CN109507242B - 多孔结构c@三氧化二铁复合纳米材料的制备方法及其产品和应用 - Google Patents

多孔结构c@三氧化二铁复合纳米材料的制备方法及其产品和应用 Download PDF

Info

Publication number
CN109507242B
CN109507242B CN201811258287.2A CN201811258287A CN109507242B CN 109507242 B CN109507242 B CN 109507242B CN 201811258287 A CN201811258287 A CN 201811258287A CN 109507242 B CN109507242 B CN 109507242B
Authority
CN
China
Prior art keywords
solution
egg white
stirring
ferric oxide
porous structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811258287.2A
Other languages
English (en)
Other versions
CN109507242A (zh
Inventor
何丹农
葛美英
徐磊
尹桂林
孙健武
卢静
张芳
金彩虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority to CN201811258287.2A priority Critical patent/CN109507242B/zh
Publication of CN109507242A publication Critical patent/CN109507242A/zh
Application granted granted Critical
Publication of CN109507242B publication Critical patent/CN109507242B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种C@三氧化二铁复合纳米材料的制备方法及其产品和应用,该方法利用蛋清作为生物模板,在生物模板表面生长α‑FeOOH,利用冷冻干燥技术干燥,可确保蛋清保持其生物结构,然后在惰性气体氛围中高温处理,使蛋清碳化并且α‑FeOOH热分解得到C@α‑Fe2O3复合纳米结构。以C@α‑Fe2O3复合纳米结构制备的元件,可利用C材料优异的导电性,从而提升其电学性能,该复合材料可用于有毒气体的检测、超级电容器等领域。

Description

多孔结构C@三氧化二铁复合纳米材料的制备方法及其产品和 应用
技术领域
本发明涉及气敏材料技术领域,具体是指一种C@三氧化二铁复合纳米材料的制备方法及其产品和应用。
背景技术
金属氧化物如Fe2O3、ZnO、SnO2、WO3等由于具有性能优异、环境友善、资源丰富、价格低廉等优点,是研究较为广泛的气敏材料。通过金属氧化物表面修饰、金属/贵金属掺杂等工艺可提升材料的气敏性能,在气敏传感器领域有非常广泛的应用。
决定半导体气敏材料灵敏度的关键因素包括材料表面与待测气体的反应以及材料的导电性,其中前者决定敏感材料的响应灵敏度,后者可决定材料的能耗。Fe2O3作为气体敏感材料一直受到科研界和产业界的关注,但是半导体金属氧化物的导电性能较差,通过与碳材料符合可提升其导电性能,进而提升材料的气体灵敏性。
发明内容
为克服现有技术的不足,本发明的目的在于提供一种C@三氧化二铁复合纳米材料的制备方法。
本发明的再一目的在于:提供一种上述方法制备的C@三氧化二铁复合纳米材料产品。
本发明的又一目的在于:提供一种上述产品的应用。
本发明目的通过下述方案实现:一种多孔结构C@三氧化二铁复合纳米材料的制备方法,利用蛋清作为生物模板,在生物模板表面生长α-FeOOH,利用冷冻干燥技术干燥,可确保蛋清保持其生物结构,然后在惰性气体氛围中高温热处理,使蛋清碳化并且α-FeOOH热分解得到C@α-Fe2O3复合纳米结构,包括如下步骤:
步骤一:取10g蛋清与去离子水混合搅拌,蛋清的浓度为10~40wt%,过滤除去蛋清溶液中的白色絮状物,得到溶液A;
步骤二:按摩尔浓度0.05~0.2mol/L配FeSO4·7H2O的水溶液,搅拌30min后,向上述溶液中加入乙二醇,乙二醇与去离子水的体积比为1:1~3,搅拌10min,得到溶液B;
步骤三:将步骤一所得溶液A和步骤二所得溶液B按体积比为1~3:1混合,搅拌30min后将溶液在搅拌状态下加热至40~60 ℃,保持5~10h后将溶液降至室温,将所得产物于-80℃冷冻干燥;将干燥好的样品置于管式炉中,在惰性气体氛围下热处理,研磨得到C@Fe2O3复合纳米材料。
步骤三所述的惰性气体为高纯的氮或氩。
步骤三所述的热处理温度为300~350℃保持1.5~2h,450~600℃保持2~3h,升温速度均为1~3℃/min。
本发明还提供了一种多孔结构C@三氧化二铁复合纳米材料,根据上述任一所述方法制备得到。
另外,本发明也提供了上述一种多孔结构C@三氧化二铁复合纳米材料在丙酮气体检测中的应用。
本发明一种简单可行的制备C@Fe2O3纳米材料的方法,该方法利用蛋清作为生物模板,在生物模板表面生长α-FeOOH,利用冷冻干燥技术干燥,可确保蛋清保持其生物结构,然后在惰性气体氛围中高温处理,使蛋清碳化并且α-FeOOH热分解得到C@α-Fe2O3复合纳米结构。以C@α-Fe2O3复合纳米结构制备的元件,可利用C材料优异的导电性,从而提升其电学性能,该复合材料可用于有毒气体的检测、超级电容器等领域
本发明提供一种简单的制备多孔结构C@Fe2O3的方法,可增加材料表面的比表面积及活性位点,大幅提高纳米材料的气敏性能,且制备工艺简单,制备的成本低,对进一步推进半导体气敏器件的发展具有实际应用价值。
附图说明
图1为本发明实施例1制得的多孔结构C@Fe2O3对丙酮的响应图。
具体实施方式
实施例1:
取10g蛋清与去离子水混合搅拌,蛋清的浓度为30wt%,过滤除去蛋清溶液中的白色絮状物,得到溶液A;
按摩尔浓度0.05mol/L配FeSO4·7H2O的水溶液,搅拌30min后,向上述溶液中加入乙二醇,乙二醇与去离子水的体积比为1:1,搅拌10min,得到溶液B;
将溶液A和溶液B混合,溶液A和溶液B的体积比为1~3;搅拌30min后将溶液在搅拌状态下加热至60 ℃,保持8h后将溶液降至室温,将所得产物于-80℃冷冻干燥;将干燥好的样品置于管式炉中,在高纯氮气体氛围下热处理,热处理温度为300℃保持2h,500℃保持2.5h,升温速度均为2℃/min,研磨得到C@Fe2O3复合纳米材料。
所制得的多孔结构C@Fe2O3对丙酮的响应图如图1所示,合成的多孔C@Fe2O3对1ppm丙酮的灵敏度为15.12,最佳工作温度为180℃。
实施例2
取10g蛋清与去离子水混合搅拌,蛋清的浓度为20wt%,过滤除去蛋清溶液中的白色絮状物,得到溶液A;
按摩尔浓度0.1mol/L配FeSO4·7H2O的水溶液,搅拌30min后,向上述溶液中加入乙二醇,乙二醇与去离子水的体积比为1:3,搅拌10min,得到溶液B;
将溶液A和溶液B混合,溶液A和溶液B的体积比为1~2;搅拌30min后将溶液在搅拌状态下加热至50 ℃,保持8h后将溶液降至室温,将所得产物于-80℃冷冻干燥;将干燥好的样品置于管式炉中,在高纯氮气体氛围下热处理,热处理温度为350℃保持2h,500℃保持3h,升温速度均为1.5℃/min,研磨得到C@Fe2O3复合纳米材料。
本实施例合成的多孔C@Fe2O3对1ppm丙酮的灵敏度为17.6,最佳工作温度为180℃。
实施例3
取10g蛋清与去离子水混合搅拌,蛋清的浓度为10wt%,过滤除去蛋清溶液中的白色絮状物,得到溶液A;
按摩尔浓度0.2mol/L配FeSO4·7H2O的水溶液,搅拌30min后,向上述溶液中加入乙二醇,乙二醇与去离子水的体积比为1:2,搅拌10min,得到溶液B;
将溶液A和溶液B混合,溶液A和溶液B的体积比为1~2;搅拌30min后将溶液在搅拌状态下加热至50 ℃,保持8h后将溶液降至室温,将所得产物于-80℃冷冻干燥;将干燥好的样品置于管式炉中,在高纯氮气体氛围下热处理,热处理温度为350℃保持2h,500℃保持3h,升温速度均为1.5℃/min,研磨得到C@Fe2O3复合纳米材料。
本实施例合成的多孔C@Fe2O3对1ppm丙酮的灵敏度为11.58,最佳工作温度为180℃。
实施例4
取10g蛋清与去离子水混合搅拌,蛋清的浓度为40wt%,过滤除去蛋清溶液中的白色絮状物,得到溶液A;
按摩尔浓度0.2mol/L配FeSO4·7H2O的水溶液,搅拌30min后,向上述溶液中加入乙二醇,乙二醇与去离子水的体积比为1:3,搅拌10min,得到溶液B;
将溶液A和溶液B混合,溶液A和溶液B的体积比为1:1;搅拌30min后将溶液在搅拌状态下加热至40 ℃,保持5h后将溶液降至室温,将所得产物于-80℃冷冻干燥;将干燥好的样品置于管式炉中,在高纯氩气体氛围下热处理,热处理温度为300℃保持2h,450℃保持3h,升温速度均为1℃/min,研磨得到C@Fe2O3复合纳米材料。
本实施例合成的多孔C@Fe2O3对1ppm丙酮的灵敏度为13.55,最佳工作温度为180℃。
实施例5
取10g蛋清与去离子水混合搅拌,蛋清的浓度为40wt%,过滤除去蛋清溶液中的白色絮状物,得到溶液A;
按摩尔浓度0.2mol/L配FeSO4·7H2O的水溶液,搅拌30min后,向上述溶液中加入乙二醇,乙二醇与去离子水的体积比为1:3,搅拌10min,得到溶液B;
将溶液A和溶液B混合,溶液A和溶液B的体积比为1:1;搅拌30min后将溶液在搅拌状态下加热至40 ℃,保持5h后将溶液降至室温,将所得产物于-80℃冷冻干燥;将干燥好的样品置于管式炉中,在空气气体氛围下热处理,热处理温度为300℃保持2h,450℃保持3h,升温速度均为1℃/min,研磨得到C@Fe2O3复合纳米材料。
本实施例在空气中热处理样品,合成的材料为多孔Fe2O3,其对1ppm丙酮的灵敏度为5.36,最佳工作温度为230℃。

Claims (4)

1.一种多孔结构C@三氧化二铁复合纳米材料的制备方法,其特征在于,利用蛋清作为生物模板,在生物模板表面生长α-FeOOH,利用冷冻干燥确保蛋清保持其生物结构,然后在惰性气体氛围中高温热处理,使蛋清碳化并且α-FeOOH热分解得到C@α-Fe2O3复合纳米结构,包括如下步骤:
步骤一:取10g蛋清与去离子水混合搅拌,蛋清的浓度为10~40wt%,过滤除去蛋清溶液中的白色絮状物,得到溶液A;
步骤二:按摩尔浓度0.05~0.2mol/L配FeSO4·7H2O的水溶液,搅拌30min后,加入乙二醇,乙二醇与去离子水的体积比为1:(1~3),搅拌10min,得到溶液B;
步骤三:将步骤一所得溶液A和步骤二所得溶液B按体积比为1~3:1混合,搅拌30min后将溶液在搅拌状态下加热至40~60℃,保持5~10h后将溶液降至室温,将所得产物于-80℃冷冻干燥;将干燥好的样品置于管式炉中,在惰性气体氛围高温下热处理,研磨得到C@Fe2O3复合纳米材料;其中,
步骤三热处理中,温度为300~350℃保持1.5~2h,450~600℃保持2~3h,升温速度均为1~3℃/min。
2.根据权利要求1所述多孔结构C@三氧化二铁复合纳米材料的制备方法,其特征在于:步骤三所述的惰性气体为高纯的氮或氩。
3.一种多孔结构C@三氧化二铁复合纳米材料,其特征在于根据权利要求1或2所述方法制备得到。
4.根据权利要求3所述多孔结构C@三氧化二铁复合纳米材料在丙酮气体检测中的应用。
CN201811258287.2A 2018-10-26 2018-10-26 多孔结构c@三氧化二铁复合纳米材料的制备方法及其产品和应用 Active CN109507242B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811258287.2A CN109507242B (zh) 2018-10-26 2018-10-26 多孔结构c@三氧化二铁复合纳米材料的制备方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811258287.2A CN109507242B (zh) 2018-10-26 2018-10-26 多孔结构c@三氧化二铁复合纳米材料的制备方法及其产品和应用

Publications (2)

Publication Number Publication Date
CN109507242A CN109507242A (zh) 2019-03-22
CN109507242B true CN109507242B (zh) 2021-07-20

Family

ID=65746851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811258287.2A Active CN109507242B (zh) 2018-10-26 2018-10-26 多孔结构c@三氧化二铁复合纳米材料的制备方法及其产品和应用

Country Status (1)

Country Link
CN (1) CN109507242B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361425B (zh) * 2019-07-17 2022-07-26 上海纳米技术及应用国家工程研究中心有限公司 用于甲醛检测的Sn单原子掺杂α-三氧化二铁纳米材料的制备方法
CN110844940A (zh) * 2019-11-11 2020-02-28 上海纳米技术及应用国家工程研究中心有限公司 镍原子掺杂α-三氧化二铁纳米材料的制备方法及其产品和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243922A (zh) * 2011-06-10 2011-11-16 天津工业大学 电化学电容器用Fe2O3/C纳米复合电极材料的制备方法
CN102649589A (zh) * 2012-05-24 2012-08-29 复旦大学 一种丝蛋白调控的α型三氧化二铁纳米材料及其制备方法
WO2013076742A1 (en) * 2011-11-25 2013-05-30 Council Of Scientific & Industrial Research A process for the synthesis of magnetically recoverable, high surface area carbon-fe3o4 nano composite using metal organic framework (mof)
CN104117329A (zh) * 2014-07-21 2014-10-29 太原理工大学 一种碳包覆四氧化三铁磁性微球的制备方法
CN104492437A (zh) * 2014-12-17 2015-04-08 北京科技大学 一种碳-氧化铁纳米复合材料的制备方法
CN105236495A (zh) * 2015-09-15 2016-01-13 中南大学 一种利用蛋白作为模板制备形貌可控的α-Fe2O3介观晶体的方法
CN106809834A (zh) * 2017-04-13 2017-06-09 合肥工业大学 一种真空冷冻干燥制备生物质活性炭的方法
CN108091838A (zh) * 2017-11-24 2018-05-29 西安交通大学 一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243922A (zh) * 2011-06-10 2011-11-16 天津工业大学 电化学电容器用Fe2O3/C纳米复合电极材料的制备方法
WO2013076742A1 (en) * 2011-11-25 2013-05-30 Council Of Scientific & Industrial Research A process for the synthesis of magnetically recoverable, high surface area carbon-fe3o4 nano composite using metal organic framework (mof)
CN102649589A (zh) * 2012-05-24 2012-08-29 复旦大学 一种丝蛋白调控的α型三氧化二铁纳米材料及其制备方法
CN104117329A (zh) * 2014-07-21 2014-10-29 太原理工大学 一种碳包覆四氧化三铁磁性微球的制备方法
CN104492437A (zh) * 2014-12-17 2015-04-08 北京科技大学 一种碳-氧化铁纳米复合材料的制备方法
CN105236495A (zh) * 2015-09-15 2016-01-13 中南大学 一种利用蛋白作为模板制备形貌可控的α-Fe2O3介观晶体的方法
CN106809834A (zh) * 2017-04-13 2017-06-09 合肥工业大学 一种真空冷冻干燥制备生物质活性炭的方法
CN108091838A (zh) * 2017-11-24 2018-05-29 西安交通大学 一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bioinspired synthesis and gas-sensing performance of porous hierarchical a-Fe2O3/C nanocomposites;Fan Yang et al.;《Scripta Materialia》;20130218;第837-876页 *
三维有序大孔C/α-Fe2O3复合锂离子电池负极材料的制备及性能研究;毕超奇 等;《电镀与涂饰》;20180315;第37卷(第5期);第209-216页 *

Also Published As

Publication number Publication date
CN109507242A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
Zhao et al. Facile synthesis of SnO2 hierarchical porous nanosheets from graphene oxide sacrificial scaffolds for high-performance gas sensors
Zhao et al. Shaddock peels as bio-templates synthesis of Cd-doped SnO2 nanofibers: a high performance formaldehyde sensing material
Zeng et al. Hydrothermal synthesis of hierarchical flower-like SnO2 nanostructures with enhanced ethanol gas sensing properties
Lu et al. Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors
Cheng et al. Novel lotus root slice-like self-assembled In2O3 microspheres: synthesis and NO2-sensing properties
Bai et al. Novel α-Fe2O3/BiVO4 heterojunctions for enhancing NO2 sensing properties
Zhou et al. Environmentally friendly room temperature synthesis and humidity sensing applications of nanostructured Bi2O2CO3
CN104003454B (zh) 多孔氧化钴纳米线及其制备方法与应用
Navale et al. Low-temperature wet chemical synthesis strategy of In2O3 for selective detection of NO2 down to ppb levels
CN109507242B (zh) 多孔结构c@三氧化二铁复合纳米材料的制备方法及其产品和应用
CN110217759B (zh) 应用于低温下对低浓度no2气体检测的氧空位修饰的金属氧化物气敏材料及其制备方法
CN102012386A (zh) 基于准定向三氧化钨纳米带的氮氧化物气体传感器元件的制备方法
CN107867714A (zh) 纳米晶状SnO2/石墨烯复合气敏材料及其制备方法
Xu et al. Ultra-sensitive glycol sensing performance with rapid-recovery based on heterostructured ZnO-SnO2 hollow nanotube
CN104237314A (zh) 一种高灵敏度室温二氧化氮气敏材料的制备方法
Sun et al. CuO-sensitized amorphous ZnSnO3 hollow-rounded cubes for highly sensitive and selective H2S gas sensors
Li et al. Synthesis of porous rod-like In2O3 nanomaterials and its selective detection of NO at room temperature
Jiang et al. High-performance photoluminescence-based oxygen sensing with Pr-modified ZnO nanofibers
CN107607588B (zh) 用于气敏传感器的被修饰SnO2纳米材料
CN103030137B (zh) 分级结构超长五氧化二钒纳米线线束及其制备方法
Xu et al. Vanadium-doped tin oxide porous nanofibers: Enhanced responsivity for hydrogen detection
Zhou et al. NiO doped SnO2 p–n heterojunction microspheres: preparation, characterisation and CO sensing properties
CN104098146B (zh) 一种八面体状Co3O4纳米材料的熔融盐制备法及应用
Wang et al. TiO2/KNbO3 nanocomposite for enhanced humidity sensing performance
CN106770493B (zh) 一种基于CNTs@α-Fe2O3异质结复合材料的丙酮气体传感器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant