CN109453398B - 一种介孔聚多巴胺包载液态氟碳类超声造影剂及其制备方法 - Google Patents

一种介孔聚多巴胺包载液态氟碳类超声造影剂及其制备方法 Download PDF

Info

Publication number
CN109453398B
CN109453398B CN201811032467.9A CN201811032467A CN109453398B CN 109453398 B CN109453398 B CN 109453398B CN 201811032467 A CN201811032467 A CN 201811032467A CN 109453398 B CN109453398 B CN 109453398B
Authority
CN
China
Prior art keywords
contrast agent
ultrasonic
mpda
ultrasound
mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811032467.9A
Other languages
English (en)
Other versions
CN109453398A (zh
Inventor
曹众
朱瑾瑾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201811032467.9A priority Critical patent/CN109453398B/zh
Publication of CN109453398A publication Critical patent/CN109453398A/zh
Application granted granted Critical
Publication of CN109453398B publication Critical patent/CN109453398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种介孔聚多巴胺包载液态氟碳的超声造影剂及其制备方法。通过模板法,以盐酸多巴胺、嵌段共聚物F‑127与1,3,5‑三甲苯为基本原料制备出不同粒径的包载液态氟碳的介孔聚多巴胺溶液(MPDA超声造影剂)。本发明制备的介孔聚多巴胺(MPDA)具有优良的生物相容性和介孔结构,液态氟碳类能进入到介孔孔道中,在加热和超声波辐照下,产生气泡增强超声造影效果。该超声造影剂粒径可控,且制备方法简单,与药物协同包裹可望进一步应用于肿瘤诊疗一体化,有很高的研究价值和广阔的应用前景。

Description

一种介孔聚多巴胺包载液态氟碳类超声造影剂及其制备方法
技术领域:
本发明属于生物医学材料领域,具体涉及到一种超声造影剂及其制备方法。
背景技术:
超声成像是一种利用超声的物理特性和人体器官组织声学性质上的差异来进行疾病诊断的影像技术。超声造影剂最早应用于超声诊断,能够有效改善超声图像的对比质量,增强肌、肝、肾、脑等实质器官的二维超声影像和血流多普勒信号,明显提高超声对于病变区形态和类型分辨能力,增强超声诊断的敏感性和特异性。
目前我国临床应用的超声造影剂是声诺维(Sonovue),它是一种脂质材料包裹六氟化硫气体的超声微泡。由于Sonovue微泡是一种微米级造影剂,不能透过血管,属于血池显像,限制了其对血管外疾病的诊断与治疗。而纳米超声造影剂的小尺寸赋予它们较强的穿透力,可穿过血管内皮细胞到达血管外靶标,通过EPR效应(Enhanced Permeability andRetention effect)进行成像与治疗,从而超越了微泡类超声造影剂仅能血池显像的应用范围。
超声造影剂成膜材料有磷脂、白蛋白、高分子聚合物和无机非金属等材料。磷脂作为成膜材料缺点是体内外稳定性欠佳,造影持续时间短。无机纳米颗粒(例如二氧化硅、碳纳米管等)缺点是材料刚性太强,成像需较高的声学输出。近年来,介孔二氧化硅常用作超声和HIFU增效剂,施剑林等人将负载全氟己烷的介孔二氧化硅微胶囊作为高强度聚焦超声的显影材料。但是介孔二氧化硅存在制备复杂,生物相容性欠佳等问题。因此,如何获得生物相容性好、工艺简单、稳定性适中的介孔材料是亟待解决的问题。
纳米级氟碳乳剂是目前报道较多的纳米级造影剂,其结构为:核心是氟碳液体,外层为包膜材料。氟碳液体是一种氟化的脂肪族类复合物,长氟碳链化合物则以密度高于水的液体形式存在,短氟碳链化合物以气体形式存在,不同液态氟碳化合物的声学特性不同。如全氟戊烷(PFP)、全氟己烷(PFH)沸点很低,进入体内后会有液-气相转变,最终形成大的微泡来加强显影效果。而全氟辛溴(PFOB)和全氟萘烷(PFD)沸点较高,在体内主要通过聚集的方式实现超声显影效果的增强。与气态氟碳类造影剂相比,液态氟碳类造影剂在体内显像方面有更多优势,如更低的毒理学危险、更长的组织内循环时间、可更持久的抵抗外界压力和机械应力变化的能力。Paul S. Sheeran等人用二硬脂酰磷脂酰胆碱(DPPC)等磷脂包覆全氟丁烷(DFB)制备脂质氟碳相变造影剂,粒径在 200~300 纳米左右,升高温度后,该造影剂能增大到 1~5 μm,这样就可以增强纳米氟碳显影剂的显影效果,但是全氟丁烷常温下相对不稳定,对制备工艺要求相对较高,具有一定的局限性。杨仕平等人用PEG修饰的二氧化硅包载全氟丙烷,与声诺维在相同超声参数和浓度相同条件下进行比较,表现出较好的稳定性。由于二氧化硅外壳较硬,需较高的声学输出,才能产生增强的对比,成像时容易肺出血、毛细血管破裂等,因此应继续探寻对人体更安全的新型材料。
聚多巴胺作为天然黑色素的一个重要组成成分,广泛分布在人体中,因此其显示出了非常优良的生物相容性。近年来,聚多巴胺(PDA)纳米球引起了人们的关注。它是由多巴胺在碱性条件下自聚合而成,具有良好的稳定性、生物相容性和光热转换特性。范磊等人用聚多巴胺作为涂层改性聚乳酸-羟基乙酸共聚物(AuNPs @ PDA / PLGA)混合胶囊,用做组合超声成像和高强度聚焦超声(HIFU)治疗。但是聚多巴胺纳米球是一种实心纳米粒子,无法将液态氟碳类作为内核包载成纳米级超声造影剂。而介孔聚多巴胺(Mesoporouspolydopamine, MPDA)是一种新型介孔材料,具有孔道结构,比表面积大,可以负载液态氟碳用作超声造影剂。
发明内容
本发明旨在克服现有技术的不足,提供不同粒径与孔径的纳米介孔聚多巴胺,包载液态氟碳制备粒径大小可控的纳米级造影剂(MPDA超声造影剂)。
本发明的超声造影剂通过静脉注射后,既能穿透血管内皮组织,又能在超声波辐照下通过液-气相转变产生微泡,达到类似普通微泡增强超声显影的效果。通过改变反应条件,可使粒径控制在50~500nm。由于介孔聚多巴胺硬度适中,在较低的声学输出条件下,就能产生超声增强的对比,有着良好的超声造影效果。介孔聚多巴胺纳米粒子粒径与孔径分布均一,生物相容性好,在近红外光有较强吸收和安全性等优势,可以用于生物医学诊断及治疗领域。而且制备工艺简单,材料经济,该MPDA超声造影剂可弥补传统造影剂用于肿瘤诊疗的不足,具有潜在的临床应用价值,也可进一步为肿瘤的诊疗一体化提供新思路。
本发明采用如下技术方案:
一种超声造影剂,由介孔聚多巴胺包载液态氟碳制备而成。具体的,该造影剂平均粒径可以在50~500nm调节。所述液态氟碳类为全氟丁烷(DFB)、全氟戊烷 (PFP)、全氟己烷(PFH)、全氟辛溴(PFOB)、全氟萘烷 (PFD)中一种或几种混合。
上述超声造影剂的制备方法,包括如下步骤:
(1)将盐酸多巴胺与表面活性剂F-127溶于的乙醇与水混合溶剂中,搅拌15~30min;
(2)在水浴超声环境中快速逐滴加入1,3,5-三甲苯(1,3,5-三甲苯与上述水与乙醇混合相体积和之比为1:50~200),振荡1~30min后,形成乳白色乳液;加入50~500μL碱性溶液于上述乳液中,搅拌2~12h;
(3)收集最后反应液,离心,分别用体积为1~20mL的有机溶剂与去离子水各清洗3次,得到介孔聚多巴胺纳米球;
(4)避光条件下,将上述介孔聚多巴胺纳米球干燥成固体;
(5)将介孔聚多巴胺于圆底烧瓶中,冰水孵育,抽真空1~10min后,迅速注入液态氟碳,然后将反应瓶在超声条件下,再加水溶液(液态氟碳与水相的体积之比为1:10~50),最后用超声细胞粉碎仪超声粉碎,得到MPDA超声造影剂。
在上述的制备方法中,步骤(1)所述乙醇与水按照任意比互溶;所述盐酸多巴胺与表面活性剂F-127质量比为1:0.5~20。
在上述的制备方法中,步骤(2)中碱性溶液为氨水、Tris-盐酸或氢氧化钠溶液。
在上述的制备方法中,步骤(3)所述有机溶剂为乙醇、丙酮、三氯甲烷、二氯甲烷、四氢呋喃、二甲基亚砜、甲醇中的一种或多种混合。
在上述的制备方法中,步骤(4)中干燥成固体的方式有真空干燥、冻干或烘干。
在上述的制备方法中,步骤(5)中所述的水溶液为去离子水、PBS溶液(pH 5.0~7.4)或培养基。
在上述的制备方法中,步骤(5)中所述超声破碎的超声功率为30W工作3s停3s,超声时间0.5~5min。
与现有技术相比,本发明具有如下有益效果:
(1)通过改变制备条件,MPDA超声造影剂的粒径可以在50~500nm 调节,粒径分布相对集中。聚多巴胺是黑色素的主要成分,MPDA超声造影剂生物相容性好,体内外性质稳定,有利于该超声造影剂临床应用。
(2)MPDA超声造影剂在808nm有较强的近红外吸收,与聚多巴胺光热性质几乎一致,可以作为一种光热治疗剂。
(3)MPDA超声造影剂在较低的声学输出条件下,就能产生良好的超声造影效果,在肿瘤诊断中有潜在的应用。
附图说明
图1为本发明实施例1中制得的 MPDA超声造影剂的透射电镜图。
图2为本发明实施例2中制得的MPDA超声造影剂的透射电镜图。
图3为本发明实施例2中制得的MPDA超声造影剂粒径分布柱状图。
图4为本发明实施例1中制得的MPDA超声造影剂在不同机械指数,不同频率的体外超声显像图片。
图5为本发明实施例1中制得的MPDA溶液和MPDA超声造影剂的紫外-可见光吸收光谱。
图6为本发明实施例1中制得的MPDA溶液和MPDA超声造影剂的光热升温图。
图7为本发明实施例2中制得的MPDA超声造影剂注射荷瘤鼠体内前后的超声显像图片。
具体实施方式
实施例1 粒径为82nm的MPDA超声造影剂
步骤一:0.03g的盐酸多巴胺与0.1g F-127溶于5mL的乙醇和5mL的去离子水中,搅拌30min。在水浴超声条件下,逐滴加入160μL的TMB,振荡10min后成乳白色胶束。然后在电磁搅拌条件下,逐滴加入160μL的氨水。室温搅拌4h后溶液成墨黑色。收集该溶液于EP管中离心10min(13000rmp)。分别用乙醇与水各依次洗涤3次,最后重悬于去离子水中,制得介孔聚多巴胺(MPDA)溶液。
步骤二:将上述MPDA溶液干燥成固体,称取10mg置于25mL圆底烧瓶中,抽真空3min后,快速注入100μL全氟戊烷,摇匀3分钟,水浴超声5min,注入5mL PBS缓冲液。最后用超声细胞破碎仪的探头超声1min(设置超声功率为30W,工作3s,停3s),得到MPDA超声造影剂。由图1可知MPDA超声造影剂粒径为82nm。
实施例2 粒径为200nm的MPDA超声造影剂
(1)同实施例1步骤一,区别在于盐酸多巴胺的量为0.15g。
(2)同实施例1步骤二,区别在于快速注入100μL的全氟己烷,制得MPDA超声造影剂。
用马尔文(Malvern)激光粒度仪测量其粒径为275nm,并得到动态光散射粒径分布柱状图3,粒径分布范围较窄,粒径较为均一。由透射电镜图2可以看出,粒径为200nm。可通过改变盐酸多巴胺的量,控制MPDA超声造影剂的粒径。
实施例3 不同机械指数、不同频率下MPDA超声造影剂的体外超声显像试验
取上述实施例1中制得MPDA超声造影剂加入到盛有脱气水的滴管中,将其置于温度为37℃的水槽中,使用多谱勒超声诊断仪探头,进行机械指数(MI)分别为0.13,0.33和频率分别为6.5MHz和8MHz条件的超声显影实验。由图4可知,该MPDA超声造影剂在不同机械指数和不同频率条件下均有明显的造影效果,在高频和高机械指数条件下造影效果更佳。这说明经过超声波辐照后的MPDA超声造影剂产成了大量的气体微泡,使该纳米颗粒实现了“液一气”的转变,进而实现较好的造影功能,这种超声造影剂既解决了超声微泡造影剂的尺寸过大的问题,又克服只能进行血池示踪显像的缺点,实现了微泡超声造影剂的显像效果。
实施例4 MPDA超声造影剂的体外光热实验
取实施例1制得的MPDA溶液和MPDA超声造影剂溶液各2mL,在紫外分光光度计上进行波长扫描,由图5可知,MPDA溶液和MPDA超声造影剂均在808nm有较好的吸收,说明MPDA超声造影剂有着光热治疗的潜力。
固定808 nm近红外功率为1 W/cm2,对相同浓度(500μg/mL)的MPDA溶液和MPDA超声造影剂持续照射10 min,结果如图6所示,以去离子水作为对照组,MPDA超声造影剂可有效将近红外光能转换为局部热能,保留了聚多巴胺的光热性质,有望应用于使用较低功率的光热治疗。
实施例5 MPDA超声造影剂在小鼠体内的超声成像
具体步骤如下:通过尾静脉向荷瘤鼠体内注射100μL实施例2中的MPDA超声造影剂(4mg/mL),分别在注射前及注射后不同时间点对小鼠进行超声成像扫描。结果如图7所示,注射样品后,小鼠肿瘤部位超声信号逐渐增强,9h后,肿瘤部位光声信号达到最强。表明该超声造影剂具有较高的稳定性及较长的体内循环时间,能通过EPR效应有效富集在肿瘤部位,利于肿瘤部位及其边界的识别,在肿瘤部位实现超声造影显像。

Claims (7)

1.一种超声造影剂,其特征在于由介孔聚多巴胺包载液态氟碳类制备而成;
该造影剂平均粒径为50~500nm;所述液态氟碳类为全氟丁烷、全氟戊烷、全氟己烷、全氟辛溴、全氟萘烷中一种或几种混合;
制备方法包括如下步骤:
(1)将盐酸多巴胺与表面活性剂F-127溶于的乙醇与水混合溶剂中,搅拌15~30min;
(2)在水浴超声环境中快速逐滴加入1,3,5-三甲苯,1,3,5-三甲苯与上述水与乙醇混合相的体积和之比为1:50~200,振荡1~30min后,形成乳白色乳液;再加入50~500μL碱性溶液于上述乳液中,搅拌2~12h;
(3)收集最后反应液,离心,分别用体积为1~20mL的有机溶剂与去离子水各清洗3次,得到介孔聚多巴胺纳米球;
(4)避光条件下,将上述介孔聚多巴胺纳米球干燥成固体;
(5)将介孔聚多巴胺于圆底烧瓶中,冰水孵育,抽真空1~10min后,迅速注入液态氟碳,然后将反应瓶在超声条件下,再加水溶液,液态氟碳与水相的体积之比为1:10~50,最后用超声细胞粉碎仪超声粉碎。
2.如权利要求1所述的超声造影剂,其特征在于,步骤(1)所述乙醇与水按照任意比互溶;所述盐酸多巴胺与表面活性剂F-127质量比为1:0.5~20。
3.如权利要求1所述的超声造影剂,其特征在于,步骤(2)中碱性溶液为氨水、Tris-盐酸或氢氧化钠溶液。
4.如权利要求1所述的超声造影剂,其特征在于,步骤(3)所述有机溶剂为乙醇、丙酮、三氯甲烷、二氯甲烷、四氢呋喃、二甲基亚砜、甲醇中的一种或多种混合。
5.如权利要求1所述的超声造影剂,其特征在于,步骤(4)中干燥成固体的方式有真空干燥、冻干或烘干。
6.如权利要求1所述的超声造影剂,其特征在于,步骤(5)中所述水溶液为去离子水、pH5.0~7.4的PBS溶液或培养基。
7.如权利要求1所述的超声造影剂,其特征在于,所述超声破碎的超声功率为30W,工作3s停3s,超声时间0.5~5min 。
CN201811032467.9A 2018-09-05 2018-09-05 一种介孔聚多巴胺包载液态氟碳类超声造影剂及其制备方法 Active CN109453398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811032467.9A CN109453398B (zh) 2018-09-05 2018-09-05 一种介孔聚多巴胺包载液态氟碳类超声造影剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811032467.9A CN109453398B (zh) 2018-09-05 2018-09-05 一种介孔聚多巴胺包载液态氟碳类超声造影剂及其制备方法

Publications (2)

Publication Number Publication Date
CN109453398A CN109453398A (zh) 2019-03-12
CN109453398B true CN109453398B (zh) 2021-06-04

Family

ID=65606508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811032467.9A Active CN109453398B (zh) 2018-09-05 2018-09-05 一种介孔聚多巴胺包载液态氟碳类超声造影剂及其制备方法

Country Status (1)

Country Link
CN (1) CN109453398B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124034B (zh) * 2019-05-29 2021-02-19 浙江大学 一种纳米金属有机框架空化材料、合成方法及应用
CN110464873B (zh) * 2019-06-06 2020-05-05 重庆大学 具有消除表面生物膜功能的医用钛植入体的制备方法
CN111067872B (zh) * 2019-12-30 2020-11-17 浙江大学 一种用于静脉高效给氧的聚多巴胺纳米颗粒稳定的微气泡分散体系及其制备方法
CN114073779A (zh) * 2020-08-20 2022-02-22 华东师范大学 一种超声影像纳米探针及其制备方法和应用
CN112190752A (zh) * 2020-10-21 2021-01-08 西北师范大学 一种用于肿瘤栓塞的多功能高分子复合材料及其制备方法
CN113060750B (zh) * 2021-03-17 2022-04-08 电子科技大学 一种用于海水提铀的介孔离子化合物的制备方法
CN114949268A (zh) * 2022-04-19 2022-08-30 中国科学院精密测量科学与技术创新研究院 一种包氟介孔聚多巴胺纳米颗粒及其合成方法和应用
CN115227833B (zh) * 2022-07-29 2023-03-21 西安交通大学医学院第一附属医院 一种氟化二氧化硅载药纳米粒及其制备方法、用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103432601A (zh) * 2013-08-26 2013-12-11 福建医科大学附属协和医院 包裹液态氟碳的嵌段聚合物超声微泡造影剂及其制备方法
CN108434462A (zh) * 2018-03-13 2018-08-24 中山大学 一种介孔聚多巴胺负载羰基锰的多功能纳米诊疗剂及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835605B2 (en) * 2015-10-01 2020-11-17 University Of South Carolina Preparations of poly(lactic-co-glycolic acid)/polydopamine core/shell hybrid nanoparticle for photothermal applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103432601A (zh) * 2013-08-26 2013-12-11 福建医科大学附属协和医院 包裹液态氟碳的嵌段聚合物超声微泡造影剂及其制备方法
CN108434462A (zh) * 2018-03-13 2018-08-24 中山大学 一种介孔聚多巴胺负载羰基锰的多功能纳米诊疗剂及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy";Yuxin Xing et. al;《Nanoscale》;20170531;第9卷;第8782页"Synthesis of mesoporous polydopamine nanoparticles *

Also Published As

Publication number Publication date
CN109453398A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN109453398B (zh) 一种介孔聚多巴胺包载液态氟碳类超声造影剂及其制备方法
Zhen et al. Surface engineering of semiconducting polymer nanoparticles for amplified photoacoustic imaging
Nie et al. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents
Jin et al. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer
CN108888767B (zh) 一种纳米复合材料、其制备方法及应用
Zha et al. Engineering of perfluorooctylbromide polypyrrole nano-/microcapsules for simultaneous contrast enhanced ultrasound imaging and photothermal treatment of cancer
Wang et al. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy
Teng et al. A magnetic droplet vaporization approach using perfluorohexane-encapsulated magnetic mesoporous particles for ultrasound imaging and tumor ablation
Loskutova et al. Review on acoustic droplet vaporization in ultrasound diagnostics and therapeutics
Li et al. Imaging guided photothermal therapy using iron oxide loaded poly (lactic acid) microcapsules coated with graphene oxide
CN108434462B (zh) 一种介孔聚多巴胺负载羰基锰的多功能纳米诊疗剂及其制备方法与应用
Park et al. Tunable aggregation of gold-silica janus nanoparticles to enable contrast-enhanced multiwavelength photoacoustic imaging in vivo
CN104826140B (zh) 一种载药硅脂质超声造影剂的制备方法和应用
CN108837161A (zh) 一种聚多巴胺包裹的金核/中空硅壳纳米材料及其制备和应用
Cheng et al. Ultrasound-triggered phase transition sensitive magnetic fluorescent nanodroplets as a multimodal imaging contrast agent in rat and mouse model
CN108379600A (zh) 一种载氧液态氟碳的多功能造影剂及其制备方法
Ma et al. Construction of smart inorganic nanoparticle-based ultrasound contrast agents and their biomedical applications
Chen et al. Nanoparticle probes for structural and functional photoacoustic molecular tomography
CN111450269A (zh) 一种多功能超声造影剂及其制备方法
Peng et al. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review. Part II: Nanoacoustics for biomedical imaging and therapy
CN104117074B (zh) 一种基于聚吡咯复合物的治疗诊断制剂及其制备方法
Liu et al. Versatile synthetic strategies for PBCA-based hybrid fluorescent microbubbles and their potential theranostic applications to cell labelling and imaging
CN105903038A (zh) 一种掺杂钆的空心囊泡结构纳米复合材料及其制备与应用
Yang et al. Smart supramolecular nanosystems for bioimaging and drug delivery
Liopo et al. Nanoparticles as contrast agents for optoacoustic imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant