CN109491439A - A kind of reference voltage source and its working method - Google Patents

A kind of reference voltage source and its working method Download PDF

Info

Publication number
CN109491439A
CN109491439A CN201811540844.XA CN201811540844A CN109491439A CN 109491439 A CN109491439 A CN 109491439A CN 201811540844 A CN201811540844 A CN 201811540844A CN 109491439 A CN109491439 A CN 109491439A
Authority
CN
China
Prior art keywords
field effect
effect transistor
type field
gate
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811540844.XA
Other languages
Chinese (zh)
Other versions
CN109491439B (en
Inventor
邓婉玲
张振
李强立
马晓玉
黄君凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201811540844.XA priority Critical patent/CN109491439B/en
Publication of CN109491439A publication Critical patent/CN109491439A/en
Application granted granted Critical
Publication of CN109491439B publication Critical patent/CN109491439B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • G05F1/46Regulating voltage or current  wherein the variable actually regulated by the final control device is DC
    • G05F1/56Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明公开了一种基准电压源,包括:依次相连的启动电路、一阶补偿电路、用于减小基准电压的温度系数的高阶补偿电路和用于降低基准电压的电源电压调整率的ICTAT电流生成器电路;通过利用一阶补偿电路的第二N型场效应管MN2、第三N型场效应管MN3、第四N型场效应管MN4、第四P型场效应管MP4、第五P型场效应管MP5形成的负反馈环路代替传统基准电压源的运算放大器实现节点电压的稳定,简化了的电路设计和实现上的复杂度,同时降低了电路的面积。

The invention discloses a reference voltage source, comprising: a start-up circuit, a first-order compensation circuit, a high-order compensation circuit for reducing the temperature coefficient of the reference voltage, and an ICTAT for reducing the power supply voltage regulation rate of the reference voltage, which are connected in sequence Current generator circuit; by using the second N-type field effect transistor MN2, the third N-type field effect transistor MN3, the fourth N-type field effect transistor MN4, the fourth P-type field effect transistor MP4, the fifth The negative feedback loop formed by the P-type field effect transistor MP5 replaces the operational amplifier of the traditional reference voltage source to stabilize the node voltage, which simplifies the circuit design and the complexity of implementation, and reduces the area of the circuit.

Description

一种基准电压源及其工作方法A reference voltage source and its working method

技术领域technical field

本发明涉及模拟集成电路技术领域,具体涉及一种基准电压源及其工作方法。The invention relates to the technical field of analog integrated circuits, in particular to a reference voltage source and a working method thereof.

背景技术Background technique

基准电压源是模拟集成电路的基本组成单元,其精度和稳定性直接影响整个电路系统的运行。目前,基准电压源已被广泛应用于数字、模拟以及数模混合的信号系统中,例如,A/D、D/A转换器、存储器、锁相环等系统需要使用基准电压源来确定其输入输出信号的范围,并考虑基准电压源对这些系统增益和噪声存在的影响。随着超大规模集成电路的发展,一块几平方微米的芯片上集成了上千万个晶体管、运算器和控制器,因此对小面积、高精度和高稳定性的基准电压源的需求也日益增加。The reference voltage source is the basic component of the analog integrated circuit, and its accuracy and stability directly affect the operation of the entire circuit system. At present, reference voltage sources have been widely used in digital, analog and digital-analog mixed signal systems. For example, systems such as A/D, D/A converters, memories, and phase-locked loops need to use reference voltage sources to determine their input. range of the output signal, and consider the effects of the reference on the gain and presence of noise in these systems. With the development of ultra-large-scale integrated circuits, tens of millions of transistors, operators and controllers are integrated on a chip of several square microns, so the demand for small-area, high-precision and high-stability reference voltage sources is also increasing. .

基准电压源通过温度系数和电源电压调整率这两个指标来衡量其精度和稳定性,因此要实现小面积、高精度和高稳定性的基准电压源,应该尽可能减小温度系数和电源电压调整率。传统的基准电压源通过运放维持特定节点的电压值,并通过双极型晶体管产生具有正温度系数的电压差,但是由于其中的运放和双极型晶体管的面积普遍偏大,很难实现减小芯片面积的要求。另外,传统的基准电压源是将与绝对温度成正比例关系的电压和与绝对温度成反比例关系的电压相加,实现具有零温度特性的基准电压。但是,该方法产生的基准电压的温度系数偏高,通常在20~100ppm/℃之间。图1为传统技术中基准电压源的结构示意图,传统基准电压源的工作原理是利用运放A1来稳定a与b点的电压值,双极型晶体管Q1与Q2上的电压差在电阻R3上产生与温度成正比的电流,此电流经M3管镜像到电阻R4上,形成与温度成正比的电压VPTAT。由于双极型晶体管的基极-发射极电压与温度成反比,将此电压与VPTAT相叠加后可得到一个与温度无关的输出基准电压。传统基准电压源由于技术方法成熟而被广泛应用,但由于设计时只考虑抵消一阶温度项,导致双极型晶体管基极-发射极电压VBE中仍包含有高阶项。因此,这种传统一阶基准电压源的温度系数较高,通常在20ppm/℃以上;且由于在传统基准电压源中使用了多个双极型晶体管,从而增加了芯片的面积,使成本降低变得困难。为了解决温度系数过高的问题,一些补偿方法被提出,例如,指数补偿技术、分段的线性补偿方法,这些技术可以很好地补偿基准电压源的温度系数,但是在电路中不可避免地需要采用运算放大器来实现,导致了芯片面积的增加。近年来,为了解决芯片面积过大问题,无运算放大器的基准电压源的设计方法开始被提出,但是在这些采用无运算放大器的基准电压源的电路设计中,温度系数、电源电压调整率等关键参数也相应升高,导致电路的精度和稳定性变差;与此同时,由于电路中集成了大量的双极型晶体管,这些无运算放大器的基准电压源模块的面积也较大,因此仍然无法满足现代超大规模集成电路发展对基准电压源设计的要求。The reference voltage source measures its accuracy and stability by the temperature coefficient and the power supply voltage regulation rate. Therefore, to achieve a small area, high precision and high stability reference voltage source, the temperature coefficient and power supply voltage should be reduced as much as possible. adjustment rate. The traditional reference voltage source maintains the voltage value of a specific node through the op amp, and generates a voltage difference with a positive temperature coefficient through the bipolar transistor, but due to the generally large area of the op amp and the bipolar transistor, it is difficult to achieve Reduced chip area requirements. In addition, the traditional reference voltage source is to add a voltage proportional to the absolute temperature and a voltage inversely proportional to the absolute temperature to achieve a reference voltage with zero temperature characteristics. However, the temperature coefficient of the reference voltage generated by this method is high, usually between 20 and 100 ppm/°C. Figure 1 is a schematic diagram of the structure of the reference voltage source in the traditional technology. The working principle of the traditional reference voltage source is to use the operational amplifier A1 to stabilize the voltage values of points a and b. The voltage difference between the bipolar transistors Q1 and Q2 is on the resistor R3. A current proportional to the temperature is generated, and this current is mirrored to the resistor R4 through the M3 tube to form a voltage VPTAT proportional to the temperature. Since the base-emitter voltage of a bipolar transistor is inversely proportional to temperature, a temperature-independent output reference voltage can be obtained by superimposing this voltage with VPTAT. The traditional voltage reference source is widely used due to the mature technology, but because only the first-order temperature term is canceled in the design, the bipolar transistor base-emitter voltage V BE still contains high-order terms. Therefore, the temperature coefficient of this traditional first-order reference voltage source is relatively high, usually above 20ppm/°C; and because multiple bipolar transistors are used in the traditional reference voltage source, the chip area is increased and the cost is reduced. becomes difficult. In order to solve the problem of too high temperature coefficient, some compensation methods have been proposed, such as exponential compensation technique, piecewise linear compensation method, these techniques can well compensate the temperature coefficient of the reference voltage source, but it is unavoidable that the circuit needs The use of operational amplifiers results in an increase in the chip area. In recent years, in order to solve the problem of excessive chip area, design methods of reference voltage sources without operational amplifiers have begun to be proposed. However, in these circuit designs using reference voltage sources without operational amplifiers, the key factors such as temperature coefficient and power supply voltage regulation rate are The parameters also increase accordingly, resulting in the deterioration of the accuracy and stability of the circuit; at the same time, due to the integration of a large number of bipolar transistors in the circuit, the area of these reference voltage source modules without operational amplifiers is also large, so it is still impossible to Meet the requirements of the reference voltage source design for the development of modern ultra-large-scale integrated circuits.

因此,行业内急需研发一种在减少传统基准电压源在电路设计和实现上的复杂度的基础上,提高基准电压源的精度和稳定性,同时减小基准电压源芯片的面积的基准电压源。Therefore, there is an urgent need in the industry to develop a reference voltage source that improves the accuracy and stability of the reference voltage source and reduces the area of the reference voltage source chip on the basis of reducing the complexity of the circuit design and implementation of the traditional reference voltage source. .

发明内容SUMMARY OF THE INVENTION

本发明的目的是为了克服以上现有技术存在的不足,提供了一种基准电压源。The purpose of the present invention is to provide a reference voltage source in order to overcome the above shortcomings of the prior art.

本发明的另一目的是为了克服以上现有技术存在的不足,提供了一种基准电压源低的工作方法。Another object of the present invention is to provide a working method with a low reference voltage source in order to overcome the above shortcomings of the prior art.

本发明的目的通过以下的技术方案实现:The object of the present invention is achieved through the following technical solutions:

一种基准电压源,包括:依次相连的启动电路、一阶补偿电路、用于减小基准电压的温度系数的高阶补偿电路和用于降低基准电压的电源电压调整率的ICTAT电流生成器电路;所述一阶补偿电路包括第三P型场效应管MP3、第四P型场效应管MP4、第五P型场效应管MP5、第六P型场效应管MP6、第七P型场效应管MP7、第八P型场效应管MP8、第九P型场效应管MP9、第二N型场效应管MN2、第三N型场效应管MN3、第四N型场效应管MN4、电阻R1、电阻R2和双极型晶体管Q1;第三P型场效应管MP3的栅极、第四P型场效应管MP4的栅极、第五P型场效应管MP5的栅极和漏极、第六P型场效应管MP6的栅极均与高阶补偿电路相连,第三P型场效应管MP3的栅极还和启动电路相连,第三P型场效应管MP3的源极、第四P型场效应管MP4的源极、第五P型场效应管MP5的源极、第六P型场效应管MP6的源极均与输入电压VDD相连,第五P型场效应管MP5的漏极与第二N型场效应管MN2的漏极相连;第二N型场效应管MN2的源极与第七P型场效应管MP7源极相连,第二N型场效应管MN2的栅极和第三N型场效应管MN3的漏极、第三P型场效应管MP3的漏极均连接;第七P型场效应管MP7的漏极和栅极均接地;第三N型场效应管MN3的源极与第八P型场效应管MP8的源极相连,第三N型场效应管MN3的栅极和第四N型场效应管MN4的栅极、第四N型场效应管MN4的漏极、第四P型场效应管MP4的漏极连接;第四N型场效应管MN4的源极与电阻R1的一端相连;电阻R1的另一端连接第九P型场效应管MP9的源极;第八P型场效应管MP8的栅极和漏极、第九P型场效应管MP9的栅极和漏极均接地;第六P型场效应管MP6的漏极和电阻R2的一端相连;电阻R2的另一端与双极型晶体管Q1的发射极相连,双极型晶体管Q1的基极与集电极均接地。A reference voltage source, comprising: a start-up circuit, a first-order compensation circuit, a high-order compensation circuit for reducing the temperature coefficient of the reference voltage, and an ICTAT current generator circuit for reducing the power supply voltage regulation rate of the reference voltage, which are connected in sequence ; The first-order compensation circuit includes the third P-type FET MP3, the fourth P-type FET MP4, the fifth P-type FET MP5, the sixth P-type FET MP6, and the seventh P-type FET Tube MP7, eighth P-type FET MP8, ninth P-type FET MP9, second N-type FET MN2, third N-type FET MN3, fourth N-type FET MN4, resistor R1 , resistor R2 and bipolar transistor Q1; the gate of the third P-type field effect transistor MP3, the gate of the fourth P-type field effect transistor MP4, the gate and drain of the fifth P-type field effect transistor MP5, the first The gates of the six P-type field effect transistors MP6 are all connected to the high-order compensation circuit, the gate of the third P-type field effect transistor MP3 is also connected to the start-up circuit, the source of the third P-type field effect transistor MP3, and the fourth P-type field effect transistor. The source of the type FET MP4, the source of the fifth P-type FET MP5, and the source of the sixth P-type FET MP6 are all connected to the input voltage VDD, and the drain of the fifth P-type FET MP5 It is connected to the drain of the second N-type field effect transistor MN2; the source of the second N-type field effect transistor MN2 is connected to the source of the seventh P-type field effect transistor MP7, and the gate of the second N-type field effect transistor MN2 and The drain of the third N-type field effect transistor MN3 and the drain of the third P-type field effect transistor MP3 are connected; the drain and gate of the seventh P-type field effect transistor MP7 are both grounded; the third N-type field effect transistor The source of MN3 is connected to the source of the eighth P-type field effect transistor MP8, the gate of the third N-type field effect transistor MN3 and the gate of the fourth N-type field effect transistor MN4, the fourth N-type field effect transistor MN4 The drain of the fourth P-type field effect transistor MP4 is connected; the source of the fourth N-type field effect transistor MN4 is connected to one end of the resistor R1; the other end of the resistor R1 is connected to the ninth P-type field effect transistor MP9. source; the gate and drain of the eighth P-type field effect transistor MP8 and the gate and drain of the ninth P-type field effect transistor MP9 are grounded; the drain of the sixth P-type field effect transistor MP6 and the resistance of the resistor R2 One end is connected; the other end of the resistor R2 is connected to the emitter of the bipolar transistor Q1, and both the base and the collector of the bipolar transistor Q1 are grounded.

优选地,所述启动电路包括:第一P型场效应管MP1、第二P型场效应管MP2和第一N型场效应管MN1;第一P型场效应管MP1的源极与输入电压VDD相连,第一P型场效应管MP1的栅极与第三P型场效应管MP3的栅极、第四P型场效应管MP4的栅极、第五P型场效应管MP5的漏极、第五P型场效应管MP5的栅极、第六P型场效应管MP6的栅极均相连,第一P型场效应管MP1的漏极与第二P型场效应管MP2的栅极、第一N型场效应管MN1的栅极均相连;第一N型场效应管MN1的源极和漏极均连接至地,第二P型场效应管MP2的漏极和第二N型场效应管MN2的栅极连接。Preferably, the startup circuit includes: a first P-type field effect transistor MP1, a second P-type field effect transistor MP2 and a first N-type field effect transistor MN1; the source and input voltage of the first P-type field effect transistor MP1 VDD is connected, the gate of the first P-type field effect transistor MP1 is connected to the gate of the third P-type field effect transistor MP3, the gate of the fourth P-type field effect transistor MP4, and the drain of the fifth P-type field effect transistor MP5 , the gate of the fifth P-type field effect transistor MP5, the gate of the sixth P-type field effect transistor MP6 are all connected, the drain of the first P-type field effect transistor MP1 and the gate of the second P-type field effect transistor MP2 , the gates of the first N-type field effect transistor MN1 are connected to the ground; the source and drain of the first N-type field effect transistor MN1 are connected to the ground, and the drain of the second P-type field effect transistor MP2 is connected to the second N-type field effect transistor. The gate of the FET MN2 is connected.

优选地,所述高阶补偿电路包括:第十P型场效应管MP10、第十一P型场效应管MP11、第五N型场效应管MN5和第六N型场效应管MN6;第十P型场效应管MP10的栅极与第六P型场效应管MP6的栅极相连,第十P型场效应管MP10的源极、第十一P型场效应管MP11的源极与输入电压VDD相连,第十P型场效应管MP10的漏极与第五N型场效应管MN5的漏极、第十一P型场效应管MP11的漏极相连;第十一P型场效应管MP11的栅极与ICTAT电流生成器电路相连;第五N型场效应管MN5的漏极还和第五N型场效应管MN5的栅极、第六N型场效应管MN6的栅极相连,第五N型场效应管MN5的源极接地;第六N型场效应管MN6的漏极与第六P型场效应管MP6的漏极相连,第六N型场效应管MN6的源极接地。Preferably, the high-order compensation circuit includes: a tenth P-type field effect transistor MP10, an eleventh P-type field effect transistor MP11, a fifth N-type field effect transistor MN5, and a sixth N-type field effect transistor MN6; The gate of the P-type field effect transistor MP10 is connected to the gate of the sixth P-type field effect transistor MP6, the source of the tenth P-type field effect transistor MP10 and the source of the eleventh P-type field effect transistor MP11 are connected to the input voltage VDD is connected, the drain of the tenth P-type field effect transistor MP10 is connected to the drain of the fifth N-type field effect transistor MN5 and the drain of the eleventh P-type field effect transistor MP11; the eleventh P-type field effect transistor MP11 The gate is connected to the ICTAT current generator circuit; the drain of the fifth N-type field effect transistor MN5 is also connected to the gate of the fifth N-type field effect transistor MN5 and the gate of the sixth N-type field effect transistor MN6. The source of the fifth N-type field effect transistor MN5 is grounded; the drain of the sixth N-type field effect transistor MN6 is connected to the drain of the sixth P-type field effect transistor MP6, and the source of the sixth N-type field effect transistor MN6 is grounded.

优选地,所述ICTAT电流生成器电路包括:第十二P型场效应管MP12、第十三P型场效应管MP13、第十四P型场效应管MP14、第七N型场效应管MN7、第八N型场效应管MN8和电阻R3;第十二P型场效应管MP12的栅极、第十三P型场效应管MP13的栅极和第十四P型场效应管MP14的栅极与第十一P型场效应管MP11的栅极相连,第十二P型场效应管MP12的源极、第十三P型场效应管MP13的源极和第十四P型场效应管MP14的源极与输入电压VDD相连,第十二P型场效应管MP12的漏极与第七N型场效应管MN7的栅极、电阻R3一端相连;电阻R3的另一端接地;第十三P型场效应管MP13的漏极与第七N型场效应管MN7的漏极相连;第七N型场效应管MN7的源极接地;第十四P型场效应管MP14的漏极与第十四P型场效应管MP14的栅极、第八N型场效应管MN8的漏极相连;第八N型场效应管MN8的栅极连接第七N型场效应管MN7的漏极;第八N型场效应管MN8的源极接地。Preferably, the ICTAT current generator circuit includes: a twelfth P-type field effect transistor MP12, a thirteenth P-type field effect transistor MP13, a fourteenth P-type field effect transistor MP14, and a seventh N-type field effect transistor MN7 , the eighth N-type field effect transistor MN8 and the resistor R3; the gate of the twelfth P-type field effect transistor MP12, the gate of the thirteenth P-type field effect transistor MP13 and the gate of the fourteenth P-type field effect transistor MP14 The electrode is connected to the gate of the eleventh P-type field effect transistor MP11, the source of the twelfth P-type field effect transistor MP12, the source of the thirteenth P-type field effect transistor MP13 and the fourteenth P-type field effect transistor The source of MP14 is connected to the input voltage VDD, the drain of the twelfth P-type field effect transistor MP12 is connected to the gate of the seventh N-type field effect transistor MN7 and one end of the resistor R3; the other end of the resistor R3 is grounded; the thirteenth The drain of the P-type field effect transistor MP13 is connected to the drain of the seventh N-type field effect transistor MN7; the source of the seventh N-type field effect transistor MN7 is grounded; the drain of the fourteenth P-type field effect transistor MP14 is connected to the drain of the seventh N-type field effect transistor MN7. The gate of the fourteenth P-type field effect transistor MP14 is connected to the drain of the eighth N-type field effect transistor MN8; the gate of the eighth N-type field effect transistor MN8 is connected to the drain of the seventh N-type field effect transistor MN7; The sources of the eight N-type field effect transistors MN8 are grounded.

本发明的另一目的通过以下的技术方案实现:Another object of the present invention is achieved through the following technical solutions:

一种基准电压源的工作方法,包括:A working method of a reference voltage source, comprising:

S1,电源上电时,启动电路的正常启动,基准电压源进入正常工作状态;S1, when the power supply is powered on, the startup circuit starts normally, and the reference voltage source enters the normal working state;

S2,一阶补偿电路的第二N型场效应管MN2、第三N型场效应管MN3、第四N型场效应管MN4、第四P型场效应管MP4、第五P型场效应管MP5形成负反馈环路维持预设节点的电压相等,第七P型场效应管MP7、第八P型场效应管MP8和第九P型场效应管MP9工作在亚阈值区域,并通过PMOS管之间的压差产生具有正温度系数的电流IPTAT,通过电流镜将该电流IPTAT复制到基准电压源的输出端;S2, the second N-type FET MN2, the third N-type FET MN3, the fourth N-type FET MN4, the fourth P-type FET MP4, and the fifth P-type FET of the first-order compensation circuit MP5 forms a negative feedback loop to maintain the same voltage at the preset node. The seventh P-type field effect transistor MP7, the eighth P-type field effect transistor MP8 and the ninth P-type field effect transistor MP9 work in the sub-threshold region, and pass the PMOS transistor. The voltage difference between them produces a current IPTAT with a positive temperature coefficient, which is copied to the output of the reference voltage source through a current mirror;

S3,ICTAT电流生成器电路产生一个不随电源电压变化的负温度系数电流ICTAT。S3, the ICTAT current generator circuit generates a negative temperature coefficient current ICTAT that does not vary with the supply voltage.

S4,高阶补偿电路将电流ICTAT复制到基准电压源的输出端,与电流IPTAT结合后的电流在电阻R2形成高阶补偿电压来补偿一阶基准电压(输出电压、Vref)。S4, the high-order compensation circuit copies the current ICTAT to the output terminal of the reference voltage source, and the current combined with the current IPTAT forms a high-order compensation voltage in the resistor R2 to compensate the first-order reference voltage (output voltage, Vref).

优选地,步骤S1包括:当电源上电时,第一N型场效应管MN1的栅极为低电位,第二P型场效应管MP2导通,第二N型场效应管MN2栅极变为高电平,第二N型场效应管MN2导通,电流流经第五P型场效应管MP5、第二N型场效应管MN2和第七P型场效应管MP7到地,将第五P型场效应管MP5的栅极电位拉低,启动电路开始启动;电流通过第一P型场效应管MP1给第二P型场效应管MP2充电,第二P型场效应管MP2的栅极电位逐渐升高,当增加到比电源低预设阈值电压值时,第二P型场效应管MP2关断,启动电路完成启动,基准电压源进入正常工作状态。Preferably, step S1 includes: when the power supply is powered on, the gate of the first N-type field effect transistor MN1 is at a low potential, the second P-type field effect transistor MP2 is turned on, and the gate of the second N-type field effect transistor MN2 becomes High level, the second N-type field effect transistor MN2 is turned on, the current flows through the fifth P-type field effect transistor MP5, the second N-type field effect transistor MN2 and the seventh P-type field effect transistor MP7 to the ground, and the fifth The gate potential of the P-type field effect transistor MP5 is pulled down, and the startup circuit starts to start; the current passes through the first P-type field effect transistor MP1 to charge the second P-type field effect transistor MP2, and the gate of the second P-type field effect transistor MP2 The potential increases gradually, and when it increases to a preset threshold voltage value lower than the power supply, the second P-type field effect transistor MP2 is turned off, the start-up circuit completes the start-up, and the reference voltage source enters the normal working state.

优选地,步骤S2包括:当由于某种原因使一阶补偿电路的c点电压升高时,节点d的电压将会被拉低,抬高节点e的电压,节点c的电压随之下降,节点c的电压得到稳定;设定第三N型场效应管(MN3)、第四N型场效应管(MN4)、第三P型场效应管(MP3)和第四P型场效应管(MP4)的宽长比相等,使得第三N型场效应管(MN3)、第四N型场效应管(MN4)的漏-源端电流相等,从而确保使节点a与节点b点的电压值相等;根据一阶补偿电路结构,得出如下关系式:Preferably, step S2 includes: when the voltage of point c of the first-order compensation circuit is raised for some reason, the voltage of node d will be pulled down, the voltage of node e will be raised, and the voltage of node c will decrease accordingly, The voltage of node c is stabilized; set the third N-type field effect transistor (MN3), the fourth N-type field effect transistor (MN4), the third P-type field effect transistor (MP3) and the fourth P-type field effect transistor ( MP4) are equal in width to length ratio, so that the drain-source currents of the third N-type field effect transistor (MN3) and the fourth N-type field effect transistor (MN4) are equal, thereby ensuring that the voltage values of node a and node b are equal; according to the structure of the first-order compensation circuit, the following relationship is obtained:

VSG(MP8)+VGS(MN3)=VSG(MP9)+I1R1+VSG(MN4) (1)V SG(MP8) +V GS(MN3) =V SG(MP9) +I 1 R 1 +V SG(MN4) (1)

其中,VSG(MP8)、VGS(MN3)、VSG(MP9)和VSG(MN4)分别为第八P型场效应管MP8、第三N型场效应管MN3、第九P型场效应管MP9和第四N型场效应管MN4的栅-源端电压,I1是流过R1的电流。因为第三N型场效应管(MN3)、第四N型场效应管(MN4)的宽长比及其漏-源端电流相等,所以MN3和MN4管的栅端-源端电压相等。根据式(1),得到电流I1的表达式:Among them, V SG(MP8) , V GS(MN3) , V SG(MP9) and V SG(MN4) are the eighth P-type field effect transistor MP8, the third N-type field effect transistor MN3, and the ninth P-type field effect transistor, respectively. The gate-source voltage of the effect transistor MP9 and the fourth N-type field effect transistor MN4, I1 is the current flowing through R1. Because the width to length ratios of the third N-type field effect transistor (MN3) and the fourth N-type field effect transistor (MN4) and their drain-source currents are equal, the gate-source voltages of the MN3 and MN4 transistors are equal. According to formula (1), the expression of current I 1 is obtained:

其中,M=[IMP8(W/L)MP9]/[IMP9(W/L)MP8],通过设置第四P型场效应管MP4与第六P型场效应管MP6的宽长比相等,确保流过R1和R2的电流相等,进而得到一阶基准电压的表达式为:Wherein, M=[I MP8 (W/L) MP9 ]/[I MP9 (W/L) MP8 ], by setting the width to length ratio of the fourth P-type field effect transistor MP4 and the sixth P-type field effect transistor MP6 to be equal , to ensure that the currents flowing through R1 and R2 are equal, and then the expression for the first-order reference voltage is:

VEBQ1是双极型晶体管Q1的基极-发射极电压,其中,第七P型场效应管MP7、第八P型场效应管MP8和第九P型场效应管MP9工作在亚阈值区,其它MOS管工作在饱和区,通过设置电阻R1和R2的值,得到一阶温度补偿曲线。V EBQ1 is the base-emitter voltage of the bipolar transistor Q1, wherein the seventh P-type field effect transistor MP7, the eighth P-type field effect transistor MP8 and the ninth P-type field effect transistor MP9 work in the sub-threshold region, Other MOS tubes work in the saturation region, and the first-order temperature compensation curve is obtained by setting the values of resistors R1 and R2.

本发明相对于现有技术具有如下的优点:Compared with the prior art, the present invention has the following advantages:

通过利用一阶补偿电路的第二N型场效应管MN2、第三N型场效应管MN3、第四N型场效应管MN4、第四P型场效应管MP4、第五P型场效应管MP5形成的负反馈环路代替传统基准电压源的运算放大器实现节点电压的稳定,简化了的电路设计和实现上的复杂度,同时降低了电路的面积;用工作在特定状态的第七P型场效应管MP7、第八P型场效应管MP8和第九P型场效应管MP9代替传统基准电压源的双极型晶体管产生具有正温度系数的压差,减小了不同工艺间的失配,同时进一步降低电路的面积;通过特定的电路补偿温度系数的高阶项,使基准电压源的精度和稳定性得到有效地提高。整个电压基准电路中只使用了一个双极型晶体管,便可减小不同工艺方法之间的失配问题,节省了芯片电路的面积;仿真证明:输出基准电压(Vref)低于1V,相对于输出电压为1.25V左右的传统带隙基准电压源,可以为低压电路提供更稳定的电压基准值;By using the second N-type field effect transistor MN2, the third N-type field effect transistor MN3, the fourth N-type field effect transistor MN4, the fourth P-type field effect transistor MP4, and the fifth P-type field effect transistor using the first-order compensation circuit The negative feedback loop formed by MP5 replaces the operational amplifier of the traditional reference voltage source to stabilize the node voltage, which simplifies the circuit design and implementation complexity, and reduces the area of the circuit at the same time; the seventh P-type working in a specific state is used The field effect transistor MP7, the eighth P-type field effect transistor MP8 and the ninth P-type field effect transistor MP9 replace the bipolar transistors of the traditional reference voltage source to generate a voltage difference with a positive temperature coefficient, reducing the mismatch between different processes At the same time, the area of the circuit is further reduced; the high-order term of the temperature coefficient is compensated by a specific circuit, so that the accuracy and stability of the reference voltage source are effectively improved. Only one bipolar transistor is used in the entire voltage reference circuit, which can reduce the mismatch problem between different process methods and save the area of the chip circuit; simulation proves that the output reference voltage (Vref) is lower than 1V, which is relatively The traditional bandgap reference voltage source with an output voltage of about 1.25V can provide a more stable voltage reference value for low-voltage circuits;

附图说明Description of drawings

图1是传统的基准电压源的电路图。FIG. 1 is a circuit diagram of a conventional reference voltage source.

图2是本发明的基准电压源的结构框图。FIG. 2 is a structural block diagram of the reference voltage source of the present invention.

图3是本发明的启动电路和一阶补偿电路的电路图。FIG. 3 is a circuit diagram of a start-up circuit and a first-order compensation circuit of the present invention.

图4是本发明的高阶补偿电路和ICTAT电流生成器电路的电路图。4 is a circuit diagram of the higher order compensation circuit and ICTAT current generator circuit of the present invention.

图5是本发明的基准电压源的工作方法。FIG. 5 is a working method of the reference voltage source of the present invention.

图6是本发明的高阶补偿基准电压的原理示意图。FIG. 6 is a schematic diagram of the principle of the high-order compensation reference voltage of the present invention.

图7是在TT工艺角下输出电压随温度变化的示意图。Figure 7 is a schematic diagram of the output voltage versus temperature at the TT process corner.

图8是在FF工艺角下输出电压随温度变化的示意图。Figure 8 is a schematic diagram of the output voltage versus temperature at the FF process corner.

图9是在SS工艺角下输出电压随温度变化的示意图。Figure 9 is a schematic diagram of the output voltage versus temperature at the SS process corner.

图10输出电压随电源电压变化的线性调整率的仿真示意图。FIG. 10 is a simulation schematic diagram of the linear regulation ratio of the output voltage as a function of the power supply voltage.

图11输出电压在不同电源电压下电源抑制比PSRR的仿真示意图。Fig. 11 The simulation schematic diagram of the power supply rejection ratio PSRR of the output voltage under different supply voltages.

图12输出电压在TT、FF、SS工艺角下电源抑制比PSRR的仿真示意图。Figure 12 is a simulation schematic diagram of the power supply rejection ratio PSRR of the output voltage at the TT, FF, and SS process corners.

具体实施方式Detailed ways

下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.

参见图2-4,一种基准电压源,包括:依次相连的启动电路、一阶补偿电路、用于减小基准电压(输出电压、Vref)的温度系数的高阶补偿电路和用于降低基准电压的电源电压调整率的ICTAT电流生成器电路;所述一阶补偿电路包括第三P型场效应管MP3、第四P型场效应管MP4、第五P型场效应管MP5、第六P型场效应管MP6、第七P型场效应管MP7、第八P型场效应管MP8、第九P型场效应管MP9、第二N型场效应管MN2、第三N型场效应管MN3、第四N型场效应管MN4、电阻R1、电阻R2和双极型晶体管Q1;第三P型场效应管MP3的栅极、第四P型场效应管MP4的栅极、第五P型场效应管MP5的栅极和漏极、第六P型场效应管MP6的栅极均与高阶补偿电路相连,第三P型场效应管MP3的栅极还和启动电路相连,第三P型场效应管MP3的源极、第四P型场效应管MP4的源极、第五P型场效应管MP5的源极、第六P型场效应管MP6的源极均与输入电压VDD相连,第五P型场效应管MP5的漏极与第二N型场效应管MN2的漏极相连;第二N型场效应管MN2的源极与第七P型场效应管MP7源极相连,第二N型场效应管MN2的栅极和第三N型场效应管MN3的漏极、第三P型场效应管MP3的漏极均连接;第七P型场效应管MP7的漏极和栅极均接地;第三N型场效应管MN3的源极与第八P型场效应管MP8的源极相连,第三N型场效应管MN3的栅极和第四N型场效应管MN4的栅极、第四N型场效应管MN4的漏极、第四P型场效应管MP4的漏极连接;第四N型场效应管MN4的源极与电阻R1的一端相连;电阻R1的另一端连接第九P型场效应管MP9的源极;第八P型场效应管MP8的栅极和漏极、第九P型场效应管MP9的栅极和漏极均接地;第六P型场效应管MP6的漏极和电阻R2的一端相连;电阻R2的另一端与双极型晶体管Q1的发射极相连,双极型晶体管Q1的基极与集电极均接地。Referring to Figures 2-4, a reference voltage source includes a start-up circuit, a first-order compensation circuit, a high-order compensation circuit for reducing the temperature coefficient of the reference voltage (output voltage, Vref), and a reference for reducing the reference voltage. The ICTAT current generator circuit of the power supply voltage regulation rate of the voltage; the first-order compensation circuit includes the third P-type field effect transistor MP3, the fourth P-type field effect transistor MP4, the fifth P-type field effect transistor MP5, the sixth P-type field effect transistor MP5, and the sixth P-type field effect transistor. Type FET MP6, the seventh P-type FET MP7, the eighth P-type FET MP8, the ninth P-type FET MP9, the second N-type FET MN2, the third N-type FET MN3 , the fourth N-type field effect transistor MN4, the resistor R1, the resistor R2 and the bipolar transistor Q1; the gate of the third P-type field effect transistor MP3, the gate of the fourth P-type field effect transistor MP4, the fifth P-type field effect transistor The gate and drain of the field effect transistor MP5 and the gate of the sixth P-type field effect transistor MP6 are all connected to the high-order compensation circuit, the gate of the third P-type field effect transistor MP3 is also connected to the start-up circuit, and the third P-type field effect transistor MP3 is also connected to the start-up circuit. The source of the type FET MP3, the source of the fourth P-type FET MP4, the source of the fifth P-type FET MP5, and the source of the sixth P-type FET MP6 are all connected to the input voltage VDD , the drain of the fifth P-type field effect transistor MP5 is connected to the drain of the second N-type field effect transistor MN2; the source of the second N-type field effect transistor MN2 is connected to the source of the seventh P-type field effect transistor MP7, The gate of the second N-type field effect transistor MN2 is connected to the drain of the third N-type field effect transistor MN3 and the drain of the third P-type field effect transistor MP3; the drain of the seventh P-type field effect transistor MP7 and The gates are all grounded; the source of the third N-type field effect transistor MN3 is connected to the source of the eighth P-type field effect transistor MP8, the gate of the third N-type field effect transistor MN3 and the fourth N-type field effect transistor MN4 The gate, the drain of the fourth N-type field effect transistor MN4, and the drain of the fourth P-type field effect transistor MP4 are connected; the source of the fourth N-type field effect transistor MN4 is connected to one end of the resistor R1; The other end is connected to the source of the ninth P-type field effect transistor MP9; the gate and drain of the eighth P-type field effect transistor MP8, and the gate and drain of the ninth P-type field effect transistor MP9 are grounded; The drain of the FET MP6 is connected to one end of the resistor R2; the other end of the resistor R2 is connected to the emitter of the bipolar transistor Q1, and the base and the collector of the bipolar transistor Q1 are both grounded.

在本实施例,所述启动电路包括:第一P型场效应管MP1、第二P型场效应管MP2和第一N型场效应管MN1;第一P型场效应管MP1的源极与输入电压VDD相连,第一P型场效应管MP1的栅极与第三P型场效应管MP3的栅极、第四P型场效应管MP4的栅极、第五P型场效应管MP5的漏极、第五P型场效应管MP5的栅极、第六P型场效应管MP6的栅极均相连,第一P型场效应管MP1的漏极与第二P型场效应管MP2的栅极、第一N型场效应管MN1的栅极均相连;第一N型场效应管MN1的源极和漏极均连接至地,第二P型场效应管MP2的漏极和第二N型场效应管MN2的栅极连接。In this embodiment, the startup circuit includes: a first P-type field effect transistor MP1, a second P-type field effect transistor MP2 and a first N-type field effect transistor MN1; the source of the first P-type field effect transistor MP1 and the The input voltage VDD is connected, and the gate of the first P-type field effect transistor MP1 is connected to the gate of the third P-type field effect transistor MP3, the gate of the fourth P-type field effect transistor MP4, and the gate of the fifth P-type field effect transistor MP5. The drain, the gate of the fifth P-type field effect transistor MP5, and the gate of the sixth P-type field effect transistor MP6 are all connected, and the drain of the first P-type field effect transistor MP1 is connected to the drain of the second P-type field effect transistor MP2. The gate and the gate of the first N-type field effect transistor MN1 are both connected; the source and drain of the first N-type field effect transistor MN1 are connected to the ground, and the drain of the second P-type field effect transistor MP2 is connected to the second The gate of the N-type field effect transistor MN2 is connected.

在本实施例,所述高阶补偿电路包括:第十P型场效应管MP10、第十一P型场效应管MP11、第五N型场效应管MN5和第六N型场效应管MN6;第十P型场效应管MP10的栅极与第六P型场效应管MP6的栅极相连,第十P型场效应管MP10的源极、第十一P型场效应管MP11的源极与输入电压VDD相连,第十P型场效应管MP10的漏极与第五N型场效应管MN5的漏极、第十一P型场效应管MP11的漏极相连;第十一P型场效应管MP11的栅极与ICTAT电流生成器电路相连;第五N型场效应管MN5的漏极还和第五N型场效应管MN5的栅极、第六N型场效应管MN6的栅极相连,第五N型场效应管MN5的源极接地;第六N型场效应管MN6的漏极与第六P型场效应管MP6的漏极相连,第六N型场效应管MN6的源极接地。如图6所示,本发明实施例提供的高阶补偿基准电压的工作原理是由双极型晶体管的基极-发射极电压VBE构成与温度成反比的负温度系数电压,而由第八P型场效应管MP8、第九P型场效应管MP9这两个工作于亚阈值区PMOS管的栅-漏端电压差,构成与温度成正比的正温度系数电压,将负温度系数电压与正温度系数电压相加得到了一阶基准电压值Vref1。然后,利用与一阶基准电压具有相似温度特性的曲线Vcompensate与Vref1相减,获得高阶曲率补偿基准的输出电压Vref,Vref的温度特性曲线为正弦函数,因此可以有效降低基准电压的温度系数。In this embodiment, the high-order compensation circuit includes: a tenth P-type field effect transistor MP10, an eleventh P-type field effect transistor MP11, a fifth N-type field effect transistor MN5, and a sixth N-type field effect transistor MN6; The gate of the tenth P-type field effect transistor MP10 is connected to the gate of the sixth P-type field effect transistor MP6, and the source of the tenth P-type field effect transistor MP10 and the source of the eleventh P-type field effect transistor MP11 are connected to The input voltage VDD is connected, and the drain of the tenth P-type field effect transistor MP10 is connected to the drain of the fifth N-type field effect transistor MN5 and the drain of the eleventh P-type field effect transistor MP11; the eleventh P-type field effect transistor The gate of the transistor MP11 is connected to the ICTAT current generator circuit; the drain of the fifth N-type field effect transistor MN5 is also connected to the gate of the fifth N-type field effect transistor MN5 and the gate of the sixth N-type field effect transistor MN6 , the source of the fifth N-type field effect transistor MN5 is grounded; the drain of the sixth N-type field effect transistor MN6 is connected to the drain of the sixth P-type field effect transistor MP6, and the source of the sixth N-type field effect transistor MN6 ground. As shown in FIG. 6 , the working principle of the high-order compensation reference voltage provided by the embodiment of the present invention is that the base-emitter voltage V BE of the bipolar transistor constitutes a negative temperature coefficient voltage inversely proportional to temperature, and the eighth The gate-drain voltage difference of the P-type field effect transistor MP8 and the ninth P-type field effect transistor MP9, which work in the sub-threshold region PMOS transistor, constitutes a positive temperature coefficient voltage proportional to the temperature, and the negative temperature coefficient voltage is proportional to the temperature. The positive temperature coefficient voltages are added to obtain a first-order reference voltage value Vref1. Then, the output voltage Vref of the high-order curvature compensation reference is obtained by subtracting the curve Vcompensate and Vref1, which has a similar temperature characteristic to the first-order reference voltage. The temperature characteristic curve of Vref is a sinusoidal function, so the temperature coefficient of the reference voltage can be effectively reduced.

在本实施例,所述ICTAT电流生成器电路包括:第十二P型场效应管MP12、第十三P型场效应管MP13、第十四P型场效应管MP14、第七N型场效应管MN7、第八N型场效应管MN8和电阻R3;第十二P型场效应管MP12的栅极、第十三P型场效应管MP13的栅极和第十四P型场效应管MP14的栅极与第十一P型场效应管MP11的栅极相连,第十二P型场效应管MP12的源极、第十三P型场效应管MP13的源极和第十四P型场效应管MP14的源极与输入电压VDD相连,第十二P型场效应管MP12的漏极与第七N型场效应管MN7的栅极、电阻R3一端相连;电阻R3的另一端接地;第十三P型场效应管MP13的漏极与第七N型场效应管MN7的漏极相连;第七N型场效应管MN7的源极接地;第十四P型场效应管MP14的漏极与第十四P型场效应管MP14的栅极、第八N型场效应管MN8的漏极相连;第八N型场效应管MN8的栅极连接第七N型场效应管MN7的漏极;第八N型场效应管MN8的源极接地。In this embodiment, the ICTAT current generator circuit includes: a twelfth P-type field effect transistor MP12, a thirteenth P-type field effect transistor MP13, a fourteenth P-type field effect transistor MP14, and a seventh N-type field effect transistor tube MN7, eighth N-type field effect transistor MN8 and resistor R3; the gate of the twelfth P-type field effect transistor MP12, the gate of the thirteenth P-type field effect transistor MP13 and the fourteenth P-type field effect transistor MP14 The gate is connected to the gate of the eleventh P-type field effect transistor MP11, the source of the twelfth P-type field effect transistor MP12, the source of the thirteenth P-type field effect transistor MP13 and the fourteenth P-type field effect transistor The source of the effect transistor MP14 is connected to the input voltage VDD, the drain of the twelfth P-type field effect transistor MP12 is connected to the gate of the seventh N-type field effect transistor MN7 and one end of the resistor R3; the other end of the resistor R3 is grounded; The drain of the thirteenth P-type field effect transistor MP13 is connected to the drain of the seventh N-type field effect transistor MN7; the source of the seventh N-type field effect transistor MN7 is grounded; the drain of the fourteenth P-type field effect transistor MP14 It is connected to the gate of the fourteenth P-type field effect transistor MP14 and the drain of the eighth N-type field effect transistor MN8; the gate of the eighth N-type field effect transistor MN8 is connected to the drain of the seventh N-type field effect transistor MN7 ; The source of the eighth N-type field effect transistor MN8 is grounded.

参见图5,上述基准电压源适用的基准电压源低的工作方法,包括:Referring to Fig. 5, the working method of the reference voltage source applicable to the above reference voltage source is low, including:

S1,电源上电时,启动电路的正常启动,基准电压源进入正常工作状态;S1, when the power supply is powered on, the startup circuit starts normally, and the reference voltage source enters the normal working state;

S2,一阶补偿电路的第二N型场效应管MN2、第三N型场效应管MN3、第四N型场效应管MN4、第四P型场效应管MP4、第五P型场效应管MP5形成负反馈环路维持预设节点的电压相等,第七P型场效应管MP7、第八P型场效应管MP8和第九P型场效应管MP9工作在亚阈值区域,并通过PMOS管之间的压差产生具有正温度系数的电流IPTAT,通过电流镜将该电流IPTAT复制到基准电压源的输出端;S2, the second N-type FET MN2, the third N-type FET MN3, the fourth N-type FET MN4, the fourth P-type FET MP4, and the fifth P-type FET of the first-order compensation circuit MP5 forms a negative feedback loop to maintain the same voltage at the preset node. The seventh P-type field effect transistor MP7, the eighth P-type field effect transistor MP8 and the ninth P-type field effect transistor MP9 work in the sub-threshold region, and pass the PMOS transistor. The voltage difference between them produces a current IPTAT with a positive temperature coefficient, which is copied to the output of the reference voltage source through a current mirror;

S3,ICTAT电流生成器电路产生一个不随电源电压变化的负温度系数电流ICTAT。S3, the ICTAT current generator circuit generates a negative temperature coefficient current ICTAT that does not vary with the supply voltage.

S4,高阶补偿电路将电流ICTAT复制到基准电压源的输出端,与电流IPTAT结合后的电流在电阻R2形成高阶补偿电压来补偿一阶基准电压。S4, the high-order compensation circuit copies the current ICTAT to the output terminal of the reference voltage source, and the current combined with the current IPTAT forms a high-order compensation voltage in the resistor R2 to compensate the first-order reference voltage.

在本实施例,步骤S1包括:当电源上电时,第一N型场效应管MN1的栅极为低电位,第二P型场效应管MP2导通,第二N型场效应管MN2栅极变为高电平,第二N型场效应管MN2导通,电流流经第五P型场效应管MP5、第二N型场效应管MN2和第七P型场效应管MP7到地,将第五P型场效应管MP5的栅极电位拉低,启动电路开始启动;同时电流通过第一P型场效应管MP1给第二P型场效应管MP2充电,第二P型场效应管MP2的栅极电位逐渐升高,当增加到比电源低预设阈值电压值时,第二P型场效应管MP2关断,启动电路完成启动,基准电压源进入正常工作状态。In this embodiment, step S1 includes: when the power supply is powered on, the gate of the first N-type field effect transistor MN1 is at a low potential, the second P-type field effect transistor MP2 is turned on, and the gate of the second N-type field effect transistor MN2 is turned on. It becomes a high level, the second N-type field effect transistor MN2 is turned on, and the current flows through the fifth P-type field effect transistor MP5, the second N-type field effect transistor MN2 and the seventh P-type field effect transistor MP7 to the ground, and the The gate potential of the fifth P-type field effect transistor MP5 is pulled down, and the start-up circuit starts to start; at the same time, the current passes through the first P-type field effect transistor MP1 to charge the second P-type field effect transistor MP2, and the second P-type field effect transistor MP2 The gate potential gradually increases, and when it increases to a preset threshold voltage value lower than the power supply, the second P-type field effect transistor MP2 is turned off, the start-up circuit completes the start-up, and the reference voltage source enters the normal working state.

在本实施例,步骤S2包括:In this embodiment, step S2 includes:

一阶补偿电路中采用工作于亚阈值区的第七P型场效应管MP7、第八P型场效应管MP8和第九P型场效应管MP9代替传统基准电压源中的双极型晶体管。当CMOS管工作于亚阈值区且满足Vds≥4VT时Vds为漏源电压,VT为热电压,MOS管源-漏电流Ids与温度T的关系如下式:In the first-order compensation circuit, the seventh P-type field effect transistor MP7, the eighth P-type field effect transistor MP8 and the ninth P-type field effect transistor MP9 operating in the sub-threshold region are used to replace the bipolar transistors in the conventional reference voltage source. When the CMOS tube works in the sub-threshold region and satisfies V ds ≥ 4V T , V ds is the drain-source voltage, and V T is the thermal voltage. The relationship between the MOS tube source-drain current I ds and the temperature T is as follows:

其中,迁移率μ为μT=μ0·T/T0 -m,Cox是单位面积的栅氧化层电容,η为亚阈值斜率因子,W/L是MOS管的宽长比,阈值电压VTH为VTH=VTHT0-k1T,VTHT0是温度为0K时的阈值电压,k1为常数,约等于2mV/℃,m也是常数,数值在1.5到2之间。由式(4)推导可得出:Among them, the mobility μ is μT=μ 0 ·T/T 0 -m , C ox is the gate oxide capacitance per unit area, η is the subthreshold slope factor, W/L is the aspect ratio of the MOS transistor, and the threshold voltage V TH is V TH =V TH T 0 -k 1 T, V TH T 0 is the threshold voltage when the temperature is 0K, k 1 is a constant, approximately equal to 2mV/°C, m is also a constant, and the value is between 1.5 and 2. It can be derived from formula (4) that:

由式(5)可见,工作于亚阈值区的MOS管与双极型晶体管具有相似的温度特性,因此可以利用工作于亚阈值区的MOS管代替双极型晶体管设计一阶基准电路。It can be seen from equation (5) that the MOS transistors working in the sub-threshold region and the bipolar transistors have similar temperature characteristics, so the MOS transistors operating in the sub-threshold region can be used instead of bipolar transistors to design a first-order reference circuit.

本发明利用第二N型场效应管MN2、第三N型场效应管MN3、第四N型场效应管MN4、第四P型场效应管MP4、第五P型场效应管MP5构成负反馈环路来稳定节点a、节点b两点的电压值,具体的反馈过程是当由于某种原因使一阶补偿电路的c点电压升高时,节点d的电压将会被拉低,抬高节点e的电压,节点c的电压随之下降,节点c的电压得到稳定;The present invention uses the second N-type field effect transistor MN2, the third N-type field effect transistor MN3, the fourth N-type field effect transistor MN4, the fourth P-type field effect transistor MP4, and the fifth P-type field effect transistor MP5 to form negative feedback The loop is used to stabilize the voltage values of node a and node b. The specific feedback process is that when the voltage of point c of the first-order compensation circuit is raised for some reason, the voltage of node d will be pulled down and raised. The voltage of node e, the voltage of node c drops accordingly, and the voltage of node c is stabilized;

设定第三N型场效应管(MN3)、第四N型场效应管(MN4)、第三P型场效应管(MP3)和第四P型场效应管(MP4)的宽长比相等,使得第三N型场效应管(MN3)、第四N型场效应管(MN4)的漏-源端电流相等,从而确保节点a与节点b点的电压值相等;根据一阶补偿电路结构,得出如下关系式:Set the width to length ratio of the third N-type field effect transistor (MN3), the fourth N-type field effect transistor (MN4), the third P-type field effect transistor (MP3) and the fourth P-type field effect transistor (MP4) to be equal , so that the drain-source currents of the third N-type field effect transistor (MN3) and the fourth N-type field effect transistor (MN4) are equal, thereby ensuring that the voltage values of node a and node b are equal; according to the first-order compensation circuit structure , the following relationship is obtained:

VSG(MP8)+VGS(MN3)=VSG(MP9)+I1R1+VSG(MN4) (1)V SG(MP8) +V GS(MN3) =V SG(MP9) +I 1 R 1 +V SG(MN4) (1)

其中,VSG(MP8)、VGS(MN3)、VSG(MP9)和VSG(MN4)分别为第八P型场效应管MP8、第三N型场效应管MN3、第九P型场效应管MP9和第四N型场效应管MN4的栅-源端电压,I1是流过R1的电流。因为第三N型场效应管(MN3)、第四N型场效应管(MN4)的宽长比及其漏-源端电流相等,所以MN3和MN4管的栅端-源端电压相等。根据式(1),得到电流I1的表达式:Among them, V SG(MP8) , V GS(MN3) , V SG(MP9) and V SG(MN4) are the eighth P-type field effect transistor MP8, the third N-type field effect transistor MN3, and the ninth P-type field effect transistor, respectively. The gate-source voltage of the effect transistor MP9 and the fourth N-type field effect transistor MN4, I1 is the current flowing through R1. Because the width to length ratios of the third N-type field effect transistor (MN3) and the fourth N-type field effect transistor (MN4) and their drain-source currents are equal, the gate-source voltages of the MN3 and MN4 transistors are equal. According to formula (1), the expression of current I 1 is obtained:

其中,M=[IMP8(W/L)MP9]/[IMP9(W/L)MP8],通过设置第四P型场效应管MP4与第六P型场效应管MP6的宽长比相等,确保流过R1和R2的电流相等,进而得到一阶基准电压的表达式为:Wherein, M=[I MP8 (W/L) MP9 ]/[I MP9 (W/L) MP8 ], by setting the width to length ratio of the fourth P-type field effect transistor MP4 and the sixth P-type field effect transistor MP6 to be equal , to ensure that the currents flowing through R1 and R2 are equal, and then the expression for the first-order reference voltage is:

VEBQ1是双极型晶体管Q1的基极-发射极电压,其中,第七P型场效应管MP7、第八P型场效应管MP8和第九P型场效应管MP9工作在亚阈值区,其它MOS管工作在饱和区,通过设置电阻R1和R2的值,得到一阶温度补偿曲线,此温度曲线是一条开口向上的抛物线。V EBQ1 is the base-emitter voltage of the bipolar transistor Q1, wherein the seventh P-type field effect transistor MP7, the eighth P-type field effect transistor MP8 and the ninth P-type field effect transistor MP9 work in the sub-threshold region, Other MOS tubes work in the saturation region. By setting the values of resistors R1 and R2, a first-order temperature compensation curve is obtained. This temperature curve is a parabola with an upward opening.

高阶补偿电路中所有的MOS管工作在饱和区,相应MOS管的栅-源端电压可以表述为:All MOS transistors in the high-order compensation circuit work in the saturation region, and the gate-source voltage of the corresponding MOS transistor can be expressed as:

其中,Vthn7是MN7管的阈值电压,μn是电子的迁移率,流过电阻R3的电流为:where V thn7 is the threshold voltage of the MN7 tube, μ n is the mobility of electrons, and the current flowing through the resistor R 3 is:

将式(6)代入式(7),得到:Substituting equation (6) into equation (7), we get:

通过整理式(8),得到一个关于Ids的一元二次方程。因此,流过电阻R3的电流为:By arranging equation (8), a quadratic equation of one variable about I ds is obtained. Therefore, the current flowing through resistor R3 is:

同时,高阶曲率补偿电流I5满足:At the same time, the high-order curvature compensation current I 5 satisfies:

将式(9)中的电流I3代入式10中,可得到高阶曲率补偿电流的表达式为:Substituting the current I3 in Equation (9) into Equation 10, the expression of the high-order curvature compensation current can be obtained as:

其中, in,

电流I5通过电阻R2转换为高阶补偿电压Vcomp,此电压可用来补偿一阶基准电压Vref1。通过合理设置MOS管的参数,便可得到高阶补偿输出电压基准值VrefThe current I 5 is converted into the high-order compensation voltage V comp through the resistor R 2 , and this voltage can be used to compensate the first-order reference voltage V ref1 . By properly setting the parameters of the MOS transistor, the high-order compensation output voltage reference value V ref can be obtained.

将式(11)中的电流I5对温度T求一阶导数,可得到:Taking the first derivative of the current I 5 in equation (11) with respect to the temperature T, we can get:

其中,in,

C=[BηKLnM(W/L)MP10]/[R1(W/L)MP4]-Ak1/R3 C=[BηKL n M(W/L) MP10 ]/[R 1 (W/L) MP4 ]-Ak 1 /R 3

E=2R3Cox(W/L)MN7 E=2R 3 C ox (W/L) MN7

这里C、D和E皆为常数,令式(12)等号左边为零,求解等号右边方程,可以得到:Here C, D, and E are all constants. Let the left side of the equal sign of equation (12) be zero, and solve the equation on the right side of the equal sign, we can get:

温度值T1是二阶补偿电流I5的极值点,由于需要验证二阶补偿电流的变化趋势,对二阶补偿电流I5求二阶导数:The temperature value T 1 is the extreme point of the second-order compensation current I 5. Since it is necessary to verify the change trend of the second-order compensation current, the second-order derivative of the second-order compensation current I 5 is obtained:

令式(14)中等号左边的值大于零,通过计算可得到:The value on the left side of the equal sign in equation (14) is greater than zero, which can be obtained by calculation:

在整个正常工作的温度范围内,通过合理设置参数E的值,便可使式(15)得到满足。在这种情况下,式(14)的值保持为正值,因此电流I5的温度变化曲线的开口向上,与一阶基准电压温度的变化趋势相同,所以可用此电流补偿一阶电压基准。In the entire normal working temperature range, the formula (15) can be satisfied by setting the value of parameter E reasonably. In this case, the value of equation (14) remains positive, so the opening of the temperature change curve of current I5 is upward, which is the same as the change trend of the temperature of the first-order reference voltage, so this current can be used to compensate the first-order voltage reference.

高阶补偿电流I5在电阻R2上产生高阶补偿电压,将此电压与一阶基准电压Vref1相减,得到基准电压的输出表达式为:The high-order compensation current I 5 generates a high-order compensation voltage on the resistor R 2 , and this voltage is subtracted from the first-order reference voltage V ref1 , and the output expression of the reference voltage is obtained as:

Vref=VEB1+(IPTAT-I5)R2 (16)V ref =V EB1 +(I PTAT -I 5 )R 2 (16)

将式(2)、(11)代入到式(16)中,得到电压基准的输出电压值为:Substituting equations (2) and (11) into equation (16), the output voltage of the voltage reference is obtained as:

图7-9是本发明实施例提供的在TT、FF和SS这三种主要工艺角下输出电压随温度变化的示意图。如图7和8所示,当工艺角为TT和FF时,输出电压表现出具有良好一致性的温度特性,输出曲线为理想的正弦曲线;如图9所示,当工艺角为SS时,输出电压的温度曲线中,极点位置发生改变,但温度的正弦变化趋势并未变化;当工艺角为TT时,可以获得最低温度系数值为3.6ppm/℃;当工艺角为FF时,温度特性最差,温度系数值为7.4ppm/℃,低于10ppm/℃。在不同工艺角下,由于工艺上存在偏差,每两个工艺角之间,基准输出电压Vref的平均偏离值为40mV,因此符合工艺偏差的设计要求。7-9 are schematic diagrams illustrating the variation of output voltage with temperature under three main process angles of TT, FF, and SS provided by an embodiment of the present invention. As shown in Figures 7 and 8, when the process angles are TT and FF, the output voltage shows a temperature characteristic with good consistency, and the output curve is an ideal sinusoidal curve; as shown in Figure 9, when the process angle is SS, In the temperature curve of the output voltage, the pole position changes, but the sinusoidal trend of temperature does not change; when the process angle is TT, the lowest temperature coefficient value can be obtained as 3.6ppm/℃; when the process angle is FF, the temperature characteristics The worst, the temperature coefficient value is 7.4ppm/°C, which is lower than 10ppm/°C. At different process corners, due to process deviations, the average deviation value of the reference output voltage V ref between every two process corners is 40mV, so it meets the design requirements for process deviations.

图10是本发明实施例提供的输出电压随电源电压变化的线性调整率的仿真示意图,当电源电压达到1.7V时,基准电压Vref便可输出正常电压值;当电源电压从1.7V升高到3.5V时,输出电压从902.122mV变化到902.112mV,变化幅度为10μV,线性调整率仅为5μV/V,电源电压的变化对基准输出电压值的影响极小。10 is a schematic diagram illustrating the simulation of the linear adjustment ratio of the output voltage with the change of the power supply voltage according to the embodiment of the present invention. When the power supply voltage reaches 1.7V, the reference voltage Vref can output a normal voltage value; when the power supply voltage increases from 1.7V When it reaches 3.5V, the output voltage changes from 902.122mV to 902.112mV, the change range is 10μV, the linear adjustment rate is only 5μV/V, and the change of the power supply voltage has little influence on the reference output voltage value.

图11是本发明实施例提供的输出电压在不同的电源电压下电源抑制比PSRR的仿真示意图,本发明分别对电源电压为1.7V、2.5V、3V和3.5V时的四组数据进行了分析与仿真,结果表明,基准电压的电源抑制比随电源电压的增加而逐渐提高。由于系统启动电压为1.7V,电源电压为1.7V时的仿真结果表明,低频PSRR值为-67.1dB,频率为1MHz时仍然具有接近-50dB的电源抑制比;当电源电压上升到3.5V时,电路的电源抑制比接近-90dB。因此,本发明实施例提供的基准电压源具有良好的电源抑制性,可以有效地抑制因电源电压波动而引起的基准输出电压变化。11 is a schematic diagram of the simulation of the power supply rejection ratio PSRR of the output voltage provided by the embodiment of the present invention under different power supply voltages. The present invention analyzes four sets of data when the power supply voltage is 1.7V, 2.5V, 3V and 3.5V respectively. Compared with the simulation, the results show that the power supply rejection ratio of the reference voltage increases gradually with the increase of the power supply voltage. Since the system startup voltage is 1.7V and the power supply voltage is 1.7V, the simulation results show that the low-frequency PSRR value is -67.1dB, and the power supply rejection ratio is still close to -50dB when the frequency is 1MHz; when the power supply voltage rises to 3.5V, the The power supply rejection ratio of the circuit is close to -90dB. Therefore, the reference voltage source provided by the embodiment of the present invention has good power supply suppression, and can effectively suppress the variation of the reference output voltage caused by the fluctuation of the power supply voltage.

图12是本发明实施例提供的当电源电压为2.5V时,输出电压在TT、FF和SS工艺角下电源抑制比PSRR的仿真示意图,结果表明PSRR的最差情况发生在FF工艺角,在1KHz的频率下PSRR值为-79.7dB;最好情况发生在SS工艺角,在1KHz的频率下PSRR值为-81.6dB;TT工艺角下的PSRR值介于这两者之间。对不同工艺角,最好与最差情况下的PSRR值仅相差1.9dB。因此,PSRR曲线参数在不同工艺角下表现出高度的一致性,平均的电源抑制比保持在-80dB左右,起到很好的电源抑制作用。12 is a schematic diagram of the simulation of the power supply rejection ratio PSRR of the output voltage at the TT, FF and SS process corners when the power supply voltage is 2.5V according to an embodiment of the present invention. The results show that the worst case of PSRR occurs at the FF process corner. The PSRR value at 1KHz is -79.7dB; the best case occurs at the SS process corner, where the PSRR value is -81.6dB at 1KHz; the PSRR value at the TT process corner is between the two. For different process angles, the difference between the best and worst case PSRR values is only 1.9dB. Therefore, the PSRR curve parameters show a high degree of consistency under different process angles, and the average power supply rejection ratio is maintained at about -80dB, which plays a good role in power supply rejection.

上述具体实施方式为本发明的优选实施例,并不能对本发明进行限定,其他的任何未背离本发明的技术方案而所做的改变或其它等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned specific embodiments are the preferred embodiments of the present invention, and do not limit the present invention. Any other changes or other equivalent replacement methods that do not deviate from the technical solutions of the present invention are included in the protection scope of the present invention. within.

Claims (7)

1.一种基准电压源,其特征在于,包括:依次相连的启动电路、一阶补偿电路、用于减小基准电压的温度系数的高阶补偿电路和用于降低基准电压的电源电压调整率的ICTAT电流生成器电路;1. A reference voltage source, characterized in that it comprises: a start-up circuit, a first-order compensation circuit, a high-order compensation circuit for reducing the temperature coefficient of the reference voltage, and a power supply voltage regulation rate for reducing the reference voltage, which are connected in sequence. The ICTAT current generator circuit; 所述一阶补偿电路包括第三P型场效应管(MP3)、第四P型场效应管(MP4)、第五P型场效应管(MP5)、第六P型场效应管(MP6)、第七P型场效应管(MP7)、第八P型场效应管(MP8)、第九P型场效应管(MP9)、第二N型场效应管(MN2)、第三N型场效应管(MN3)、第四N型场效应管(MN4)、电阻R1、电阻R2和双极型晶体管Q1;The first-order compensation circuit includes a third P-type field effect transistor (MP3), a fourth P-type field effect transistor (MP4), a fifth P-type field effect transistor (MP5), and a sixth P-type field effect transistor (MP6) , the seventh P-type field effect transistor (MP7), the eighth P-type field effect transistor (MP8), the ninth P-type field effect transistor (MP9), the second N-type field effect transistor (MN2), the third N-type field effect transistor Effect transistor (MN3), fourth N-type field effect transistor (MN4), resistor R1, resistor R2 and bipolar transistor Q1; 第三P型场效应管(MP3)的栅极、第四P型场效应管(MP4)的栅极、第五P型场效应管(MP5)的栅极和漏极、第六P型场效应管(MP6)的栅极均与高阶补偿电路相连,第三P型场效应管(MP3)的栅极还和启动电路相连,第三P型场效应管(MP3)的源极、第四P型场效应管(MP4)的源极、第五P型场效应管(MP5)的源极、第六P型场效应管(MP6)的源极均与输入电压(VDD)相连,第五P型场效应管(MP5)的漏极与第二N型场效应管(MN2)的漏极相连;第二N型场效应管(MN2)的源极与第七P型场效应管(MP7)源极相连,第二N型场效应管(MN2)的栅极和第三N型场效应管(MN3)的漏极、第三P型场效应管(MP3)的漏极均连接;第七P型场效应管(MP7)的漏极和栅极均接地;第三N型场效应管(MN3)的源极与第八P型场效应管(MP8)的源极相连,第三N型场效应管(MN3)的栅极和第四N型场效应管(MN4)的栅极、第四N型场效应管(MN4)的漏极、第四P型场效应管(MP4)的漏极连接;第四N型场效应管(MN4)的源极与电阻R1的一端相连;电阻R1的另一端连接第九P型场效应管(MP9)的源极;第八P型场效应管(MP8)的栅极和漏极、第九P型场效应管(MP9)的栅极和漏极均接地;第六P型场效应管(MP6)的漏极和电阻R2的一端相连;电阻R2的另一端与双极型晶体管Q1的发射极相连,双极型晶体管Q1的基极与集电极均接地。The gate of the third P-type field effect transistor (MP3), the gate of the fourth P-type field effect transistor (MP4), the gate and drain of the fifth P-type field effect transistor (MP5), the sixth P-type field effect transistor The gates of the effect transistors (MP6) are connected to the high-order compensation circuit, the gates of the third P-type field effect transistors (MP3) are also connected to the start-up circuit, the source and the third P-type field effect transistors (MP3) are connected to the start-up circuit. The source of the four P-type field effect transistors (MP4), the source of the fifth P-type field effect transistor (MP5), and the source of the sixth P-type field effect transistor (MP6) are all connected to the input voltage (VDD). The drain of the five P-type field effect transistors (MP5) is connected to the drain of the second N-type field effect transistor (MN2); the source of the second N-type field effect transistor (MN2) is connected to the seventh P-type field effect transistor ( MP7) is connected to the source, and the gate of the second N-type field effect transistor (MN2) is connected to the drain of the third N-type field effect transistor (MN3) and the drain of the third P-type field effect transistor (MP3); The drain and gate of the seventh P-type field effect transistor (MP7) are grounded; the source of the third N-type field effect transistor (MN3) is connected to the source of the eighth P-type field effect transistor (MP8), and the third The gate of the N-type field effect transistor (MN3) and the gate of the fourth N-type field effect transistor (MN4), the drain of the fourth N-type field effect transistor (MN4), the fourth P-type field effect transistor (MP4) The drain of the fourth N-type field effect transistor (MN4) is connected to one end of the resistor R1; the other end of the resistor R1 is connected to the source of the ninth P-type field effect transistor (MP9); the eighth P-type field effect transistor (MP9) The gate and drain of the effect transistor (MP8) and the gate and drain of the ninth P-type field effect transistor (MP9) are grounded; the drain of the sixth P-type field effect transistor (MP6) is connected to one end of the resistor R2 ; The other end of the resistor R2 is connected to the emitter of the bipolar transistor Q1, and the base and the collector of the bipolar transistor Q1 are both grounded. 2.根据权利要求1所述的基准电压源,其特征在于,所述启动电路包括:第一P型场效应管(MP1)、第二P型场效应管(MP2)和第一N型场效应管(MN1);2. The reference voltage source according to claim 1, wherein the start-up circuit comprises: a first P-type field effect transistor (MP1), a second P-type field effect transistor (MP2) and a first N-type field effect transistor Effect tube (MN1); 第一P型场效应管(MP1)的源极与输入电压(VDD)相连,第一P型场效应管(MP1)的栅极与第三P型场效应管(MP3)的栅极、第四P型场效应管(MP4)的栅极、第五P型场效应管(MP5)的漏极、第五P型场效应管(MP5)的栅极、第六P型场效应管(MP6)的栅极均相连,第一P型场效应管(MP1)的漏极与第二P型场效应管(MP2)的栅极、第一N型场效应管(MN1)的栅极均相连;第一N型场效应管(MN1)的源极和漏极均连接至地,第二P型场效应管(MP2)的漏极和第二N型场效应管(MN2)的栅极连接。The source of the first P-type field effect transistor (MP1) is connected to the input voltage (VDD), the gate of the first P-type field effect transistor (MP1) is connected to the gate of the third P-type field effect transistor (MP3), the The gate of the four P-type field effect transistors (MP4), the drain of the fifth P-type field effect transistor (MP5), the gate of the fifth P-type field effect transistor (MP5), the sixth P-type field effect transistor (MP6) ) are connected to the gates, and the drain of the first P-type field effect transistor (MP1) is connected to the gate of the second P-type field effect transistor (MP2) and the gate of the first N-type field effect transistor (MN1). ; The source and drain of the first N-type field effect transistor (MN1) are connected to ground, and the drain of the second P-type field effect transistor (MP2) and the gate of the second N-type field effect transistor (MN2) are connected . 3.根据权利要求1所述的基准电压源,其特征在于,所述高阶补偿电路包括:第十P型场效应管(MP10)、第十一P型场效应管(MP11)、第五N型场效应管(MN5)和第六N型场效应管(MN6);3. The reference voltage source according to claim 1, wherein the high-order compensation circuit comprises: a tenth P-type field effect transistor (MP10), an eleventh P-type field effect transistor (MP11), a fifth N-type FET (MN5) and the sixth N-type FET (MN6); 第十P型场效应管(MP10)的栅极与第六P型场效应管(MP6)的栅极相连,第十P型场效应管(MP10)的源极、第十一P型场效应管(MP11)的源极与输入电压(VDD)相连,第十P型场效应管(MP10)的漏极与第五N型场效应管(MN5)的漏极、第十一P型场效应管(MP11)的漏极相连;第十一P型场效应管(MP11)的栅极与ICTAT电流生成器电路相连;第五N型场效应管(MN5)的漏极还和第五N型场效应管(MN5)的栅极、第六N型场效应管(MN6)的栅极相连,第五N型场效应管(MN5)的源极接地;第六N型场效应管(MN6)的漏极与第六P型场效应管(MP6)的漏极相连,第六N型场效应管(MN6)的源极接地。The gate of the tenth P-type field effect transistor (MP10) is connected to the gate of the sixth P-type field effect transistor (MP6), the source of the tenth P-type field effect transistor (MP10), the eleventh P-type field effect transistor The source of the transistor (MP11) is connected to the input voltage (VDD), the drain of the tenth P-type field effect transistor (MP10) is connected to the drain of the fifth N-type field effect transistor (MN5), and the eleventh P-type field effect transistor The drain of the transistor (MP11) is connected to the drain; the gate of the eleventh P-type field effect transistor (MP11) is connected to the ICTAT current generator circuit; the drain of the fifth N-type field effect transistor (MN5) is also connected to the fifth N-type The gate of the field effect transistor (MN5) is connected to the gate of the sixth N-type field effect transistor (MN6), and the source of the fifth N-type field effect transistor (MN5) is grounded; the sixth N-type field effect transistor (MN6) The drain is connected to the drain of the sixth P-type field effect transistor (MP6), and the source of the sixth N-type field effect transistor (MN6) is grounded. 4.根据权利要求1所述的基准电压源,其特征在于,所述ICTAT电流生成器电路包括:第十二P型场效应管(MP12)、第十三P型场效应管(MP13)、第十四P型场效应管(MP14)、第七N型场效应管(MN7)、第八N型场效应管(MN8)和电阻R3;第十二P型场效应管(MP12)的栅极、第十三P型场效应管(MP13)的栅极和第十四P型场效应管(MP14)的栅极与第十一P型场效应管(MP11)的栅极相连,第十二P型场效应管(MP12)的源极、第十三P型场效应管(MP13)的源极和第十四P型场效应管(MP14)的源极与输入电压(VDD)相连,第十二P型场效应管(MP12)的漏极与第七N型场效应管(MN7)的栅极、电阻R3一端相连;电阻R3的另一端接地;第十三P型场效应管(MP13)的漏极与第七N型场效应管(MN7)的漏极相连;第七N型场效应管(MN7)的源极接地;第十四P型场效应管(MP14)的漏极与第十四P型场效应管(MP14)的栅极、第八N型场效应管(MN8)的漏极相连;第八N型场效应管(MN8)的栅极连接第七N型场效应管(MN7)的漏极;第八N型场效应管(MN8)的源极接地。4. The reference voltage source according to claim 1, wherein the ICTAT current generator circuit comprises: a twelfth P-type field effect transistor (MP12), a thirteenth P-type field effect transistor (MP13), The fourteenth P-type field effect transistor (MP14), the seventh N-type field effect transistor (MN7), the eighth N-type field effect transistor (MN8) and the resistor R3; the gate of the twelfth P-type field effect transistor (MP12) pole, the gate of the thirteenth P-type field effect transistor (MP13) and the gate of the fourteenth P-type field effect transistor (MP14) are connected to the gate of the eleventh P-type field effect transistor (MP11). The source of the two P-type field effect transistors (MP12), the source of the thirteenth P-type field effect transistor (MP13) and the source of the fourteenth P-type field effect transistor (MP14) are connected to the input voltage (VDD), The drain of the twelfth P-type field effect transistor (MP12) is connected to the gate of the seventh N-type field effect transistor (MN7) and one end of the resistor R3; the other end of the resistor R3 is grounded; the thirteenth P-type field effect transistor ( The drain of MP13) is connected to the drain of the seventh N-type field effect transistor (MN7); the source of the seventh N-type field effect transistor (MN7) is grounded; the drain of the fourteenth P-type field effect transistor (MP14) It is connected to the gate of the fourteenth P-type field effect transistor (MP14) and the drain of the eighth N-type field effect transistor (MN8); the gate of the eighth N-type field effect transistor (MN8) is connected to the seventh N-type field The drain of the effect transistor (MN7); the source of the eighth N-type field effect transistor (MN8) is grounded. 5.一种基准电压源的工作方法,其特征在于,包括:5. A working method for a reference voltage source, comprising: S1,电源上电时,启动电路的正常启动,基准电压源进入正常工作状态;S1, when the power supply is powered on, the startup circuit starts normally, and the reference voltage source enters the normal working state; S2,一阶补偿电路的第二N型场效应管(MN2)、第三N型场效应管(MN3)、第四N型场效应管(MN4)、第四P型场效应管(MP4)、第五P型场效应管(MP5)形成负反馈环路维持预设节点的电压相等,第七P型场效应管(MP7)、第八P型场效应管(MP8)和第九P型场效应管(MP9)工作在亚阈值区域,并通过PMOS管之间的压差产生具有正温度系数的电流IPTAT,通过电流镜将该电流IPTAT复制到基准电压源的输出端;S2, the second N-type FET (MN2), the third N-type FET (MN3), the fourth N-type FET (MN4), and the fourth P-type FET (MP4) of the first-order compensation circuit , the fifth P-type field effect transistor (MP5) forms a negative feedback loop to maintain the voltage of the preset node equal, the seventh P-type field effect transistor (MP7), the eighth P-type field effect transistor (MP8) and the ninth P-type field effect transistor (MP8) The field effect transistor (MP9) works in the sub-threshold region, and generates a current IPTAT with a positive temperature coefficient through the voltage difference between the PMOS transistors, and the current IPTAT is copied to the output end of the reference voltage source through the current mirror; S3,ICTAT电流生成器电路产生一个不随电源电压变化的负温度系数电流ICTAT;S3, the ICTAT current generator circuit generates a negative temperature coefficient current ICTAT that does not vary with the power supply voltage; S4,高阶补偿电路将电流ICTAT复制到基准电压源的输出端,与电流IPTAT结合后的电流在电阻R2形成高阶补偿电压来补偿一阶基准电压。S4, the high-order compensation circuit copies the current ICTAT to the output terminal of the reference voltage source, and the current combined with the current IPTAT forms a high-order compensation voltage in the resistor R2 to compensate the first-order reference voltage. 6.根据权利要求5所述的基准电压源的工作方法,其特征在于,步骤S1包括:6. The working method of the reference voltage source according to claim 5, wherein step S1 comprises: 当电源上电时,第一N型场效应管(MN1)的栅极为低电位,第二P型场效应管(MP2)导通,第二N型场效应管(MN2)栅极变为高电平,第二N型场效应管(MN2)导通,电流流经第五P型场效应管(MP5)、第二N型场效应管(MN2)和第七P型场效应管(MP7)到地,将第五P型场效应管(MP5)的栅极电位拉低,启动电路开始启动;When the power supply is powered on, the gate of the first N-type field effect transistor (MN1) is low potential, the second P-type field effect transistor (MP2) is turned on, and the gate of the second N-type field effect transistor (MN2) becomes high level, the second N-type field effect transistor (MN2) is turned on, and the current flows through the fifth P-type field effect transistor (MP5), the second N-type field effect transistor (MN2) and the seventh P-type field effect transistor (MP7) ) to the ground, the gate potential of the fifth P-type field effect transistor (MP5) is pulled down, and the start-up circuit starts to start; 电流通过第一P型场效应管(MP1)给第二P型场效应管(MP2)充电,第二P型场效应管(MP2)的栅极电位逐渐升高,当增加到比电源低预设阈值电压值时,第二P型场效应管(MP2)关断,启动电路完成启动,基准电压源进入正常工作状态。The current charges the second P-type field effect transistor (MP2) through the first P-type field effect transistor (MP1), and the gate potential of the second P-type field effect transistor (MP2) gradually increases. When the threshold voltage value is set, the second P-type field effect transistor (MP2) is turned off, the start-up circuit completes the start-up, and the reference voltage source enters the normal working state. 7.根据权利要求5所述的基准电压的工作方法,其特征在于,步骤S2包括:7. The working method of the reference voltage according to claim 5, wherein step S2 comprises: 当由于某种原因使一阶补偿电路的c点电压升高时,节点d的电压将会被拉低,抬高节点e的电压,节点c的电压随之下降,节点c的电压得到稳定;When the voltage of point c of the first-order compensation circuit is raised for some reason, the voltage of node d will be pulled down, the voltage of node e will be raised, the voltage of node c will decrease, and the voltage of node c will be stabilized; 设定第三N型场效应管(MN3)、第四N型场效应管(MN4)、第三P型场效应管(MP3)和第四P型场效应管(MP4)的宽长比相等,使得第三N型场效应管(MN3)、第四N型场效应管(MN4)的漏-源端电流相等,从而确保节点a与节点b点的电压值相等;根据一阶补偿电路结构,得出如下关系式:Set the width to length ratio of the third N-type field effect transistor (MN3), the fourth N-type field effect transistor (MN4), the third P-type field effect transistor (MP3) and the fourth P-type field effect transistor (MP4) to be equal , so that the drain-source currents of the third N-type field effect transistor (MN3) and the fourth N-type field effect transistor (MN4) are equal, thereby ensuring that the voltage values of node a and node b are equal; according to the first-order compensation circuit structure , the following relationship is obtained: VSG(MP8)+VGS(MN3)=VSG(MP9)+I1R1+VSG(MN4) (1)V SG(MP8) +V GS(MN3) =V SG(MP9) +I 1 R 1 +V SG(MN4) (1) 其中,VSG(MP8)、VGS(MN3)、VSG(MP9)和VSG(MN4)分别为第八P型场效应管(MP8)、第三N型场效应管(MN3)、第九P型场效应管(MP9)和第四N型场效应管(MN4)的栅-源端电压,I1是流过R1的电流;因为第三N型场效应管(MN3)、第四N型场效应管(MN4)的宽长比及其漏-源端电流相等,所以使第三N型场效应管(MN3)和第四N型场效应管(MN4)的栅端-源端电压相等;根据式(1),得到电流I1的表达式:Among them, V SG (MP8) , V GS (MN3) , V SG (MP9) and V SG (MN4) are the eighth P-type field effect transistor (MP8), the third N-type field effect transistor (MN3), the third The gate-source voltage of the nine P-type field effect transistors (MP9) and the fourth N-type field effect transistor (MN4), I 1 is the current flowing through R1; because the third N-type field effect transistor (MN3), the fourth The width-length ratio of the N-type field effect transistor (MN4) and its drain-source current are equal, so the gate-source terminals of the third N-type field effect transistor (MN3) and the fourth N-type field effect transistor (MN4) are made equal. The voltages are equal; according to the formula (1), the expression of the current I 1 is obtained: 其中,M=[IMP8(W/L)MP9]/[IMP9(W/L)MP8],通过设置第四P型场效应管(MP4)与第六P型场效应管(MP6)的宽长比相等,确保流过R1和R2的电流相等,进而得到一阶基准电压的表达式为:Among them, M=[I MP8 (W/L) MP9 ]/[I MP9 (W/L) MP8 ], by setting the fourth P-type field effect transistor (MP4) and the sixth P-type field effect transistor (MP6) The width to length ratio is equal to ensure that the currents flowing through R1 and R2 are equal, and then the expression for the first-order reference voltage is: VEB(Q1)是双极型晶体管Q1的基极-发射极电压,其中,第七P型场效应管(MP7)、第八P型场效应管(MP8)和第九P型场效应管(MP9)工作在亚阈值区,其它MOS管工作在饱和区,通过设置电阻R1和R2的值,得到一阶温度补偿曲线。V EB (Q1) is the base-emitter voltage of the bipolar transistor Q1, wherein the seventh P-type field effect transistor (MP7), the eighth P-type field effect transistor (MP8) and the ninth P-type field effect transistor (MP9) works in the sub-threshold region, and other MOS tubes work in the saturation region. By setting the values of the resistors R1 and R2, the first-order temperature compensation curve is obtained.
CN201811540844.XA 2018-12-17 2018-12-17 A reference voltage source and its working method Active CN109491439B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811540844.XA CN109491439B (en) 2018-12-17 2018-12-17 A reference voltage source and its working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811540844.XA CN109491439B (en) 2018-12-17 2018-12-17 A reference voltage source and its working method

Publications (2)

Publication Number Publication Date
CN109491439A true CN109491439A (en) 2019-03-19
CN109491439B CN109491439B (en) 2020-12-11

Family

ID=65710494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811540844.XA Active CN109491439B (en) 2018-12-17 2018-12-17 A reference voltage source and its working method

Country Status (1)

Country Link
CN (1) CN109491439B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162132A (en) * 2019-06-26 2019-08-23 长江存储科技有限责任公司 A kind of band-gap reference voltage circuit
CN111966159A (en) * 2020-08-29 2020-11-20 深圳市爱协生科技有限公司 A low-voltage, low-power reference circuit and its calibration method
CN112256078A (en) * 2020-10-30 2021-01-22 电子科技大学 Positive temperature coefficient current source and zero temperature coefficient current source
TWI760023B (en) * 2020-12-22 2022-04-01 新唐科技股份有限公司 Reference voltage circuit
CN115840486A (en) * 2022-10-14 2023-03-24 西安电子科技大学 Curvature compensation band gap reference circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667049A (en) * 2009-08-14 2010-03-10 西安龙腾微电子科技发展有限公司 Voltage reference circuit with micro power consumption
CN101819449A (en) * 2010-04-16 2010-09-01 上海理工大学 Subthreshold MOSFET band-gap reference source
CN102411391A (en) * 2011-05-11 2012-04-11 东南大学 Complementary metal oxide semiconductor (CMOS) segmented high-order temperature compensated sub-threshold reference voltage source
US9407254B1 (en) * 2014-10-15 2016-08-02 Xilinx, Inc. Power on-reset with built-in hysteresis
CN106774592A (en) * 2016-12-14 2017-05-31 重庆邮电大学 A kind of high-order temperature compensation bandgap reference circuit without bipolar transistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667049A (en) * 2009-08-14 2010-03-10 西安龙腾微电子科技发展有限公司 Voltage reference circuit with micro power consumption
CN101819449A (en) * 2010-04-16 2010-09-01 上海理工大学 Subthreshold MOSFET band-gap reference source
CN102411391A (en) * 2011-05-11 2012-04-11 东南大学 Complementary metal oxide semiconductor (CMOS) segmented high-order temperature compensated sub-threshold reference voltage source
US9407254B1 (en) * 2014-10-15 2016-08-02 Xilinx, Inc. Power on-reset with built-in hysteresis
CN106774592A (en) * 2016-12-14 2017-05-31 重庆邮电大学 A kind of high-order temperature compensation bandgap reference circuit without bipolar transistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162132A (en) * 2019-06-26 2019-08-23 长江存储科技有限责任公司 A kind of band-gap reference voltage circuit
CN111966159A (en) * 2020-08-29 2020-11-20 深圳市爱协生科技有限公司 A low-voltage, low-power reference circuit and its calibration method
CN112256078A (en) * 2020-10-30 2021-01-22 电子科技大学 Positive temperature coefficient current source and zero temperature coefficient current source
CN112256078B (en) * 2020-10-30 2021-12-31 电子科技大学 Positive temperature coefficient current source and zero temperature coefficient current source
TWI760023B (en) * 2020-12-22 2022-04-01 新唐科技股份有限公司 Reference voltage circuit
CN115840486A (en) * 2022-10-14 2023-03-24 西安电子科技大学 Curvature compensation band gap reference circuit

Also Published As

Publication number Publication date
CN109491439B (en) 2020-12-11

Similar Documents

Publication Publication Date Title
CN109491439B (en) A reference voltage source and its working method
CN110362144B (en) Low Temperature Drift High Power Supply Rejection Ratio Bandgap Reference Circuit Based on Exponential Compensation
CN108958348A (en) A kind of band gap reference of high PSRR
WO2016015523A1 (en) Bandgap reference source having low offset voltage and high psrr
CN113377147B (en) Sub-threshold band-gap reference voltage source circuit
TW201413415A (en) Reference voltage generator
CN111045470B (en) A Bandgap Reference Circuit with Low Offset Voltage and High Power Supply Rejection Ratio
CN111190453B (en) High PSRR Reference Circuit
CN104111688B (en) A kind of BiCMOS with temperature-monitoring function is without amplifier band gap voltage reference source
CN115437446B (en) High-precision curvature compensation band gap reference circuit
CN111781983A (en) A High Power Supply Rejection Than Threshold MOSFET Compensation Bandgap Reference Voltage Circuit
CN108536210B (en) A Smooth Temperature Compensated Bandgap Reference Source Circuit
CN115079762B (en) Low dropout linear voltage regulator circuit
CN212484194U (en) A CMOS Voltage Reference Source
CN108227809B (en) High power supply rejection ratio reference circuit based on subthreshold region MOS partial pressure
CN111752325B (en) High-precision linear voltage stabilizing circuit
CN114326891B (en) Bandgap reference circuit and analog integrated circuit
Cao et al. A wide input voltage range, low quiescent current LDO using combination structure of bandgap and error amplifier
CN104460805A (en) Reference current source with low temperature coefficient and low power supply voltage coefficient
CN116225140B (en) High power supply rejection band gap reference voltage source with low temperature drift and wide temperature range
CN116225135B (en) Low-dropout linear voltage regulator
CN117251016A (en) Novel band-gap reference voltage source circuit
CN114740938B (en) Reference circuit and reference voltage ware applied to Sigma-Delta ADC
CN115657781A (en) Band-gap reference source circuit of self-buffering loop control technology
CN115079768B (en) A Bandgap Reference Circuit with Wide Supply Voltage Range

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant