366A (zh) 一种纳米氧化镁的制备方法
El-Okr et al. Structural and magnetic analysis on spinel (NiFe2O4) prepared by sol gel process at different calcinations temperatures
Zhu et al. Template‐Free Synthesis of Magnetic Chains Self‐Assembled from Urchin‐Like Hierarchical Ni Nanostructures
Lv et al. β-Cyclodextrin polymer brushes decorated magnetic colloidal nanocrystal clusters for the release of hydrophobic drugs
US6203774B1 (en) Method for producing iron oxide powder using a particle size and shape controller
CN113698685A (zh) 一种磁性塑料及其制备方法
Wang et al. Fabrication of superparamagnetic hydroxyapatite with highly ordered three-dimensional pores
Zhu et al. Facile synthesis of hollow and porous nickel microspheres by low temperature molecular self-assembly
CN110902726A (zh) 微纳结构铁酸锌空心球及其制备方法
CN110615457A (zh) 一种以几丁质为晶型控制剂制备纳米碳酸钙的方法
CN109215921B (zh) 一种具有一维核壳纳米结构的Co3Fe7/SiO2复合材料及制备方法
Liu et al. Preparation of magnetite nanoparticles coated with silica via a sol-gel approach
CN106185955B (zh) 一种氧化硅纳米材料及其制备方法
Guan et al. Highly Water‐Dispersible Fe3O4 Single Nanocrystals: Gram‐Scale Preparation by a Solution‐Phase Route and Application for the Absorption of Cd2+ in Water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant