CN109490239A - 一种载玻片制样专用红外透反射光谱测量附件 - Google Patents

一种载玻片制样专用红外透反射光谱测量附件 Download PDF

Info

Publication number
CN109490239A
CN109490239A CN201811655256.0A CN201811655256A CN109490239A CN 109490239 A CN109490239 A CN 109490239A CN 201811655256 A CN201811655256 A CN 201811655256A CN 109490239 A CN109490239 A CN 109490239A
Authority
CN
China
Prior art keywords
glass slide
transflector
sample preparation
infrared
attachment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811655256.0A
Other languages
English (en)
Inventor
范琦
张雪
杨洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Medical University
Original Assignee
Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical University filed Critical Chongqing Medical University
Priority to CN201811655256.0A priority Critical patent/CN109490239A/zh
Publication of CN109490239A publication Critical patent/CN109490239A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block

Abstract

本发明公开了一种载玻片制样专用红外透反射光谱测量附件,该附件为中空的罩状结构,用于罩在载玻片上以完全遮蔽载玻片但不触及载玻片上的样品,所述罩状结构包括顶壁和自顶壁向下延伸的侧壁,所述顶壁的内表面为与载玻片相平行的平面且覆盖有反光材料用于形成光反射层,所述侧壁的内表面为黑色且不透光。本发明附件适合于配置有积分球附件的红外光谱分析仪,可在不影响红外光谱分析仪光路等原装置的前提下,实现载玻片制样的红外透反射光谱测量,克服了现有红外光谱分析仪测量附件不支持载玻片制样的透反射光谱测定的不足以及现有技术测定载玻片制样时所存在的操作困难、繁琐等缺陷,具有装配简单、检测准确、快速的优点。

Description

一种载玻片制样专用红外透反射光谱测量附件
技术领域
本发明涉及一种便于进行红外透反射光谱测量的装置,特别涉及一种载玻片制样专用红外透反射光谱测量附件。
背景技术
使用载玻片承载生物组织或细胞,采用切片、涂片、压片、装片等方法,制成供显微镜下观察或成像分析的样本,是生物检测常用的制样技术,广泛应用于生物学、医学(如病理学、传染病学)、农学(如植物病理学)等领域。但是,如果以上形态学分析能够结合分子水平的量化信息,生物样品的特性将得到更有效的表征。
红外光谱分析法因为具有快速、无损等优点,而且配备有适合于透射测量模式的样品管、适合于漫反射测量模式的积分球附件和样品旋转杯、适合于衰减全反射测量模式的ATR附件、适合于近线检测的光纤附件、甚至有专用的片剂透反射测量附件,所以红外光谱分析法广泛用于石油(参考文献:钱平,孙国琴,张存洲.基于近红外光谱技术的石油组分定量分析新方法[J].光谱学与光谱分析.2008,28(12):2851-2854.)、食品(参考文献:孙宗保,辛新,邹小波等.傅里叶变换红外光谱结合化学计量学方法对白酒基酒的快速定性和定量分析[J].光谱学与光谱分析.2017,37(9):2756-2762.)、药品(参考文献:殷飞,李珂.近红外光谱药品快速鉴别技术在基层药品检验中的应用[J].药物分析杂志.2010,30(10):1996-2000.)等领域。
虽然已有研究者采用红外漫反射光谱分析法对病理组织切片进行辅助诊断(参考文献:徐可,向玉红,代荫梅等.近红外光谱技术结合主成分分析法用于子宫内膜癌的诊断[J].高等学校化学学报.2009,30(8):1543-1547.),但采用漫反射模式时常常因为大量分析光穿过较薄的组织样品和载玻片而无法形成反射,导致测量失败。红外透反射光谱是在积分球漫反射的基础上生成,现有的红外光谱分析仪测量附件不支持载玻片制样的透反射光谱测定,采用其它方法测定载玻片制样的红外透反射光谱又存在操作困难、繁琐等缺陷。因此,本发明欲提供一种载玻片制样专用红外透反射光谱测量附件,以配合红外光谱分析仪在分子水平量化表征生物样品的特性。
发明内容
为了克服现有红外光谱分析仪测量附件不支持载玻片制样的透反射光谱测定的不足以及现有技术测定载玻片制样时所存在的操作困难、繁琐等缺陷,本发明提供了一种载玻片制样专用红外透反射光谱测量附件,以简单、方便地实现载玻片制样的准确、快速和无损分析。
本发明的载玻片制样专用红外透反射光谱测量附件为中空的罩状结构,用于罩在载玻片上以完全遮蔽载玻片但不触及载玻片上的样品,所述罩状结构包括顶壁和自顶壁向下延伸的侧壁,所述顶壁的内表面为与载玻片相平行的平面且覆盖有反光材料用于形成光反射层,所述侧壁的内表面为黑色且不透光。
优选的,所述反光材料为金箔。
优选的,所述罩状结构为底部开敞的长方体罩。
本发明所述载玻片制样是以载玻片为载体,采用现有显微制片技术(包括切片法、涂片法、压片法、装片法等)将生物材料制成的适于在光学显微镜下观察的样本。
本发明附件侧壁的内表面设置为黑色且不透光,有助于避免杂散光对光谱测定的干扰。
本发明的载玻片制样专用红外透反射光谱测量附件,用于配合红外光谱分析仪进行载玻片制样的红外透反射光谱测量,适合于目前常见厂家、常见型号配置有积分球附件的红外光谱分析仪,可在不影响红外光谱分析仪光路等原装置的前提下,直接罩在置于积分球检测窗上的载玻片上方以完全遮蔽载玻片后,进行红外透反射光谱的测量。测量时,从积分球检测窗中射出的分析光穿透载玻片制样后,被附件顶壁内表面的光反射层反射,以相反的方向再次穿透载玻片制样,返回积分球后被检测器检测。由于分析光来回共2次穿透待测样品,相当于目标物质的浓度提高了1倍(为原浓度的2倍),有效地提高了检测灵敏度,从而获得待测样品中目标物质的特征信息。
本发明的有益效果在于:本发明提供了一种载玻片制样专用红外透反射光谱测量附件,主要用于测定生物样品分子水平的变化,表征生物样品的特性,如预测病理组织切片中的组织是否发生病变及病变程度等以辅助病理学诊断。本发明克服了现有红外光谱分析仪测量附件不支持载玻片制样的透反射光谱测定的不足以及现有技术测定载玻片制样时所存在的操作困难、繁琐等缺陷,可以简单、方便地实现载玻片制样的准确、快速和无损分析,为生物学、医学(如病理学、传染病学)、农学(如植物病理学)等领域的样品分析提供了很好的光谱测量辅助工具。
附图说明
图1为本发明实施例的载玻片制样专用红外透反射光谱测量附件的立体结构示意图。图中:1为顶壁,2为侧壁,3为光反射层。
图2为本发明实施例所使用的Antaris II FT-NIR光谱仪(Thermo FisherScientific)的结构组成示意图。
具体实施方式
下面结合附图,通过具体实施例,进一步阐述本发明。
本发明的载玻片制样专用红外透反射光谱测量附件,用于配合红外光谱分析仪进行载玻片制样的红外透反射光谱测量。
图1示出了本发明实施例的载玻片制样专用红外透反射光谱测量附件的立体结构。如图所示,该附件为中空的罩状结构,所述罩状结构包括顶壁1和自顶壁1向下延伸的侧壁2,所述顶壁1的内表面为与载玻片相平行的平面且覆盖有反光材料用于形成光反射层3,所述侧壁2的内表面为黑色且不透光。所述罩状结构的内部尺寸应保证当其罩在载玻片上时能完全遮蔽载玻片且顶壁内表面上的光反射层不会触及载玻片上的样品。
具体的,本发明实施例中采用的罩状结构为底部开敞的长方体罩,长方体罩顶壁的内表面覆盖金箔形成光反射层。
具体的,所述长方体罩的内尺寸为80×29×5mm,大于常规载玻片的尺寸76×25×1mm。
使用本发明附件测量载玻片制样的红外透反射光谱时,先将载玻片制样置于红外光谱分析仪的积分球检测窗上(载玻片的宽度应大于积分球检测窗上光孔的外直径),再将本发明的载玻片制样专用红外透反射光谱测量附件直接罩在载玻片上方以完全遮蔽载玻片,然后进行红外透反射光谱的测量。
为了证明本发明附件的可行性,使用Antaris II FT-NIR光谱仪(Thermo FisherScientific)的积分球漫反射平台和本实施例的载玻片制样专用红外透反射光谱测量附件测量大肠癌组织切片和正常大肠组织切片的近红外透反射光谱,以建立判别大肠癌组织的近红外透反射光谱分析法。
图2示出了本实施例所使用的红外光谱分析仪即Antaris II FT-NIR光谱仪的结构,其主要由光源、分光系统、积分球附件、检测器、控制与显示模块构成。其中,所述光源能在波长范围12000~3800cm-1内发射出稳定、均匀、高强度、连续波长的近红外光;所述分光系统能将复合光分为单色光;所述积分球附件用于收集来自不同传播方向的待检测光线;所述检测器用于将携带样品信息的光信号转换为电信号;所述控制与显示模块用于调控和显示以上各部分的运行。
Antaris II FT-NIR光谱仪的积分球检测窗上的光孔外直径为12.68mm,大肠癌组织切片和正常大肠组织切片的载玻片尺寸为76×25×1mm。
具体方法为:先分别收集11片正常大肠组织切片和11片大肠癌组织切片,然后以分辨率8cm-1、扫描次数64次,在10000~3800cm-1范围内采集切片的近红外透反射光谱,所得光谱不经预处理,选择建模光谱范围为9877~3922cm-1,采用主成分分析法对所选建模光谱范围的数据降维,按照贡献率由高到低的顺序选取前5个主成分作为建模特征变量,从11片正常大肠组织切片和11片大肠癌组织切片中分别取8片组织切片共16片组织切片作为校正集切片,其余为验证集切片,使用校正集与验证集光谱数据的主成分得分采用判别分析(DA)法建立与验证识别人体大肠(癌)组织的预测模型。结果显示,所建DA模型的校正集正判率为91.67%,验证集正判率为88.89%。
以上数据证明,使用本实施例的载玻片制样专用红外透反射光谱测量附件能够测得人体组织切片的高质量(包含了组织特征信息)光谱。可见,使用本发明的载玻片制样专用红外透反射光谱测量附件能够简单、方便地实现载玻片制样的准确、快速和无损分析。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管通过参照本发明的优选实施例已经对本发明进行了描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离所附权利要求书所限定的本发明的保护范围。

Claims (3)

1.一种载玻片制样专用红外透反射光谱测量附件,其特征在于,所述附件为中空的罩状结构,用于罩在载玻片上以完全遮蔽载玻片但不触及载玻片上的样品,所述罩状结构包括顶壁和自顶壁向下延伸的侧壁,所述顶壁的内表面为与载玻片相平行的平面且覆盖有反光材料用于形成光反射层,所述侧壁的内表面为黑色且不透光。
2.根据权利要求1所述的一种载玻片制样专用红外透反射光谱测量附件,其特征在于:所述反光材料为金箔。
3.根据权利要求1或2所述的一种载玻片制样专用红外透反射光谱测量附件,其特征在于:所述罩状结构为底部开敞的长方体罩。
CN201811655256.0A 2018-12-27 2018-12-27 一种载玻片制样专用红外透反射光谱测量附件 Pending CN109490239A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811655256.0A CN109490239A (zh) 2018-12-27 2018-12-27 一种载玻片制样专用红外透反射光谱测量附件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811655256.0A CN109490239A (zh) 2018-12-27 2018-12-27 一种载玻片制样专用红外透反射光谱测量附件

Publications (1)

Publication Number Publication Date
CN109490239A true CN109490239A (zh) 2019-03-19

Family

ID=65713557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811655256.0A Pending CN109490239A (zh) 2018-12-27 2018-12-27 一种载玻片制样专用红外透反射光谱测量附件

Country Status (1)

Country Link
CN (1) CN109490239A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132889A (zh) * 2019-04-16 2019-08-16 北京凯元盛世科技发展有限责任公司 一种透反射测量附件和固液测量转换方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132889A (zh) * 2019-04-16 2019-08-16 北京凯元盛世科技发展有限责任公司 一种透反射测量附件和固液测量转换方法

Similar Documents

Publication Publication Date Title
US7652769B2 (en) Method and apparatus for assessing purity of vegetable oils by means of terahertz time-domain spectroscopy
US6274871B1 (en) Method and system for performing infrared study on a biological sample
Huck Advances of infrared spectroscopy in natural product research
Marcelli et al. Biological applications of synchrotron radiation infrared spectromicroscopy
Shin et al. Wide area coverage Raman spectroscopy for reliable quantitative analysis and its applications
TW516955B (en) Method and apparatus for detecting mastitis by using visible light rays and/or near infrared light
Chernomyrdin et al. In vitro terahertz spectroscopy of gelatin-embedded human brain tumors: a pilot study
Huck Advances of vibrational spectroscopic methods in phytomics and bioanalysis
Dubois et al. Peer Reviewed: IR Spectroscopy in Clinical and Diagnostic Applications
Petter et al. Development and application of Fourier-transform infrared chemical imaging of tumour in human tissue
Andrei et al. Cancer diagnosis by FT-IR Spectrophotometry
Huck-Pezzei et al. Fourier transform infrared imaging analysis in discrimination studies of St. John's wort (Hypericum perforatum)
US20070171410A1 (en) Method and apparatus for the separation of fluoroscence and elastic scattering produced by broadband illumination using polarization discrimination techniques
Isabelle et al. Multi-centre Raman spectral mapping of oesophageal cancer tissues: a study to assess system transferability
CN202886274U (zh) 基于微机电技术的农产品品质近红外光谱分析仪
CN109490239A (zh) 一种载玻片制样专用红外透反射光谱测量附件
CN111220575A (zh) 一种基于太赫兹近场光谱的细胞检测方法
CN209485976U (zh) 一种载玻片制样专用红外透反射光谱测量附件
CN108072628A (zh) 一种判别药包材材质的近红外光谱法
Sablinskas et al. Fiber attenuated total reflection infrared spectroscopy of kidney tissue during live surgery
Andrew Chan et al. Chemical imaging of the stratum corneum under controlled humidity with the attenuated total reflection Fourier transform infrared spectroscopy method
CN107024449A (zh) 基于尿液判别哺乳动物性别的近红外光谱分析方法
US7339169B1 (en) Sample rotating turntable kit for infrared spectrometers
CN207007707U (zh) 一种基于dmd芯片的近红外光谱分析仪
CN109001182A (zh) 封闭容器中酒精含量的拉曼光谱无损测定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination