CN109524056B - 一种具有防伪鉴别功能的序列高分子及其制备方法和应用 - Google Patents

一种具有防伪鉴别功能的序列高分子及其制备方法和应用 Download PDF

Info

Publication number
CN109524056B
CN109524056B CN201811244384.6A CN201811244384A CN109524056B CN 109524056 B CN109524056 B CN 109524056B CN 201811244384 A CN201811244384 A CN 201811244384A CN 109524056 B CN109524056 B CN 109524056B
Authority
CN
China
Prior art keywords
formula
furan
organic solvent
reaction
identification function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811244384.6A
Other languages
English (en)
Other versions
CN109524056A (zh
Inventor
张正彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Bingxin Stationery Co ltd
Original Assignee
Suzhou Bingxin Stationery Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Bingxin Stationery Co ltd filed Critical Suzhou Bingxin Stationery Co ltd
Priority to CN201811244384.6A priority Critical patent/CN109524056B/zh
Publication of CN109524056A publication Critical patent/CN109524056A/zh
Application granted granted Critical
Publication of CN109524056B publication Critical patent/CN109524056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种具有防伪鉴别功能的序列高分子及其制备方法和应用,通过特定结构的基础化合物引入含有巯基的侧链,具有如下通式(I)或(II)所述结构的化合物;以及由于其能够具有较好的热稳定性,并且通过大分子质谱可以快速地读取出序列信息,因此在防伪鉴别方面具有明显的优势,因而适合用于制作基因颜料。
Figure DDA0001840150170000011

Description

一种具有防伪鉴别功能的序列高分子及其制备方法和应用
技术领域
本发明涉及高分子精准合成技术领域,尤其涉及一种基于巯基与马来酰亚胺的迈克尔加成的方法制备的序列精确高分子,具体涉及一种具有防伪鉴别功能的序列高分子及其制备方法和在基因颜料中的应用。
背景技术
高分子的序列结构在很大程度上影响着其性质与功能,目前科学家们合成一系列序列精确高分子,并且广泛研究了这一系列高分子的序列对其热学、光学、电学等性质以及自组装行为的影响,充分证明了序列对其结构性能的重要影响。然而,序列精确高分子的一个重要特性的研究却不是很充分,即它们的信息存储能力。这一特性可以从生物学中的DNA中很好的体现出来,虽然它只是由4种单体组成,但是通过排列组合后可以有着惊人的信息存储量,并且可以通过基因测序的方法来获得其中的编码信息。
受此启发,科学家们在人工合成序列精确高分子这一领域也进行相关研究,例如使用固相合成法、DNA模版法、IEG(迭代指数增长法)等,合成了一系列序列精确高分子,但是其中都存在着一些合成步骤繁琐、产物热稳定性差、防伪信息无法快速读取等问题,想要作为基因颜料来使用具有一定的缺陷。因此,基与上述问题,本领域缺少一种能够简单合成,并且满足防伪信息能够被快速读取,且具有较好热稳定性的序列精确高分子及基因颜料。
发明内容
本发明所要解决的技术问题是克服现有技术中的不足,提供一种具有防伪鉴别功能的序列高分子,其能够被大分子质谱快速读取序列信息,且具有较好的热稳定性,进而可以应用在基因颜料中,实现基因颜料的防伪鉴别功能。
本发明同时还提供了一种具有防伪鉴别功能的序列高分子的制备方法。
本发明同时还提供了制备具有防伪鉴别功能的序列高分子的中间体化合物。
本发明同时还提供了一种具有防伪鉴别功能的序列高分子在基因颜料中的应用。
为解决以上技术问题,本发明采取的一种技术方案如下:
一种具有防伪鉴别功能的序列高分子,所述序列高分子为具有如下通式(I)或(II)所述结构的化合物:
Figure BDA0001840150150000021
其中,式(I)中,R1为R4-S-;式(II)中,X不存在,或为式(III)所示结构中的一种或式(III)所示结构中的多种以任意顺序组合连接而成的基团;
Figure BDA0001840150150000022
式(II)和(III)中,R2、R3、R5分别独立地选自H、R4-S-;
R4为C1-20的烃基、卤代的C1-20的烷基、偶氮基或
Figure BDA0001840150150000023
根据本发明的一些优选方面,R4为甲基、乙基、丙基、异丙基、丁基、戊基、新戊基、己基、庚基、壬基、癸基、
Figure BDA0001840150150000024
Figure BDA0001840150150000025
根据本发明的一些具体且优选的方面,所述序列高分子为选自如下结构所示化合物中的一种:
Figure BDA0001840150150000031
Figure BDA0001840150150000041
Figure BDA0001840150150000051
本发明提供的又一技术方案:一种制备上述所述的具有防伪鉴别功能的序列高分子的中间体,所述中间体的结构如下式(IV)所示:
Figure BDA0001840150150000052
根据本发明的一些优选方面,式(IV)所示的所述中间体通过如下方法制备而得:
(ⅰ)将马来酰亚胺与呋喃在第一有机溶剂中反应,得到呋喃保护的马来酰亚胺;
(ⅱ)将制备的所述呋喃保护的马来酰亚胺与1,6-二溴己烷在第一催化剂作用下、在第二有机溶剂中反应,得到己基溴取代的呋喃保护马来酰亚胺;
(ⅲ)将制备的所述己基溴取代的呋喃保护马来酰亚胺与硫代乙酸钾在第三有机溶剂中反应,即得式(IV)所示结构的中间体。
根据本发明的一些优选方面,步骤(ⅰ)中,所述第一有机溶剂为甲苯,所述反应在温度85-95℃下进行,所述马来酰亚胺与所述呋喃的投料摩尔比为1∶2.0-2.5。
根据本发明的一些优选方面,步骤(ⅱ)中,所述第一催化剂为碳酸钾,所述第二有机溶剂为N,N-二甲基甲酰胺,所述呋喃保护的马来酰亚胺、所述1,6-二溴己烷和所述第一催化剂的投料摩尔比为1∶2.0-2.5∶1.5-2.5,所述反应在温度60-70℃下进行。
根据本发明的一些优选方面,步骤(ⅲ)中,所述第三有机溶剂为丙酮,所述反应在温度40-50℃下进行,所述己基溴取代的呋喃保护马来酰亚胺与所述硫代乙酸钾的投料摩尔比为1∶1.3-1.8。
本发明提供的又一技术方案:一种制备上述所述的具有防伪鉴别功能的序列高分子的中间体,所述中间体的结构如下式(V)所示:
Figure BDA0001840150150000061
根据本发明的一些优选方面,式(V)所示的所述中间体通过如下方法制备:
(1)制备式(IV)所示结构的中间体
(1-1)将马来酰亚胺与呋喃在第一有机溶剂中反应,得到呋喃保护的马来酰亚胺;
(1-2)将制备的所述呋喃保护的马来酰亚胺与1,6-二溴己烷在第一催化剂作用下、在第二有机溶剂中反应,得到己基溴取代的呋喃保护马来酰亚胺;
(1-3)将制备的所述己基溴取代的呋喃保护马来酰亚胺与硫代乙酸钾在第三有机溶剂中反应,式(IV)所示结构的中间体;
Figure BDA0001840150150000062
(2)制备式(V)所示结构的中间体
(2-1)将式(IV)所示结构的中间体在第四有机溶剂中、在温度100-120℃下反应脱去呋喃保护基,制成脱去呋喃保护基的式(IV)所示结构的中间体;
Figure BDA0001840150150000063
(2-2)将式(IV)所示结构的中间体在第五有机溶剂中、在第二催化剂存在下、在温度60-70℃下反应脱去乙酰基保护基,制成脱去乙酰基保护基的式(IV)所示结构的中间体;
Figure BDA0001840150150000071
(2-3)将步骤(2-1)制备的所述脱去呋喃保护基的式(IV)所示结构的中间体与步骤(2-2)制备的所述脱去乙酰基保护基的式(IV)所示结构的中间体在第六有机溶剂中、在第三催化剂存在下、在温度20-30℃下反应,即制成式(V)所示结构的中间体;
Figure BDA0001840150150000072
根据本发明的一些优选方面,步骤(1-1)中,所述第一有机溶剂为甲苯,所述反应在温度85-95℃下进行,所述马来酰亚胺与所述呋喃的投料摩尔比为1∶2.0-2.5。
根据本发明的一些优选方面,步骤(1-2)中,所述第一催化剂为碳酸钾,所述第二有机溶剂为N,N-二甲基甲酰胺,所述呋喃保护的马来酰亚胺、所述1,6-二溴己烷和所述第一催化剂的投料摩尔比为1∶2.0-2.5∶1.5-2.5,所述反应在温度60-70℃下进行。
根据本发明的一些优选方面,步骤(1-3)中,所述第三有机溶剂为丙酮,所述反应在温度40-50℃下进行,所述己基溴取代的呋喃保护马来酰亚胺与所述硫代乙酸钾的投料摩尔比为1∶1.3-1.8。
根据本发明的一些优选方面,步骤(2-1)中,所述第四有机溶剂为甲苯,所述反应在105-115℃下进行。
根据本发明的一些优选方面,步骤(2-2)中,所述第二有机溶剂为甲醇和/或三氯甲烷,所述第二催化剂为盐酸。
根据本发明的一些优选方面,步骤(2-3)中,所述第六有机溶剂为三氯甲烷,所述第三催化剂为三乙胺。
根据本发明的一些优选方面,步骤(2-3)中,控制所述反应在无氧环境下进行。
本发明提供的又一技术方案:一种上述所述的具有防伪鉴别功能的序列高分子的制备方法,所述制备方法包括如下步骤:
式(I)所示的具有防伪鉴别功能的序列高分子的制备:
(I-a)使式(V)所示的中间体在第四催化剂的存在下、在温度75-83℃下、在第七有机溶剂中反应,制成含有双键的式(V-1)所示的化合物;
Figure BDA0001840150150000081
(I-b)使式(V-1)所示的化合物与含有巯基的化合物R4-SH在第五催化剂存在下、在温度20-30℃下、在第八有机溶剂中反应,制成式(I)所示的具有防伪鉴别功能的序列高分子;
Figure BDA0001840150150000082
式(II)所示的具有防伪鉴别功能的序列高分子的制备:
(II-a)以式(V)所示的中间体、式(I)所示的化合物为起始物料,使其中一个发生脱去呋喃保护基的反应,另一个发生脱去乙酰基保护基的反应,然后使脱去保护基的两个化合物混合反应,制成一种式(II)所示的具有防伪鉴别功能的序列高分子;
(II-b)然后再在式(V)所示的中间体、式(I)所示的化合物、步骤(II-a)制成的式(II)所示的具有防伪鉴别功能的序列高分子中选择任意两个化合物,使其中一个发生脱去呋喃保护基的反应,另一个发生脱去乙酰基保护基的反应,然后使脱去保护基的两个化合物混合反应,制成一种式(II)所示的具有防伪鉴别功能的序列高分子;
(II-c)在式(V)所示的中间体、式(I)所示的化合物、步骤(II-a)制成的式(II)所示的具有防伪鉴别功能的序列高分子和步骤(II-b)制成的式(II)所示的具有防伪鉴别功能的序列高分子中选择任意两个化合物,使其中一个发生脱去呋喃保护基的反应,另一个发生脱去乙酰基保护基的反应,然后使脱去保护基的两个化合物混合反应,制成一种式(II)所示的具有防伪鉴别功能的序列高分子;
以此类推,即可制成任一一种式(II)所示的具有防伪鉴别功能的序列高分子。
根据本发明的一些优选方面,步骤(I-a)中,所述第四催化剂为N-氯代丁二酰亚胺,所述第七有机溶剂为四氯化碳和/或三氯甲烷,所述式(V)所示的中间体与所述第四催化剂的投料摩尔比为1∶1-1.5。
根据本发明的一些优选方面,步骤(I-b)中,所述第五催化剂为三乙胺,所述反应在温度23-27℃下进行,所述第八有机溶剂为三氯甲烷,控制所述反应在无氧条件下进行,所述式(VI)所示的化合物、所述含有巯基的化合物R4-SH和所述第五催化剂的投料摩尔比为1∶4-6∶1.5-2.0。
本发明提供的又一技术方案:一种基因颜料,所述基因颜料的原料包括基础颜料,所述原料还包括权利要求1-3中任一项权利要求所述的具有防伪鉴别功能的序列高分子。
根据本发明的一些优选方面,所述基础颜料为水性颜料。
根据本发明的一些优选方面,所述具有防伪鉴别功能的序列高分子与所述基础颜料的投料质量比为1∶2-20。
本发明还提供了一种颜料防伪鉴别的方法,其包括如下步骤:将所述具有防伪鉴别功能的序列高分子与基础颜料按配方混合,搅拌,制得基因颜料后,取样,进行溶解、萃取、浓缩,通过对浓缩产物进行大分子质谱测试,结果用如下公式进行分析判断:
序列号=8-[(待分析位置峰值-43-23-(出峰数量-待分析峰位置编号)*M侧链分子量)/M1merDeAc-1](大分子质谱二级质谱中出峰位置编号顺序为从右至左);
即可实现辨别基因颜料的真伪。
由于以上技术方案的采用,本发明与现有技术相比具有如下优点:
本发明提供的具有特定结构能够具有较好的热稳定性,并且通过大分子质谱可以快速地读取出序列信息,因此在防伪鉴别方面具有明显的优势,因而适合用于制作基因颜料。同时其制备方法简单,通过几种特定的基础化合物,按照特定的方法能够实现一系列具有防伪鉴别功能的序列高分子的合成,极其适用于规模化的应用。
附图说明
图1是本发明实施例1中呋喃保护的马来酰亚胺的核磁氢谱图;
图2是本发明实施例1中己基溴取代的呋喃保护马来酰亚胺的核磁氢谱图;
图3是本发明实施例1中精确高分子的单体1mer的核磁氢谱图;
图4是本发明实施例2中1mer脱去呋喃保护基后1mer-DeFu的核磁氢谱图;
图5是本发明实施例2中1mer脱去乙酰基保护基后1mer-DeAc的核磁氢谱图;
图6是本发明实施例2中2mer的核磁氢谱图;
图7是本发明实施例2中分子内产生了双键的2mer,即2mer-EN的核磁氢谱图;
图8是本发明实施例2中含巯基偶氮苯引入到侧链后的2mer-Azo的核磁氢谱图;
图9是本发明实施例2中2mer-Azo脱去乙酰基保护基后2mer-Azo-DeAc的核磁氢谱图;
图10是发明实施例2中2mer-Azo脱去呋喃保护基后2mer-Azo-DeFu的核磁氢谱图;
图11是发明实施例2中4mer-2-1Azo的核磁氢谱图;
图12是发明实施例2中4mer-2-1Azo脱呋喃后4mer-2-1Azo-DeFu以及脱乙酰基后4mer-2-1Azo-DeAc的核磁氢谱图;
图13是发明实施例2中8mer-2,6-2Azo的核磁氢谱图;
图14是发明实施例3中8mer-2,6-2Azo,8mer-4,6-2Azo的热失重图谱;
图15(a)是8mer-2,6-2Azo的大分子质谱二级质谱图,图15(b)是将分子式以小球模型模拟后与侧链出峰位置的对比图;
图16(a)是8mer-4,6-2Azo的大分子质谱二级质谱图,图16(b)是将分子式以小球模型模拟后与侧链出峰位置的对比图;
图17(a)是8mer-2,4,6-3C6的大分子质谱二级质谱图,图17(b)是将分子式以小球模型模拟后与侧链出峰位置的对比图。
具体实施方式
以下结合具体实施例对上述方案做进一步说明;应理解,这些实施例是用于说明本发明的基本原理、主要特征和优点,而本发明不受以下实施例的范围限制;实施例中采用的实施条件可以根据具体要求做进一步调整,未注明的实施条件通常为常规实验中的条件。下述中,如无特殊说明,所有的原料均来自于商购或者通过本领域的常规方法制备而得。式(IV)所示中间体,以下简称1mer;式(V)所示的中间体,以下简称2mer。
实施例1精确高分子式(IV)所示中间体的制备
本例提供一种制备所述具有防伪鉴别功能的序列高分子(式(I)和式(II))的中间体化合物(式(IV)),其制备反应方程式如下:
Figure BDA0001840150150000101
具体制备操作如下:在干燥的1L圆底烧瓶中加入马来酰亚胺(30g,0.31mol),呋喃(42.2g,0.62mol),用250mL甲苯溶解,90℃反应,冷凝回流,反应10-12h,冷却至室温,抽滤并用冰甲苯洗涤滤饼得白色粉末46.5g,产率94%。如图1所示,图1是呋喃保护的马来酰亚胺的核磁氢谱图,从图中可以看出该化合物的成功合成。
在干燥的250mL三颈瓶中,将马来酰亚胺(10g,0.061mol),K2CO3(16.8g,0.122mol)加入到100mL干燥的N,N-二甲基甲酰胺中,然后向其中加入1,6-二溴己烷(18.6mL,0.122mol),通氩气保护在65℃下反应10-12h,反应结束后冷却至室温,向其中直接加入200mL乙酸乙酯溶解,用清水洗涤数次除去N,N-二甲基甲酰胺,收集有机层用无水Na2SO4干燥,抽滤旋蒸得到粗产物,并用柱层析分离提纯(石油醚/乙酸乙酯=2/1),得到白色固体产物14.6g,产率74%。如图2所示,图2是己基溴取代的呋喃保护马来酰亚胺的核磁氢谱图,从图中可以看出该化合物的成功合成。
在干燥的250mL的圆底烧瓶中,加入己基溴取代的呋喃保护马来酰亚胺(14.5g,44.2mmol)完全溶解于150mL丙酮中,然后向其中加入硫代乙酸钾(7.6g,66.3mmol),在45℃下加热搅拌,溶液由浅黄变为深棕色且过程中有固体产生,反应在该条件下继续搅拌6-8h,冷却抽滤得滤液,将溶剂蒸发去除之后重新溶于三氯甲烷中,用清水洗涤数次,有机层收集并用无水Na2SO4干燥,抽滤,经过中性氧化铝柱除去较深的颜色,旋蒸得浅黄色蜡状固体1mer(完全转化,收率定量)。如图3所示,图3是精确高分子的单体1mer的核磁氢谱图,从图中可以看出该化合物的成功合成。
实施例2具有防伪鉴别功能的序列高分子(式(I)或式(II))的制备
例2-1:下例提供一种式(I)所示的具有防伪鉴别功能的序列高分子(R1
Figure BDA0001840150150000111
),其制备反应方程式如下:
Figure BDA0001840150150000121
具体制备操作如下:在干燥的100mL三颈烧瓶中加入单体1mer(5.5g,17mmol),然后加入50mL甲苯将其溶解,110℃下反应10-12h。反应结束后,冷却至室温后旋蒸除去甲苯溶液并干燥,得到浅黄色固体粉末1mer-DeFu(完全转化,收率定量)。如图4所示,图4是1mer脱去呋喃保护基后的核磁氢谱图,从图中可以看到呋喃对应的特征峰已经完全消失,证明脱保护的完全。
在干燥的250mL的三颈烧瓶中加入单体1mer(5.5g,17mmol)并用150mL无水甲醇完全溶解,65℃油浴中通氩气回流,然后向其中加入浓盐酸(8mL,12M),继续在该条件下回流8-10h,结束后加100mL去离子水淬灭反应,用三氯甲烷萃取,有机层再用清水洗涤数次,合并有机层干燥,抽滤旋蒸除去溶剂得到浅黄色油状液体1mer-DeAc(完全转化,收率定量)。如图5所示,图5是1mer脱去乙酰基保护基后的核磁氢谱图,从图中可以看到乙酰基对应的特征峰已经完全消失,证明了脱保护的完全。
在干燥的250mL三颈烧瓶中加入1mer-DeFu(4.2g,16.4mmol)并用100mL三氯甲烷溶解,氩气氛围下向其中加入1mer-DeAc(4.5g,16.0mmol)。然后再加入催化剂三乙胺(4mL),惰性气体保护下25℃反应6-8h。向其中加入饱和NaHCO3水溶液,分液并以饱和NaHCO3溶液多次洗涤有机层,最后水洗两次收集有机层干燥,抽滤浓缩得粗产物,并用柱层析分离提纯(石油醚/乙酸乙酯=1/1),得到浅黄色油状液体产物2mer 7.93g,产率92%。如图6所示,图6是2mer的核磁氢谱图,从图中可以看出该化合物的成功合成。
在干燥的500mL圆底烧瓶中加入2mer(10.16g,20.0mmol)以及催化剂N-氯代丁二酰亚胺并用250mL四氯化碳溶解,78℃下反应10-12h,反应结束后旋蒸除去四氯化碳,然后用三氯甲烷重新溶解,并用饱和NaHCO3水溶液多次洗涤有机层,最后水洗两次收集有机层干燥,抽滤浓缩得粗产物,并用柱层析分离提纯(石油醚/乙酸乙酯=2/1),得到浅黄色固体2mer-EN 6.58g,产率65%。如图7所示,图7是分子内产生了双键的2mer,即2mer-EN的核磁氢谱图,从图中看到对应峰的完全消失,以及新的双键的峰的成功生成,证明了反应的成功发生。
在干燥的250mL三颈烧瓶中加入2mer-EN(3.14g,5.8mmol)并用50mL三氯甲烷溶解,氩气氛围下向其中加入用50mL三氯甲烷溶解的含巯基的偶氮苯小分子(9.84g,29mmol),。然后再加入催化剂三乙胺(1.4mL),惰性气体保护下25℃反应6-8h。向其中加入饱和NaHCO3水溶液,分液并以饱和NaHCO3溶液多次洗涤有机层,最后水洗两次收集有机层干燥,抽滤浓缩得粗产物,并用柱层析分离提纯(石油醚/乙酸乙酯=2/1),得到橘黄色的油状液体产物2mer-1Azo 3.65g,产率72%。如图8所示,图8是含巯基偶氮苯引入到侧链后的2mer-Azo的核磁氢谱图,从图中可以看出分子内双键的峰的消失,说明反应了成功进行,该氢谱图证明了成功合成了该化合物。
例2-2:
下例提供一种式(II)所示的具有防伪鉴别功能的序列高分子(R2、R3均为
Figure BDA0001840150150000131
X为
Figure BDA0001840150150000132
),其制备反应方程式如下:
Figure BDA0001840150150000141
具体制备操作如下:在干燥的100mL三颈烧瓶中加入2mer-1Azo(2.18g,2.5mmol)并用20mL三氯甲烷与30mL无水甲醇完全溶解,65℃油浴中通氩气回流,然后向其中加入浓盐酸(1mL,12M),继续在该条件下回流8-10h,结束后加30mL去离子水淬灭反应,用三氯甲烷萃取,有机层再用清水洗涤数次,合并有机层干燥,抽滤旋蒸除去溶剂得到橘黄色油状液体2mer-1Azo-DeAc(完全转化,收率定量)。如图9所示,图9是2mer-Azo脱去乙酰基保护基后的核磁氢谱图,从图中可以看到乙酰基对应的特征峰已经完全消失,证明了脱保护的完全。
在干燥的100mL三颈烧瓶中加入2mer(1.27g,2.5mmol),然后加入50mL甲苯将其溶解,110℃下反应10-12h。反应结束后,冷却至室温后旋蒸除去甲苯溶液并干燥,得到浅黄色油状液体2mer-DeFu(完全转化,收率定量)。如图10所示,图10是2mer脱去呋喃保护基后的核磁氢谱图,从图中可以看到呋喃对应的特征峰已经完全消失,证明脱保护的完全。
在干燥的100mL三颈烧瓶中加入2mer-DeFu(1.17g,2.5mmol)并用100mL三氯甲烷溶解,氩气氛围下向其中加入2mer-Azo-DeAc(2.03g,2.44mmol)。然后再加入催化剂三乙胺(0.63mL),惰性气体保护下25℃反应6-8h。向其中加入饱和NaHCO3水溶液,分液并以饱和NaHCO3溶液多次洗涤有机层,最后水洗两次收集有机层干燥,抽滤浓缩得粗产物,并用柱层析分离提纯(二氯甲烷/甲醇=50/1),得到橘黄色油状液体产物4mer-2-1Azo 2.76g,产率85%。如图11所示,图11是4mer-2-1Azo的核磁氢谱图,从图中可以看出该化合物的成功合成。
在干燥的100mL三颈烧瓶中加入单体4mer-2-1Azo(1.3g,1mmol),然后加入50mL甲苯将其溶解,110℃下反应10-12h。反应结束后,冷却至室温后旋蒸除去甲苯溶液并干燥,得到橘黄色油状液体4mer-2-1Azo-DeFu(完全转化,收率定量)。
在干燥的250mL的三颈烧瓶中加入4mer-2-1Azo(1.3g,1mmol)并用20mL三氯甲烷与30mL无水甲醇完全溶解,65℃油浴中通氩气回流,然后向其中加入浓盐酸(0.5mL,12M),继续在该条件下回流8-10h,结束后加30mL去离子水淬灭反应,用三氯甲烷萃取,有机层再用清水洗涤数次,合并有机层干燥,抽滤旋蒸除去溶剂得到橘黄色油状液体4mer-2-1Azo-DeAc(完全转化,收率定量)。如图12所示,图12是4mer-2-1Azo脱呋喃以及脱乙酰基的核磁氢谱图,从图中可以看出呋喃以及乙酰基的完全脱去,证明了两个基团的脱保护完全。
在干燥的100mL三颈烧瓶中加入4mer-2-1Azo-DeFu(1.23g,1mmol)并用100mL三氯甲烷溶解,氩气氛围下向其中加入1mer-DeAc(1.20g,0.97mmol)。然后再加入催化剂三乙胺(0.25mL),惰性气体保护下25℃反应6-8h。反应结束后,向其中加入饱和NaHCO3水溶液,分液并以饱和NaHCO3溶液多次洗涤有机层,最后水洗两次收集有机层干燥,抽滤浓缩得粗产物,并用柱层析分离提纯(二氯甲烷/甲醇=30/1),得到橘黄色油状液体产物8mer-2,6-2Azo 1.57g,产率63%。如图13所示,图13是8mer-2,6-2Azo的核磁氢谱图,从图中可以看出该化合物的成功合成。
实施例3对所合成侧链含偶氮苯的具有防伪鉴别功能的序列高分子进行热稳定性测试
具体操作如下:取5mg左右序列精确高分子8mer-2,6-2Azo,8mer-4,6-2Azo,使用热重分析仪进行测试,测试条件:温度范围为30-800℃,升温速率为10℃/min,气体氛围为氮气。
其中,8mer-4,6-2Azo(式II-3)的制备可参考8mer-2,6-2Azo,具体路线可如下:(1)使2mer(式V)脱乙酰保护,2mer-1Azo脱呋喃保护,然后反应制成4mer-4-1Azo(式II-6);(2)使2mer脱呋喃保护,2mer-1Azo脱乙酰保护,然后反应制成4mer-2-1Azo(式II-1);(3)使4mer-4-1Azo脱乙酰保护,4mer-2-1Azo脱呋喃保护,然后使各自脱去保护基的两个化合物反应,即制成8mer-4,6-2Azo(式II-3),合成路线大致如下:
Figure BDA0001840150150000161
Figure BDA0001840150150000171
图14是在上述测试条件下测得8mer-2,6-2Azo,8mer-4,6-2Azo的热失重图谱,从图中可以看出两种精确高分子的Td5%分别为150.6℃、136.4℃,说明了它们具有一定的热稳定性。
实施例4对所合成侧链含偶氮苯的具有防伪鉴别功能的序列高分子进行序列信息的读取
具体操作如下:使用大分子质谱二级质谱对8mer-2,6-2Azo,8mer-4,6-2Azo进行分析,利用本发明专用的公式来进行序列信息的快速解读,该公式为:序列号=8-[(待分析位置峰值-43-23-(出峰数量-待分析峰位置编号)*M侧链分子量)/M1merDeAc-1](大分子质谱二级质谱中出峰位置编号顺序为从右至左)
图15(a),图16(a)分别是8mer-2,6-2Azo和8mer-4,6-2Azo的大分子质谱二级质谱,其中分子式中的分子量为理论分子量,图谱中的分子量为测试得到的分子量。另外,图谱中2243.010和2444.221分别为测试中脱去呋喃保护的8mer-2,6-2Azo和8mer-4,6-2Azo的分子量。从图中可以看出有两个明显的高信号峰,即为我们序列对应的峰,将这两个峰值代入上述公式后得到结果与事实相符。图15(b)和图16(b)是将分子式以小球模型模拟后,可以看出质谱的出峰位置与序列位置可以一一对应,这样进一步更好地说明了本发明可以快速读谱的优势。
实施例5
本实施例提供一种基因颜料,原料配方包括:水性颜料10份,具有防伪鉴别功能的序列高分子8mer-2,4,6-3C6(式II-5)0.5份。其中,8mer-2,4,6-3C6(式II-5)的制备可参考8mer-2,6-2Azo,具体路线可如下:(1)使2mer-1C6(式I-2)脱呋喃保护,使2mer-1C6脱乙酰基保护,然后反应制成4mer-2,4-2C6(式II-7);(2)使4mer-2,4-2C6脱乙酰基保护,使4mer-2-1C6(式II-8)脱呋喃保护,然后反应制成8mer-2,4,6-3C6(式II-5),C6表示侧链含有己基,合成路线大致如下:
Figure BDA0001840150150000181
Figure BDA0001840150150000191
Figure BDA0001840150150000201
基因颜料的制备方法包括:按配方比例称取上述原料,将所述具有防伪鉴别功能的序列高分子加入所述水性颜料中,混合,搅拌均匀后,放入真空装置中真空脱泡,即得所述基因颜料。提取方法与分析具体操作如下:取50mg所述基因颜料,加30mL去离子水溶解,用三氯甲烷萃取,有机层再用清水洗涤数次,合并有机层干燥,抽滤旋蒸除去溶剂得到浅黄色油状液体。将得到的油状液体进行大分子质谱测试,结果用所述公式进行分析。图17(a)是大分子质谱二级质谱的结果,其中2118.099为脱去呋喃的8mer-2,4,6-3C6的分子量,除去此峰外,从图中可以清晰的看到三个明显的高信号峰,我们利用上述公式进行计算后可以得到与事实相符的结果,如图17(b)所示,证明了该基因颜料的具有快速读取防伪信息的特点。
综上,本发明公开了一种简单的用来合成含侧链的具有防伪鉴别功能的序列高分子的方法,并且制得的精确的序列高分子具有一定的热稳定性,与颜料混合后结构不会被破坏。并且可以通过大分子质谱对其进行快速的序列信息读取,以此达到防伪鉴别的作用,因此可以作为基因颜料使用。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (13)

1.一种具有防伪鉴别功能的序列高分子,其特征在于,所述序列高分子为具有如下通式(I)或(II)所述结构的化合物:
Figure FDA0001840150140000011
其中,式(I)中,R1为R4-S-;式(II)中,X不存在,或为式(III)所示结构中的一种或式(III)所示结构中的多种以任意顺序组合连接而成的基团;
Figure FDA0001840150140000012
式(II)和(III)中,R2、R3、R5分别独立地选自H、R4-S-;
R4为C1-20的烃基、卤代的C1-20的烷基、偶氮基或
Figure FDA0001840150140000013
2.根据权利要求1所述的具有防伪鉴别功能的序列高分子,其特征在于,R4为甲基、乙基、丙基、异丙基、丁基、戊基、新戊基、己基、庚基、壬基、癸基、
Figure FDA0001840150140000014
3.根据权利要求1所述的具有防伪鉴别功能的序列高分子,其特征在于,所述序列高分子为选自如下结构所示化合物中的一种:
Figure FDA0001840150140000021
Figure FDA0001840150140000031
Figure FDA0001840150140000041
4.一种制备权利要求1-3中任一项权利要求所述的具有防伪鉴别功能的序列高分子的中间体,其特征在于,所述中间体的结构如下式(IV)所示:
Figure FDA0001840150140000042
5.根据权利要求4所述的制备所述的具有防伪鉴别功能的序列高分子的中间体,其特征在于,式(IV)所示的所述中间体通过如下方法制备而得:
(ⅰ)将马来酰亚胺与呋喃在第一有机溶剂中反应,得到呋喃保护的马来酰亚胺;
(ⅱ)将制备的所述呋喃保护的马来酰亚胺与1,6-二溴己烷在第一催化剂作用下、在第二有机溶剂中反应,得到己基溴取代的呋喃保护马来酰亚胺;
(ⅲ)将制备的所述己基溴取代的呋喃保护马来酰亚胺与硫代乙酸钾在第三有机溶剂中反应,即得式(IV)所示结构的中间体。
6.根据权利要求5所述的制备所述的具有防伪鉴别功能的序列高分子的中间体,其特征在于,步骤(ⅰ)中,所述第一有机溶剂为甲苯,所述反应在温度85-95℃下进行,所述马来酰亚胺与所述呋喃的投料摩尔比为1∶2.0-2.5;和/或,步骤(ⅱ)中,所述第一催化剂为碳酸钾,所述第二有机溶剂为N,N-二甲基甲酰胺,所述呋喃保护的马来酰亚胺、所述1,6-二溴己烷和所述第一催化剂的投料摩尔比为1∶2.0-2.5∶1.5-2.5,所述反应在温度60-70℃下进行;和/或,步骤(ⅲ)中,所述第三有机溶剂为丙酮,所述反应在温度40-50℃下进行,所述己基溴取代的呋喃保护马来酰亚胺与所述硫代乙酸钾的投料摩尔比为1∶1.3-1.8。
7.一种制备权利要求1-3中任一项权利要求所述的具有防伪鉴别功能的序列高分子的中间体,其特征在于,所述中间体的结构如下式(V)所示:
Figure FDA0001840150140000051
8.根据权利要求7所述的制备所述具有防伪鉴别功能的序列高分子的中间体,其特征在于,式(V)所示的所述中间体通过如下方法制备:
(1)制备式(IV)所示结构的中间体
(1-1)将马来酰亚胺与呋喃在第一有机溶剂中反应,得到呋喃保护的马来酰亚胺;
(1-2)将制备的所述呋喃保护的马来酰亚胺与1,6-二溴己烷在第一催化剂作用下、在第二有机溶剂中反应,得到己基溴取代的呋喃保护马来酰亚胺;
(1-3)将制备的所述己基溴取代的呋喃保护马来酰亚胺与硫代乙酸钾在第三有机溶剂中反应,式(IV)所示结构的中间体;
Figure FDA0001840150140000061
(2)制备式(V)所示结构的中间体
(2-1)将式(IV)所示结构的中间体在第四有机溶剂中、在温度100-120℃下反应脱去呋喃保护基,制成脱去呋喃保护基的式(IV)所示结构的中间体;
Figure FDA0001840150140000062
(2-2)将式(IV)所示结构的中间体在第五有机溶剂中、在第二催化剂存在下、在温度60-70℃下反应脱去乙酰基保护基,制成脱去乙酰基保护基的式(IV)所示结构的中间体;
Figure FDA0001840150140000063
(2-3)将步骤(2-1)制备的所述脱去呋喃保护基的式(IV)所示结构的中间体与步骤(2-2)制备的所述脱去乙酰基保护基的式(IV)所示结构的中间体在第六有机溶剂中、在第三催化剂存在下、在温度20-30℃下反应,即制成式(V)所示结构的中间体;
Figure FDA0001840150140000064
9.根据权利要求8所述的制备所述具有防伪鉴别功能的序列高分子的中间体,其特征在于,步骤(1-1)中,所述第一有机溶剂为甲苯,所述反应在温度85-95℃下进行,所述马来酰亚胺与所述呋喃的投料摩尔比为1∶2.0-2.5;和/或,步骤(1-2)中,所述第一催化剂为碳酸钾,所述第二有机溶剂为N,N-二甲基甲酰胺,所述呋喃保护的马来酰亚胺、所述1,6-二溴己烷和所述第一催化剂的投料摩尔比为1∶2.0-2.5∶1.5-2.5,所述反应在温度60-70℃下进行;和/或,步骤(1-3)中,所述第三有机溶剂为丙酮,所述反应在温度40-50℃下进行,所述己基溴取代的呋喃保护马来酰亚胺与所述硫代乙酸钾的投料摩尔比为1∶1.3-1.8;和/或,步骤(2-1)中,所述第四有机溶剂为甲苯,所述反应在105-115℃下进行;和/或,步骤(2-2)中,所述第二有机溶剂为甲醇和/或三氯甲烷,所述第二催化剂为盐酸;和/或,步骤(2-3)中,所述第六有机溶剂为三氯甲烷,所述第三催化剂为三乙胺。
10.一种权利要求1-3中任一项权利要求所述的具有防伪鉴别功能的序列高分子的制备方法,其特征在于,所述制备方法包括如下步骤:
式(I)所示的具有防伪鉴别功能的序列高分子的制备:
(I-a)使式(V)所示的中间体在第四催化剂的存在下、在温度75-83℃下、在第七有机溶剂中反应,制成含有双键的式(V-1)所示的化合物;
Figure FDA0001840150140000071
(I-b)使式(V-1)所示的化合物与含有巯基的化合物R4-SH在第五催化剂存在下、在温度20-30℃下、在第八有机溶剂中反应,制成式(I)所示的具有防伪鉴别功能的序列高分子;
Figure FDA0001840150140000072
式(II)所示的具有防伪鉴别功能的序列高分子的制备:
(II-a)以式(V)所示的中间体、式(I)所示的化合物为起始物料,使其中一个发生脱去呋喃保护基的反应,另一个发生脱去乙酰基保护基的反应,然后使脱去保护基的两个化合物混合反应,制成一种式(II)所示的具有防伪鉴别功能的序列高分子;
(II-b)然后再在式(V)所示的中间体、式(I)所示的化合物、步骤(II-a)制成的式(II)所示的具有防伪鉴别功能的序列高分子中选择任意两个化合物,使其中一个发生脱去呋喃保护基的反应,另一个发生脱去乙酰基保护基的反应,然后使脱去保护基的两个化合物混合反应,制成一种式(II)所示的具有防伪鉴别功能的序列高分子;
(II-c)在式(V)所示的中间体、式(I)所示的化合物、步骤(II-a)制成的式(II)所示的具有防伪鉴别功能的序列高分子和步骤(II-b)制成的式(II)所示的具有防伪鉴别功能的序列高分子中选择任意两个化合物,使其中一个发生脱去呋喃保护基的反应,另一个发生脱去乙酰基保护基的反应,然后使脱去保护基的两个化合物混合反应,制成一种式(II)所示的具有防伪鉴别功能的序列高分子;
以此类推,即可制成任一一种式(II)所示的具有防伪鉴别功能的序列高分子。
11.根据权利要求10所述的具有防伪鉴别功能的序列高分子的制备方法,其特征在于,步骤(I-a)中,所述第四催化剂为N-氯代丁二酰亚胺,所述第七有机溶剂为四氯化碳和/或三氯甲烷,所述式(V)所示的中间体与所述第四催化剂的投料摩尔比为1∶1-1.5;和/或,步骤(I-b)中,所述第五催化剂为三乙胺,所述反应在温度23-27℃下进行,所述第八有机溶剂为三氯甲烷,控制所述反应在无氧条件下进行,所述式(VI)所示的化合物、所述含有巯基的化合物R4-SH和所述第五催化剂的投料摩尔比为1∶4-6∶1.5-2.0。
12.一种基因颜料,所述基因颜料的原料包括基础颜料,其特征在于,所述原料还包括权利要求1-3中任一项权利要求所述的具有防伪鉴别功能的序列高分子。
13.根据权利要求12所述的基因颜料,其特征在于,所述基础颜料为水性颜料;和/或,所述具有防伪鉴别功能的序列高分子与所述基础颜料的投料质量比为1∶2-20。
CN201811244384.6A 2018-10-24 2018-10-24 一种具有防伪鉴别功能的序列高分子及其制备方法和应用 Active CN109524056B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811244384.6A CN109524056B (zh) 2018-10-24 2018-10-24 一种具有防伪鉴别功能的序列高分子及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811244384.6A CN109524056B (zh) 2018-10-24 2018-10-24 一种具有防伪鉴别功能的序列高分子及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109524056A CN109524056A (zh) 2019-03-26
CN109524056B true CN109524056B (zh) 2022-11-11

Family

ID=65773715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811244384.6A Active CN109524056B (zh) 2018-10-24 2018-10-24 一种具有防伪鉴别功能的序列高分子及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109524056B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111808114A (zh) * 2020-07-06 2020-10-23 苏州迈世博立检测服务有限公司 基于级联巯基/溴代马来酰亚胺迈克尔加成的化合物及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085164A (en) * 1974-10-21 1978-04-18 Rhone-Poulenc Industries Thermosetting compositions based on a bis-imide and a polyurethane
CN104829771A (zh) * 2015-05-14 2015-08-12 苏州大学 一种侧链含有环状偶氮苯-联萘结构的聚合物及其制备方法和用途
CN105906644A (zh) * 2016-05-24 2016-08-31 中国科学院宁波材料技术与工程研究所 一种呋喃基缩水甘油醚及其合成方法和应用
CN107236220A (zh) * 2017-06-30 2017-10-10 常州市泰英物资有限公司 一种聚氯乙烯热稳定剂及其制备方法
CN108440735A (zh) * 2018-04-24 2018-08-24 四川大学 含Diels-Alder键自修复阻燃聚氨酯弹性体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085164A (en) * 1974-10-21 1978-04-18 Rhone-Poulenc Industries Thermosetting compositions based on a bis-imide and a polyurethane
CN104829771A (zh) * 2015-05-14 2015-08-12 苏州大学 一种侧链含有环状偶氮苯-联萘结构的聚合物及其制备方法和用途
CN105906644A (zh) * 2016-05-24 2016-08-31 中国科学院宁波材料技术与工程研究所 一种呋喃基缩水甘油醚及其合成方法和应用
CN107236220A (zh) * 2017-06-30 2017-10-10 常州市泰英物资有限公司 一种聚氯乙烯热稳定剂及其制备方法
CN108440735A (zh) * 2018-04-24 2018-08-24 四川大学 含Diels-Alder键自修复阻燃聚氨酯弹性体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"活性"/可控自由基聚合在蛋白质杂化体制备中的应用研究进展;赵伟刚等;《应用化工》;20141220(第12期);全文 *
红外二阶导数谱法快速鉴别前胡及伪品防风;黄冬兰等;《韶关学院学报》;20091215(第12期);全文 *

Also Published As

Publication number Publication date
CN109524056A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
CN104845612B (zh) 一种聚苯乙烯Hg2+荧光识别材料及其制备方法
CN107236128A (zh) 一种异腈、硫和胺的多组分聚合制备聚硫脲的方法及该聚硫脲的应用
CN105001419A (zh) 一种制备聚硫代酰胺的炔烃、硫和胺的多组分聚合方法
CN109524056B (zh) 一种具有防伪鉴别功能的序列高分子及其制备方法和应用
CN107325284A (zh) 一种超支化聚苯基三唑甲酸酯及其制备方法与应用
CN101875708A (zh) 含笼形倍半硅氧烷聚甲基丙烯酸甲酯杂化材料的制备方法
CN110698618A (zh) 水溶性共聚物固载l-脯氨酸催化剂及其制备方法和应用
US20210122883A1 (en) High-grafting density cyclic comb shaped polymer and preparation method therefor
CN111454299B (zh) 一类旋转受限高耐热中性镍催化剂、制备方法和应用
CN103087228B (zh) 含有苯乙基的n,n配位的镍乙烯聚合催化剂及制备和应用
CN110183478B (zh) 一种菁、香豆素、二羰基氟化硼杂化荧光染料的合成及其应用
CN110003410B (zh) 一种六臂星形共聚物及其制备方法
CN101712734A (zh) 含簇合物的高分子金属配合物及其制备
CN112939751B (zh) 一种芴[n]芳烃大环及其制备方法与在功能共轭带状化合物构建中的应用
CN114835895B (zh) 一种聚磺酰胺-二硫代氨基甲酸酯聚合物及其制备与应用
CN111039879B (zh) 一种含砜基三唑类化合物/聚合物及其制备方法和应用
CN113773489B (zh) 一种聚(酰胺-硫代酰胺)聚合物及其合成方法和应用
CN110003449B (zh) 含吡咯并吡咯烷酮构筑单元的荧光共轭高分子、制备方法及应用
CN108948349A (zh) 一种螺环聚合物材料及其制备方法
CN114163374A (zh) 一种树枝状大分子及其制备方法和应用
CN107474257B (zh) 一种吲哚并咔唑共价有机框架材料及其合成方法
CN113234031A (zh) 一类d-a型聚集诱导发光化合物及其制备方法和应用
CN113461480B (zh) 一种“类风车形”碳纳米管结构化合物、合成方法及应用
CN110698377A (zh) 一类基于单个苯环的荧光小分子探针及其合成方法
JP5651037B2 (ja) tetrakis−アリル置換フタロシアニンおよびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20221027

Address after: 215000 Shangheng Village, Pingwang Town, Suzhou City, Jiangsu Province

Applicant after: SUZHOU BINGXIN STATIONERY Co.,Ltd.

Address before: 215100 1206A, 12 / F, West Tower, Wanda Plaza, 188 West Lake Road, Wuzhong District, Suzhou, Jiangsu.

Applicant before: SUZHOU DEJIA PAINTING MATERIAL TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant