CN109484419A - 基于电力机车牵引总量一致的多电机协调控制方法 - Google Patents

基于电力机车牵引总量一致的多电机协调控制方法 Download PDF

Info

Publication number
CN109484419A
CN109484419A CN201811202709.4A CN201811202709A CN109484419A CN 109484419 A CN109484419 A CN 109484419A CN 201811202709 A CN201811202709 A CN 201811202709A CN 109484419 A CN109484419 A CN 109484419A
Authority
CN
China
Prior art keywords
motor
total amount
torque
electric locomotive
jth platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811202709.4A
Other languages
English (en)
Other versions
CN109484419B (zh
Inventor
刘建华
聂睿
张昌凡
何静
赵凯辉
黄刚
李涛
李祥飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Technology
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN201811202709.4A priority Critical patent/CN109484419B/zh
Publication of CN109484419A publication Critical patent/CN109484419A/zh
Application granted granted Critical
Publication of CN109484419B publication Critical patent/CN109484419B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • B61C17/12Control gear; Arrangements for controlling locomotives from remote points in the train or when operating in multiple units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars

Abstract

本发明提出基于电力机车牵引总量一致的多电机协调控制方法,构造总量一致的多电机协调控制框架,为优化多电机动态调整过程,提出基于能量函数最小化的多牵引系统分配策略,确保多电机以最优的动态调整方式完成输出转矩调整。并且针对每个独立的牵引子系统,构造滑模变结构控制器,跟踪反馈各电机的实际输出转矩,通过该控制方法抗干扰性强、跟踪性能好、且在某台或者某几台电机失去牵引作用时,依旧能够保持输出总量与机车运行所需总量保持一致,保证电力机车运行过程中牵引总量基本恒定。

Description

基于电力机车牵引总量一致的多电机协调控制方法
技术领域
本发明涉及电力机车技术领域,更具体地,涉及一种基于电力机车牵引总量一致的多电机协调控制方法。
背景技术
牵引电机作为电力机车的核心设备之一,是机车牵引动力的主要提供者,现有的电力机车大多采用多台电机共同提供牵引动力:微机控制系统根据司机室手柄操作指令运算所需的总牵引转矩,然后按照预设的分配策略将牵引转矩分配至安装在转向架上的多台牵引电机。那么只有多电机的输出牵引转矩之和与所需牵引转矩总量保持基本一致时,才能确保机车安全平稳运行。然而,复杂多变的运行环境常使某台/某几台牵引电机失去牵引性能,难以输出所分配的动力,此时,需要重新分配多电机的转矩输出才能维持牵引转矩总量基本恒定。
发明内容
本发明要解决的技术问题是针对现有技术不足和缺陷,提供一种基于电力机车牵引总量一致的多电机协调控制方法,包括以下步骤:
S1、根据电力机车司机室发送的动力指令获取电力机车的牵引转矩总量Te *
S2、基于牵引总量一致,将牵引转矩总量按分配策略分配至机车上各台电机,发送设定指令至各台电机,使得各台电机根据指令输出相应大小的转矩,实现第一目标Tej为第j台电机的输出转矩,n为电力机车上牵引电机的总台数;所述分配策略基于能量最小化使多电机输出牵引转矩的动态变化过程,由各台电机牵引转矩组成的能量函数J达到最小;所述能量函数为T=[Te1,Te2,...,Tej,...,Ten]T为牵引转矩矩阵,P=diag(a1,a2,...,aj,...,an)为权值矩阵,aj为各转矩的权值系数,且aj>0;分配策略具体表达为:其中b为正常数;
S3、构建多电机系统模型,设计滑模变结构控制器使得各电机输出转矩误差收敛并稳定在零附近:ej=Tej-Tej *,ej为第j台电机输出转矩与设定指令之间的跟踪误差。
进一步地,步骤S3中多电机数学模型:其中j=1,2,3,...n,Rj、Lj分别为第j台电机的电阻和电感,ij、uj为第j台电机的电流和输入端口的电压,ωj为第j台电机齿轮箱的输出角速度,kej为第j台电机的反电动势常数,ktj为第j台电机齿轮箱的传动比,J0j和J1j分别为第j台电机的电机和齿轮箱的转动惯量,b0j和b1j分别为第j台电机的电机和齿轮箱的粘滞摩擦系数,kmj为第j台电机电机转矩常数,为第j台电机负载转矩,为第j台电机输出转矩;定义状态变量x1j=ωj,x3j=Tej,得到状态方程:其中为等效惯性力矩,为等效粘滞阻尼常数,dj=[d1j,d2j,d3j]为时变扰动。
进一步地,步骤S3设计滑模变结构控制器具体为:定义所述滑模控制器的积分滑模面为其中c为待设计的正常数、sgn(·)为符号函数;根据所述电机的状态方程以及积分滑模面,设计滑模控制器的积分滑模控制律为ηj为待设计的正常数。
进一步地,所述ηj满足ηj≥|d3j|机车条件,ej为在有限时间内收敛为0。
进一步地,步骤S2分配策略等价为同时满足与a1Te1=a2Te2=...=ajTej=...=anTen,能量函数J达到最小。
本发明的有益效果为构造总量一致的多电机协调控制框架,为优化多电机动态调整过程提出基于能量函数最小化的多牵引系统分配策略,确保多电机以最优的动态调整方式完成输出转矩调整,并且针对每个独立的牵引子系统,构造滑模变结构控制器跟踪反馈各电机的实际输出转矩。通过该控制方法抗干扰性强、跟踪性能好、且在某台或者某几台电机失去牵引作用时,依旧能够保持输出总量与机车运行所需总量保持一致,保证电力机车运行过程中牵引总量基本恒定。
附图说明
图1为本实施例的基于总量一致控制策略示意图。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
SS8型电力机车采用B0-B0轴式结构,属于4轴客运机车,每列动车上装有4台牵引电机,通过平拉杆传递轮对牵引力。电力机车安全稳定运行的基本条件即是所有电机提供的牵引动力之和与机车运行所需的牵引总量一致,即
式中,Tej为第j台电机的输出转矩,Te *为牵引总量。
为了确保其中某台或者某几台电机失去牵引作用时,牵引总量能够保持一致,本实施例构造了总量一致的多电机协调控制策略,如图1所示,协调控制器综合各牵引电机牵引转矩输出,以总量的形式与所需牵引转矩进行对比,并依据各电机的实时转矩输出状态,基于最小化能量的原则,对各牵引电机进行重新分配,以确保各电机输出转矩总量与所需牵引总量Te *基本保持一致。同时,利用滑模控制器(SMC)与各牵引直流电机(DCM)组成多个独立牵引闭环子系统,以确保各电机具有较好的转矩跟踪性能和动态响应速度。
构建永磁同步直流电机的数学模型,具体可表示为
式中,Rj、Lj分别表示电枢电路的电阻和电感,ij为电机电流,ωj为第j台电机齿轮箱的输出角速度,uj为电枢电路输入端口的电压,kej为反电动势常数,ktj为齿轮箱的传动比,J0j和J1j分别为电机和齿轮箱的转动惯量,b0j和b1j分别为电机和齿轮箱的粘滞摩擦系数,kmj为电机转矩常数,为负载转矩,为电机输出转矩。
设置状态变量x1j=ωj,x3j=Tej,式(2)可表示为状态方程
其中,为等效惯性力矩;为等效粘滞阻尼常数;为时变扰动。
由于电机的负载转矩不可能无限大,即|TLj|≤βj,且电机轴端通过齿轮箱与轮对机械连接,可认为负载转矩慢时变或基本不变,即因此,时变扰动dj有界,即||dj(t)||≤ξi,其中βjji均为大于零的正常数。
能量函数可表示为:
式中,J为各牵引转矩组成的能量函数,T=[Te1,Te2,Te3,Te4]T为各牵引转矩矩阵,P=diag(a1,a2,a3,a4)为权值矩阵,其主对角线元素对应各转矩的权值系数aj,且aj>0。
示例性地,设定4号电机牵引损失百分比为p的情况下,其它电机转矩输出的分配情况,式(4)中各牵引转矩矩阵T=[Te1,Te2,Te3,Te4]T变为Tc=[Te1,Te2,Te3,(1-p)Te4]T,Tc为改变后的各牵引转矩矩阵,此时通过改变初始权值矩阵P,使Pc=diag((1-p)a1,(1-p)a2,(1-p)a3,a4),Pc为改变后的权值矩阵,最终仍能保证(10)式成立。
多电机的协调过程实际上就是多电机输出牵引转矩的动态变化过程,由各牵引转矩组成的能量函数达到最小,即表明动态调整过程最优。则基于能量最小化的多电机牵引动力分配方法可表示为具有约束的最优化问题,即
式中,b为正常数。运用拉格朗日乘数法对式(5)进行求解,对应的拉格朗日方程为
其中,ε为拉格朗日乘子。
分别对式(6)中的Te1,Te2,Te3,Te4,ε求偏导,有
根据Karush-Kuhn-Tucker(KKT)条件,当能量函数J达到最小时,需满足
将(7)式代入(8)式中,有
故可知
a1Te1=a2Te2=a3Te3=a4Te4 (10)
因此,如果同时满足以及等式(10),即可保证能量函数J的值达到最小。那么当牵引转矩发生改变的时候,通过改变权值系数矩阵P,在约束条件下满足牵引总量保证不变,可使得能量函数值达到最小。
本实施例采用变结构控制方法设计控制器,使各电机输出转矩误差收敛并稳定在零附近。
令第j台电机输出转矩与设定指令之间的协同跟踪误差为ej=Tej-Tej *,对ej求导可得:
定义积分滑模面其中c为待设计的正常数、sgn(·)为符号函数。针对永磁同步直流电机的状态方程和定义的积分滑模面,设计积分滑模控制律为:
其中j=1,2,3,4,ηj为待设计的正常数。
由于控制器中含有未知干扰dj,可以通过选取足够大的切换增益ηj来抵消dj的影响,能使误差ej在有限时间内收敛为0。
选取Lyapunov函数为对其求导可得
如果满足ηj≥|d3j|,则|s|(|d3j|-ηj)≤0,从而
此时误差ej从初始状态渐进收敛到0,使各电机输出转矩可在有限时间跟踪到参考状态Tej *
显然以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。

Claims (5)

1.一种基于电力机车牵引总量一致的多电机协调控制方法,其特征在于,包括以下步骤:
S1、根据电力机车司机室发送的动力指令获取电力机车的牵引转矩总量Te *
S2、基于牵引总量一致,将牵引转矩总量按分配策略分配至机车上各台电机,发送设定指令至各台电机,使得各台电机根据指令输出相应大小的转矩,实现第一目标Tej为第j台电机的输出转矩,n为电力机车上牵引电机的总台数;所述分配策略基于能量最小化使多电机输出牵引转矩的动态变化过程,由各台电机牵引转矩组成的能量函数J达到最小;所述能量函数为T=[Te1,Te2,...,Tej,...,Ten]T为牵引转矩矩阵,P=diag(a1,a2,...,aj,...,an)为权值矩阵,aj为各转矩的权值系数,且aj>0;分配策略具体表达为:其中b为正常数;
S3、构建多电机系统模型,设计滑模变结构控制器使得各电机输出转矩误差收敛,并稳定在零附近:ej为第j台电机输出转矩与设定指令之间的跟踪误差。
2.根据权利要求1所述的一种基于电力机车牵引总量一致的多电机协调控制方法,其特征在于,步骤S3中多电机数学模型:其中j=1,2,3,...n,Rj、Lj分别为第j台电机的电阻和电感,ij、uj为第j台电机的电流和输入端口的电压,ωj为第j台电机齿轮箱的输出角速度,kej为第j台电机的反电动势常数,ktj为第j台电机齿轮箱的传动比,J0j和J1j分别为第j台电机的电机和齿轮箱的转动惯量,b0j和b1j分别为第j台电机的电机和齿轮箱的粘滞摩擦系数,kmj为第j台电机电机转矩常数,为第j台电机负载转矩,为第j台电机输出转矩;定义状态变量x1j=ωj,x3j=Tej,得到状态方程:其中为等效惯性力矩,为等效粘滞阻尼常数, dj=[d1j,d2j,d3j]为时变扰动。
3.根据权利要求2所述的一种基于电力机车牵引总量一致的多电机协调控制方法,其特征在于,步骤S3设计滑模变结构控制器具体为:定义所述滑模控制器的积分滑模面为其中c为待设计的正常数、sgn(·)为符号函数;根据所述电机的状态方程以及积分滑模面,设计滑模控制器的积分滑模控制律为ηj为待设计的正常数。
4.根据权利要求3所述的一种基于电力机车牵引总量一致的多电机协调控制方法,其特征在于,所述ηj满足ηj≥|d3j|机车条件,ej为在有限时间内收敛为0。
5.根据权利要求1-4所述的一种基于电力机车牵引总量一致的多电机协调控制方法,其特征在于,步骤S2分配策略等价为同时满足与a1Te1=a2Te2=...=ajTej=...=anTen,能量函数J达到最小。
CN201811202709.4A 2018-10-16 2018-10-16 基于电力机车牵引总量一致的多电机协调控制方法 Active CN109484419B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811202709.4A CN109484419B (zh) 2018-10-16 2018-10-16 基于电力机车牵引总量一致的多电机协调控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811202709.4A CN109484419B (zh) 2018-10-16 2018-10-16 基于电力机车牵引总量一致的多电机协调控制方法

Publications (2)

Publication Number Publication Date
CN109484419A true CN109484419A (zh) 2019-03-19
CN109484419B CN109484419B (zh) 2020-08-28

Family

ID=65690351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811202709.4A Active CN109484419B (zh) 2018-10-16 2018-10-16 基于电力机车牵引总量一致的多电机协调控制方法

Country Status (1)

Country Link
CN (1) CN109484419B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200948797Y (zh) * 2006-09-21 2007-09-19 谢步明 交流传动电力机车牵引电动机的配置
CN104238572A (zh) * 2014-07-23 2014-12-24 南京理工大学 基于扰动补偿的电机伺服系统无抖动滑模位置控制方法
CN104527676A (zh) * 2014-12-09 2015-04-22 南车青岛四方机车车辆股份有限公司 防风沙高速轨道车辆
CN106354012A (zh) * 2016-11-02 2017-01-25 湖南工业大学 基于Terminal滑模的机车牵引力总量控制方法
CN206367387U (zh) * 2016-10-31 2017-08-01 中车株洲电力机车有限公司 一种城轨车辆供电电路及城轨车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200948797Y (zh) * 2006-09-21 2007-09-19 谢步明 交流传动电力机车牵引电动机的配置
CN104238572A (zh) * 2014-07-23 2014-12-24 南京理工大学 基于扰动补偿的电机伺服系统无抖动滑模位置控制方法
CN104238572B (zh) * 2014-07-23 2017-06-27 南京理工大学 基于扰动补偿的电机伺服系统无抖动滑模位置控制方法
CN104527676A (zh) * 2014-12-09 2015-04-22 南车青岛四方机车车辆股份有限公司 防风沙高速轨道车辆
CN206367387U (zh) * 2016-10-31 2017-08-01 中车株洲电力机车有限公司 一种城轨车辆供电电路及城轨车辆
CN106354012A (zh) * 2016-11-02 2017-01-25 湖南工业大学 基于Terminal滑模的机车牵引力总量控制方法
CN106354012B (zh) * 2016-11-02 2019-03-01 湖南工业大学 基于Terminal滑模的机车牵引力总量控制方法

Also Published As

Publication number Publication date
CN109484419B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2021077727A1 (zh) 一种电动卡车线控转向系统及其网络不确定控制方法
Wang et al. Torque distribution-based range extension control system for longitudinal motion of electric vehicles by LTI modeling with generalized frequency variable
Allotta et al. A scaled roller test rig for high-speed vehicles
CN104401232B (zh) 基于数据驱动预测控制的电动汽车扭矩优化方法
Zhang et al. Longitudinal–vertical comprehensive control for four-wheel drive pure electric vehicle considering energy recovery and ride comfort
Yang et al. Speed tracking based energy-efficient freight train control through multi-algorithms combination
CN104908814B (zh) 一种汽车线控转向系统的分数阶pid控制方法
CN107947646B (zh) 一种基于有机械联接的双永磁同步电机协调控制优化方法
Li et al. Network-based coordinated motion control of large-scale transportation vehicles
CN102629843A (zh) 三电机驱动系统神经网络广义逆自适应控制器的构造方法
CN108415257A (zh) 基于mfac的分布式电驱动车辆系统主动容错控制方法
Xiong et al. A new synchronous control method for dual motor electric vehicle based on cognitive-inspired and intelligent interaction
CN105391056B (zh) 一种考虑不平衡通信网络的电力系统分布式经济调度方法
CN104978450B (zh) 一种直升机振动主动控制位置优选方法
CN205754098U (zh) 基于改进adrc自抗扰算法的永磁直线电机控制系统
CN102004478B (zh) 一种车辆多总线协调通信与控制系统
CN204229676U (zh) 一种卷烟机教学模拟实验平台
CN104527637B (zh) 混合动力汽车控制方法和系统
CN103699006B (zh) 一种基于模糊变滑模面跟踪微分器控制方法
CN109484419A (zh) 基于电力机车牵引总量一致的多电机协调控制方法
CN105610662A (zh) 电动汽车的反馈式综合动态调度网络化控制装置
Zhu et al. Cooperative operation control of virtual coupling high-speed trains with input saturation and full-state constraints
CN106926750A (zh) 一种分布式驱动电动汽车的通信控制方法
CN107800342A (zh) 一种无轴承同步磁阻电机二阶滑模控制方法
Liu et al. Multimotors Coordination Control Method for Consistent Total Traction Torque of Electric Locomotives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant