CN109456050A - 一种低温共烧LTCC软磁ZnNiCu铁氧体材料及其制备方法 - Google Patents

一种低温共烧LTCC软磁ZnNiCu铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN109456050A
CN109456050A CN201811577584.3A CN201811577584A CN109456050A CN 109456050 A CN109456050 A CN 109456050A CN 201811577584 A CN201811577584 A CN 201811577584A CN 109456050 A CN109456050 A CN 109456050A
Authority
CN
China
Prior art keywords
znnicu
soft magnetism
low temperature
ferrite material
ltcc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811577584.3A
Other languages
English (en)
Other versions
CN109456050B (zh
Inventor
肖时勇
赵旭
陈军林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengdian Group DMEGC Magnetics Co Ltd
Original Assignee
Hengdian Group DMEGC Magnetics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengdian Group DMEGC Magnetics Co Ltd filed Critical Hengdian Group DMEGC Magnetics Co Ltd
Priority to CN201811577584.3A priority Critical patent/CN109456050B/zh
Publication of CN109456050A publication Critical patent/CN109456050A/zh
Application granted granted Critical
Publication of CN109456050B publication Critical patent/CN109456050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Abstract

本发明涉及软磁铁氧体材料技术领域,尤其涉及一种低温共烧LTCC软磁ZnNiCu铁氧体材料及其制备方法,所述低温共烧LTCC软磁ZnNiCu铁氧体材料由主成分和副成分烧结而成,所述主成分由以下摩尔百分含量的组分组成:Fe2O3 47.0~49.5mol%,ZnO 18.0~28.0mol%,NiO 12.5~16.5mol%,CuO 7.0~10.0mol%,各组分含量之和为100%。本发明的产品能实现与软磁镍锌铁氧体材料、Ag的共烧,在共烧时金属银不易扩散,能保证片式多层电感器(MLCI)器件获得优异的磁特性,产品一致性较好;体积电阻率大,满足产品的绝缘性能要求;工艺步骤简单,原材料易得,能耗低,对设备无特殊要求,易于实现低成本工业化生产。

Description

一种低温共烧LTCC软磁ZnNiCu铁氧体材料及其制备方法
技术领域
本发明涉及软磁铁氧体材料技术领域,尤其涉及一种主要用于制备叠层功率电感和磁珠的低温共烧LTCC软磁ZnNiCu铁氧体材料及其制备方法。
背景技术
随着笔记本电脑在高速度、高存储密度、轻薄化等方面的日益进步,以及以手机为中心的移动通讯技术和有线、无线数字通讯网的不断更新换代,电子产品在过去的20年中向着小型化、便携化方向飞速发展。这就带动了由模拟电路向高速数字电路的变革,及表面安装技术(SMT)的崛起。
SMC片式元件不仅能使电子产品小型化,而且能实现整机装配的高速自动化,片式元件的广泛应用,致使电子产品制造方式也发生了深刻变化,制造商希望印刷电路板全部采用片式元件。最近20年来,三大无源元件中的电阻器和电容器的片式化技术发展十分迅速,产品种类和规格日趋齐全,已达到大批量应用阶段,而小型化片式磁性元件(包括电感器、磁珠、滤波器、微波铁氧体器件等)由于工艺难度较大,故发展相对缓慢。
为适应现代通信、计算机、视听设备、电子办公设备、汽车电子系统、军事电子装置以及电磁兼容(EMC)等的需要。近年来一些国家投入大量人力财力来研究开发磁性元件的片式化技术并取得了显著的成效,从而大大地推动了小型化片式磁性元件的发展。随着叠层片式电感器MLCI和叠层型片式磁珠MLCB以及叠层型片式LC组合元件技术的成熟,其产能每年以两位数的速度增长,已经成为最重要的片式电子元件之一。
现有的叠层功率电感和磁珠用铁氧体材料制备工艺存在着烧结温度高、能耗高、成本高的问题,不能够与软磁镍锌铁氧体材料及银共烧,体积电阻率低,不能满足产品的绝缘性能要求。
发明内容
本发明为了克服上述现有技术中存在的问题,提供了一种能与软磁镍锌铁氧体材料、Ag共烧、体积电阻率大的低温共烧LTCC软磁ZnNiCu铁氧体材料。
本发明还提供了一种低温共烧LTCC软磁ZnNiCu铁氧体材料的制备方法,工艺步骤简单,能耗低,对设备无特殊要求,易于实现低成本工业化生产。
为了实现上述目的,本发明采用以下技术方案:
一种低温共烧LTCC软磁ZnNiCu铁氧体材料,所述低温共烧LTCC软磁ZnNiCu铁氧体材料由主成分和副成分烧结而成,所述主成分由以下摩尔百分含量的组分组成:Fe2O3 47.0~49.5mol%,ZnO 18.0~28.0mol%,NiO 12.5~16.5mol%,CuO 7.0~10.0mol%,各组分含量之和为100%。
本发明的低温共烧LTCC软磁ZnNiCu铁氧体材料的主成分含量必须严格控制在上述范围内,磁导率μ在各个频率下的性能较好,且电阻率较高能满足器件的绝缘特性要求。当Fe2O3含量偏高时,低频下的磁导率偏低,而高频下的磁导率偏高且材料的电阻率较低,这是因为富铁配方时有少量的Fe2+存在,在晶格内形成Fe2+←→Fe3+电子对,电子在Fe2+、Fe3+之间跃迁从而使得材料的电阻率下降。本发明的低温共烧LTCC软磁ZnNiCu铁氧体材料能实现与软磁镍锌铁氧体材料、Ag的共烧,具有较低的烧结温度,在共烧时金属银不易扩散,能保证片式多层电感器(MLCI)器件获得优异的磁特性,产品一致性较好;材料的磁导率≤150(测试频率:10MHz);体积电阻率大,满足产品的绝缘性能要求。
作为优选,以主成分总质量为基准,所述副成分中各组分在主成分中的添加量为:Bi2O3 0.2~0.5wt%和Mo2O3 0.01~0.1wt%。
更为优选的,副成分中Bi2O3的添加量在0.2~0.4wt%,Mo2O3的添加量在0.02~0.10wt%,低温共烧LTCC软磁ZnNiCu铁氧体材料的电磁性能更佳。
一种低温共烧LTCC软磁ZnNiCu铁氧体材料的制备方法,包括以下步骤:
(1)将主成分中各组分混合、振磨后,在空气窑中预烧,得预烧粉料;
(2)将预烧粉料粗粉碎后,加入副成分,砂磨后加入粘结剂,烘干造粒,得铁氧体粉料;
(3)将铁氧体粉料采用流延工艺制备叠层片式电感器件,在空气窑中高温烧结,即得低温共烧LTCC软磁ZnNiCu铁氧体材料。
作为优选,步骤(1)中,预烧温度为750~880℃。采用较低的预烧温度,能耗低,降低企业的生产成本。
作为优选,步骤(2)中,预烧粉料粗粉碎粒径为0.8~1.2μm;含水量<0.35wt%。该粒径范围内,能够增加粉料的流动性,提高产品的一致性;含水量较低,一方面有利于提高产品的绝缘性能,另一方面提高产品的磁性能。
作为优选,步骤(2)中,所述粘结剂为聚乙烯醇;所述粘结剂在预烧粉料中的添加量为0.5~0.8wt%。
作为优选,步骤(3)中,高温烧结的温度为850~900℃,烧结时间为120~180min。
因此,本发明具有如下有益效果:
(1)本发明的低温共烧LTCC软磁ZnNiCu铁氧体材料能实现与软磁镍锌铁氧体材料、Ag的共烧,在共烧时金属银不易扩散,能保证片式多层电感器(MLCI)器件获得优异的磁特性,产品一致性较好;体积电阻率大,满足产品的绝缘性能要求;
(2)工艺步骤简单,原材料易得,能耗低,对设备无特殊要求,易于实现低成本工业化生产。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步具体的说明。
在本发明中,若非特指,所有设备和原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。
实施例1
(1)按照表1中的配方配料,将主成分中Fe2O3 48.5mol%,ZnO 27mol%,NiO14.5mol%,CuO 10mol%混合、振磨后,在空气窑中780℃预烧120min,得预烧粉料;
(2)将预烧粉料含水率控制在<0.35wt%,进行粗粉碎至粒径为0.8μm后,加入副成分0.4wt%的Bi2O3和0.05wt%的Mo2O3,砂磨60min后加入0.8wt%的聚乙烯醇,烘干造粒,得铁氧体粉料;
(3)将铁氧体粉料压制成标准环形坯件采用流延工艺制备叠层片式电感器件,在空气窑中880℃高温烧结120min,即得低温共烧LTCC软磁ZnNiCu铁氧体材料。
实施例2
(1)按照表1中的配方配料,将主成分中Fe2O3 49mol%,ZnO 28mol%,NiO 13.5mol%,CuO9.5mol%混合、振磨后,在空气窑中750℃预烧120min,得预烧粉料;
(2)将预烧粉料含水率控制在<0.35wt%,进行粗粉碎至粒径为1.0μm后,加入副成分0.4wt%的Bi2O3和0.05wt%的Mo2O3,砂磨后加入0.5wt%的聚乙烯醇,烘干造粒,得铁氧体粉料;
(3)将铁氧体粉料采用流延工艺制备叠层片式电感器件,在空气窑中900℃高温烧结120min,即得低温共烧LTCC软磁ZnNiCu铁氧体材料。
实施例3
(1)按照表1中的配方配料,将主成分中Fe2O3 47mol%,ZnO 26.5mol%,NiO16.5mol%,CuO 10mol%混合、振磨后,在空气窑中880℃预烧60min,得预烧粉料;
(2)将预烧粉料含水率控制在<0.35wt%,进行粗粉碎至粒径为1.2μm后,加入副成分0.4wt%的Bi2O3和0.05wt%的Mo2O3,砂磨后加入0.5~0.8wt%的聚乙烯醇,烘干造粒,得铁氧体粉料;
(3)将铁氧体粉料采用流延工艺制备叠层片式电感器件,在空气窑中850℃高温烧结180min,即得低温共烧LTCC软磁ZnNiCu铁氧体材料。
实施例4
实施例4与实施例1的区别在于:主成分为Fe2O3 49.5mol%,ZnO 24mol%,NiO16.5mol%,CuO 10mol%(参见表1),其余工艺条件完全相同。
实施例5
实施例5与实施例1的区别在于:主成分为Fe2O3 49.5mol%,ZnO 27.5mol%,NiO16mol%,CuO 7mol%(参见表1),其余工艺条件完全相同。
实施例6
实施例6与实施例1的区别在于:主成分为Fe2O3 49mol%,ZnO 28mol%,NiO12.5mol%,CuO 10.5mol%(参见表1),其余工艺条件完全相同。
对比例1
对比例1与实施例1的区别在于:主成分为Fe2O3 48mol%,ZnO 28.5mol%,NiO14mol%,CuO 9.5mol%(参见表1),其余工艺条件完全相同。
对比例2
对比例2与实施例1的区别在于:主成分为Fe2O3 50mol%,ZnO 28mol%,NiO12.5mol%,CuO 9.5mol%(参见表1),其余工艺条件完全相同。
将实施例1-6和对比例1、2得到的低温共烧LTCC软磁ZnNiCu铁氧体材料采用HP4291B仪表在U=0.5V,T=25℃下检测磁粉的磁导率μ'值,采用MS 8220仪在U=500V,T=25℃下测试表面电阻R。结果见表1:
表1.实施例1-6和对比例1、2主成分配方及性能测试结果
由表1可以看出,采用本发明配方比例所得的低温共烧LTCC软磁ZnNiCu铁氧体材料磁导率μ'在各个频率下的性能较好,且电阻率较高能满足器件的绝缘特性要求。本发明的主成分配方体系各组分彼此之间具有相互协同作用,任何一个组分的配比变化,就会引起各个性能的大幅度变化。结合对比例1的性能数据可知,当Fe2O3含量偏高时(超出49.5mol%),低频下的磁导率偏低,而高频下的磁导率偏高且材料的电阻率较低(4×108),这是因为富铁配方时有少量的Fe2+存在,在晶格内形成Fe2+←→Fe3+电子对,电子在Fe2+、Fe3+之间跃迁从而使得材料的电阻率下降。结合对比例2的性能数据可知,当ZnO含量偏高时(超出28mol%),虽然电阻率较高能满足器件的绝缘特性要求,但是磁导率μ'在各个频率下的性能均偏低。
实施例7
实施例7与实施例1的区别在于:副成分为0.2wt%的Bi2O3和0.05wt%的Mo2O3,(参见表2),其余工艺条件完全相同。
实施例8
实施例8与实施例1的区别在于:副成分为0.4wt%的Bi2O3和0.05wt%的Mo2O3,(参见表2),其余工艺条件完全相同。
实施例9
实施例9与实施例1的区别在于:副成分为0.4wt%的Bi2O3和0.02wt%的Mo2O3,(参见表2),其余工艺条件完全相同。
实施例10
实施例10与实施例1的区别在于:副成分为0.4wt%的Bi2O3和0.1wt%的Mo2O3,(参见表2),其余工艺条件完全相同。
实施例11
实施例11与实施例1的区别在于:副成分为0.5wt%的Bi2O3和0.01wt%的Mo2O3,(参见表2),其余工艺条件完全相同。
对比例3
对比例3与实施例1的区别在于:副成分为0.4wt%的Bi2O3和0.15wt%的Mo2O3,(参见表2),其余工艺条件完全相同。
对比例4
对比例4与实施例1的区别在于:副成分为0.4wt%的Bi2O3和0.2wt%的Mo2O3,(参见表2),其余工艺条件完全相同。
对比例5
对比例5与实施例1的区别在于:副成分为1.2wt%的Bi2O3和0.15wt%的Mo2O3,(参见表2),其余工艺条件完全相同。
对比例6
对比例6与实施例1的区别在于:副成分为1wt%的Bi2O3和0.08wt%的Mo2O3,(参见表2),其余工艺条件完全相同。
将实施例7-11和对比例3-6得到的低温共烧LTCC软磁ZnNiCu铁氧体材料采用HP4291B仪表在U=0.5V,T=25℃下检测磁粉的磁导率μ'值,采用MS 8220仪在U=500V,T=25℃下测试表面电阻R。结果见表2:
表2.实施例7-11和对比例3-6副成分配方及性能测试结果
由表2可以看出,采用本发明配方比例所得的低温共烧LTCC软磁ZnNiCu铁氧体材料磁导率μ'在各个频率下的性能较好,且电阻率较高能满足器件的绝缘特性要求。本发明的副成分配方体系各组分彼此之间具有相互协同作用,任何一个组分的配比变化,就会引起各个性能的大幅度变化。结合对比例3、4可知,当Mo2O3的添加量过高(超过0.1wt%)时,虽然所得材料的电阻率能满足器件的绝缘特性要求,但是其在低频下的磁导率偏低;结合对比例5、6可知,当Bi2O3的添加量过高(超过0.5wt%)时,虽然所得材料的磁导率μ'在各个频率下的性能较好,但是其电阻率较低(3×109Ω),不能满足器件的绝缘特性要求;参照对比例5,当Bi2O3和Mo2O3的添加量均过高时,导致所得材料的电阻率过低(3×109Ω),无法满足器件的绝缘特性要求。
以上所述仅为本发明的较佳实施例,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (7)

1.一种低温共烧LTCC软磁ZnNiCu铁氧体材料,其特征在于,所述低温共烧LTCC软磁ZnNiCu铁氧体材料由主成分和副成分烧结而成,所述主成分由以下摩尔百分含量的组分组成:Fe2O3 47.0~49.5mol%,ZnO 18.0~28.0mol%,NiO 12.5~16.5mol%,CuO 7.0~10.0mol%,各组分含量之和为100%。
2.根据权利要求1所述的低温共烧LTCC软磁ZnNiCu铁氧体材料,其特征在于,以主成分总质量为基准,所述副成分中各组分在主成分中的添加量为:Bi2O3 0.2~0.5wt%和Mo2O30.01~0.1wt%。
3.一种如权利要求1或2所述的低温共烧LTCC软磁ZnNiCu铁氧体材料的制备方法,其特征在于,包括以下步骤:
(1)将主成分中各组分混合、振磨后,在空气窑中预烧,得预烧粉料;
(2)将预烧粉料粗粉碎后,加入副成分,砂磨后加入粘结剂,烘干造粒,得铁氧体粉料;
(3)将铁氧体粉料采用流延工艺制备叠层片式电感器件,在空气窑中高温烧结,即得低温共烧LTCC软磁ZnNiCu铁氧体材料。
4.根据权利要求3所述的低温共烧LTCC软磁ZnNiCu铁氧体材料的制备方法,其特征在于,步骤(1)中,预烧温度为750~880℃,预烧时间为60~120min。
5.根据权利要求3所述的低温共烧LTCC软磁ZnNiCu铁氧体材料的制备方法,其特征在于,步骤(2)中,预烧粉料粗粉碎粒径为0.8~1.2μm;含水量<0.35wt%。
6.根据权利要求3所述的低温共烧LTCC软磁ZnNiCu铁氧体材料的制备方法,其特征在于,步骤(2)中,所述粘结剂为聚乙烯醇;所述粘结剂在预烧粉料中的添加量为0.5~0.8wt%。
7.根据权利要求3所述的低温共烧LTCC软磁ZnNiCu铁氧体材料的制备方法,其特征在于,步骤(3)中,高温烧结的温度为850~900℃,烧结时间为120~180min。
CN201811577584.3A 2018-12-20 2018-12-20 一种低温共烧LTCC软磁ZnNiCu铁氧体材料及其制备方法 Active CN109456050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811577584.3A CN109456050B (zh) 2018-12-20 2018-12-20 一种低温共烧LTCC软磁ZnNiCu铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811577584.3A CN109456050B (zh) 2018-12-20 2018-12-20 一种低温共烧LTCC软磁ZnNiCu铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109456050A true CN109456050A (zh) 2019-03-12
CN109456050B CN109456050B (zh) 2020-12-22

Family

ID=65614315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811577584.3A Active CN109456050B (zh) 2018-12-20 2018-12-20 一种低温共烧LTCC软磁ZnNiCu铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109456050B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041064A (zh) * 2019-04-17 2019-07-23 临沂成合信息技术有限公司 叠层片式磁珠用高阻抗值低温共烧软磁铁氧体粉料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269018A (ja) * 1999-03-15 2000-09-29 Tokin Corp 低損失酸化物磁性材料
JP2004339031A (ja) * 2003-05-19 2004-12-02 Matsushita Electric Ind Co Ltd 非磁性フェライトおよびそれを用いた積層電子部品
CN1861546A (zh) * 2005-09-06 2006-11-15 横店集团东磁有限公司 高初始磁导率、低损耗NiZn铁氧体材料及其制备方法
CN102690110A (zh) * 2012-04-23 2012-09-26 横店集团东磁股份有限公司 一种低温共烧用镍铜锌软磁铁氧体材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269018A (ja) * 1999-03-15 2000-09-29 Tokin Corp 低損失酸化物磁性材料
JP2004339031A (ja) * 2003-05-19 2004-12-02 Matsushita Electric Ind Co Ltd 非磁性フェライトおよびそれを用いた積層電子部品
CN1861546A (zh) * 2005-09-06 2006-11-15 横店集团东磁有限公司 高初始磁导率、低损耗NiZn铁氧体材料及其制备方法
CN102690110A (zh) * 2012-04-23 2012-09-26 横店集团东磁股份有限公司 一种低温共烧用镍铜锌软磁铁氧体材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
苏桦等: "Bi2O3-MoO3复合掺杂对NiCuZn铁氧体烧结特性和磁性能的影响", 《磁性材料与器件》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041064A (zh) * 2019-04-17 2019-07-23 临沂成合信息技术有限公司 叠层片式磁珠用高阻抗值低温共烧软磁铁氧体粉料及其制备方法

Also Published As

Publication number Publication date
CN109456050B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN102690110B (zh) 一种低温共烧用镍铜锌软磁铁氧体材料及其制备方法
KR100439782B1 (ko) 1MHz와100MHz사이에서작동하는저상실페라이트및그제조방법
CN101723657A (zh) 一种NiCuZn微波铁氧体材料的制备方法
CN104098326A (zh) 低温度系数高阻抗高磁导率锰锌铁氧体材料及制备方法
KR101218998B1 (ko) 세라믹 전자부품용 자성체 조성물, 그 제조방법 및 이를 이용한 세라믹 전자부품
CN102690111B (zh) 一种低温共烧用镍铜锌软磁铁氧体材料及其制备方法
CN104496457A (zh) 一种含稀土的永磁铁氧体及其制造方法
CN110668806A (zh) 一种高频率用软磁铁氧体的制备方法
KR101218984B1 (ko) 세라믹 전자부품용 자성체 조성물, 그 제조방법 및 이를 이용한 세라믹 전자부품
CN111892395A (zh) 一种高频高阻抗锰锌铁氧体材料及其制备方法
CN104402424A (zh) 高饱和磁通密度、高直流叠加、高居里温度的镍锌铁氧体材料及其制备方法
CN104193314A (zh) 一种高磁导率软磁铁氧体材料及其制备方法
Li et al. Enhanced structure and microwave magnetic properties of MgZn ferrite by Cd2+ ion substitution for LTCC applications
CN109456050A (zh) 一种低温共烧LTCC软磁ZnNiCu铁氧体材料及其制备方法
Aman et al. The study of holmium substituted spinel ferrites for high frequency applications
CN102241507A (zh) 一种高磁导率高阻抗的Ni-Zn铁氧体材料及其制备方法
CN103265283A (zh) 一种高温稳定无铅电容器陶瓷介质材料及其制备方法
CN102898132B (zh) 一种具有巨介电常数的低温共烧磁电复合材料及其制备方法
CN108059451A (zh) 一种高频功率软磁铁氧体材料及其制备方法
CN106278224B (zh) 一种低温共烧用软磁铜锌铁氧体材料及其制备方法
Reimann et al. Ni‐Cu‐Zn ferrites with high Curie temperature for multilayer inductors with increased operating temperatures
CN100351958C (zh) 一种宽频磁电双性复合材料及其制备方法
JP6659264B2 (ja) 組成物、rf装置、修飾ニッケル亜鉛フェライト組成物、およびニッケル亜鉛フェライト材料を微調整する方法
Wu et al. Effect of neodymium substitutions on electromagnetic properties in low temperature sintered NiCuZn ferrite
KR100906988B1 (ko) 저온 소결용 페라이트 분말 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant