CN109437857B - 一种用于高温压电传感器的压电陶瓷材料及其制备方法 - Google Patents

一种用于高温压电传感器的压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN109437857B
CN109437857B CN201811175251.8A CN201811175251A CN109437857B CN 109437857 B CN109437857 B CN 109437857B CN 201811175251 A CN201811175251 A CN 201811175251A CN 109437857 B CN109437857 B CN 109437857B
Authority
CN
China
Prior art keywords
temperature
piezoelectric ceramic
ceramic
equal
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811175251.8A
Other languages
English (en)
Other versions
CN109437857A (zh
Inventor
陈强
钟建强
朱建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201811175251.8A priority Critical patent/CN109437857B/zh
Publication of CN109437857A publication Critical patent/CN109437857A/zh
Application granted granted Critical
Publication of CN109437857B publication Critical patent/CN109437857B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/084Shaping or machining of piezoelectric or electrostrictive bodies by moulding or extrusion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth-based oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种用于高温压电传感器的压电陶瓷材料及其制备方法,该陶瓷材料的化学配比式为:Ca1‑xyz (LM) x/2N y (NaBi) z/2Bi2Ta2O9;该陶瓷材料的化学配比式为:Ca1‑xyz (LM) x/2N y (NaBi) z/2Bi2Ta2O9;其中L表示Li、Na、K;M表示镧系金属元素或Bi;N表示Sr或+2价空位;式中0≤x+y+z≤1,且0≤x≤0.4,0≤y≤0.1,0≤z≤1;当z≠0时,(LM)组合不能是(NaBi)。本发明压电陶瓷材料兼具居里温度高、高温直流电阻率大、压电活性好、热稳定性好的优点。

Description

一种用于高温压电传感器的压电陶瓷材料及其制备方法
技术领域
本发明涉及材料技术领域,尤其涉及一种用于高温压电传感器的压电陶瓷材料及其制备方法。
背景技术
压电陶瓷是一种能够实现机械能与电能相互转换的重要新型功能材料,已被广泛用于航空航天、汽车、通讯、消费类电子产品等众多领域。以锆钛酸铅(PZT)为代表的铅基压电陶瓷因其优异的压电、介电性质是目前应用最为广泛的压电陶瓷材料。随着科学技术的发展与进步,一些高技术领域,比如航空航天、航海、核能、地质勘探等,对压电陶瓷提出了迫切而苛刻的应用需求,要求压电陶瓷能够长时间耐受高温(T > 400 ℃)。根据压电器件应用经验,其正常工作的上限温度通常为1/2T C或2/3T C,这就意味着压电陶瓷的居里温度T C至少高于600 ℃。目前商用PZT基压电陶瓷T C通常不高于380 ℃,显然不能满足高温环境应用。
铋层状结构铁电体居里温度普遍超过500 ℃,比如CaBi2Ti4O15 (CBT)居里温度约为790 ℃,Na0.5Bi2.5Nb2O9 (NBN)居里温度约为780 ℃,CaBi2Nb2O9 (CBN)居里温度约为940℃。尽管铋层状结构铁电体具有高的居里温度,但是由于其特殊的晶体结构使其自发极化被限制在二维平面内,因而其压电性很差。虽然人们通过离子掺杂或者制备工艺改进能有效增强其压电活性,但是随着掺杂离子的引入,居里温度通常显著降低,并且高温电阻率ρ (@650 ℃) 通常低于105 Ω·cm量级,将严重影响高温压电传感器的温度稳定性。
CaBi2Ta2O9 (CBTa)是一种典型的含铋层状结构压电材料,它是由类钙钛矿层(CaTa2O7)2- 和(Bi2O2)2+层有规律的交替排列而成,居里温度高达到940 ℃左右,但其压电性仍很低,压电常数d 33仅为4 pC/N,在650 ℃的电阻率为~ 105 Ω·cm,且压电常数d 33随温度升高衰减明显,不利于高温压电传感器稳定性的提升。
发明内容
本发明的目的在于解决上述现有技术存在的缺陷,提供一种用于高温压电传感器的压电陶瓷材料及其制备方法。
一种用于高温压电传感器的压电陶瓷材料,
该陶瓷材料的化学配比式为:Ca1-x-y-z (LM) x/2N y (NaBi) z/2Bi2Ta2O9;其中L表示Li、Na、K;M表示镧系金属元素或Bi; N表示Sr或+2价空位;x、y、z表示相应元素的摩尔分数;式中0 ≤x+y+z ≤ 1,且0 ≤x ≤ 0.4,0 ≤y ≤ 0.1,0 ≤z ≤ 1;当z≠0时,(LM)组合不能是(NaBi)。
进一步地,如上所述的具有高居里温度的压电陶瓷材料,包括以下步骤:
(1)按照所述陶瓷材料的化学配比式,计算、称取各原材料所需质量;
(2)将称量好的原材料进行球磨,球磨10-24 h;
(3)将步骤(2)球磨后的浆料烘烤干,压紧后在原料表面扎出少量细孔后置于马弗炉中,以3 ℃/min升温速率升至850 ℃并保温4-6 h后自然冷却至室温;
(4)将步骤(3)预烧后的产物按照步骤(2)再次球磨10-16 h,使粉料混合均匀得到陶瓷前驱粉体;
(5)向步骤(4)所得前驱粉体加入质量为8-12 %的聚乙烯醇溶液造粒后压制成圆片,得到陶瓷生坯体;
(6)将步骤(5)所得陶瓷生坯体置于马弗炉排除陶瓷生坯体中的PVA后并在1080℃-1250 ℃烧结4-6 h即可得到所述陶瓷材料;
(7)将步骤(6)得到的陶瓷材料上下表面抛光后涂覆银浆,并烤干后,再于马弗炉中600 ℃-800 ℃烧结10-20 min以在陶瓷表面得到导电金属银电极;
(8)将步骤(7)所得陶瓷置于180℃-220 ℃硅油中预热10 min后分两段施加直流电场,第一段场强为7.0-10.0 kV/mm并保压10-20 min;第二段场强为10.0 kV-15.0 kV/mm并保压15-45 min即可得到充分极化的压电陶瓷。
本发明提供的压电陶瓷材料,由于是通过对CaBi2Ta2O9 (CBTa)基体进行组分设计与调控,引入的掺杂离子进入CBTa晶格后导致其晶体结构畸变,进而使其自发极化增强,压电性增加,并具有高的居里温度和高温直流电阻率。本发明提供的制备方法能够获得致密的CBTa基压电陶瓷体,并使其充分饱和极化,对于压电活性的提高也起到了促进作用。
本发明与现有的技术相比,其鲜明的优点在于本发明提供的CBTa压电陶瓷兼具高居里温度、高压电活性、高温直流电阻率大及温度稳定性。
附图说明
图1为实施例1、2、5中样品的介温曲线。
图2为实施例1中样品的高温电阻率。
图3为实施例5中样品的高温电阻率。
图4为实施例1、2、5中样品的退火曲线。
图5为实施例1中样品2#的微观表面形貌图片。
图6为实施例2中样品的XRD图谱。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为实现上述目的,本发明采用的技术方案是:
一种兼具高居里温度、高压电活性、高温直流电阻率大、温度稳定性好,用于高温压电传感器的压电陶瓷材料及其制备,其特征在于:所述陶瓷材料的化学配比式为:Ca1-x-y-z (LM) x/2N y (NaBi) z/2Bi2Ta2O9;其中L表示Li、Na、K;M表示镧系金属元素或Bi; N表示Sr或+2价空位;x、y、z表示相应元素的摩尔分数。式中0 ≤x+y+z ≤ 1,且0 ≤x ≤ 0.4,0 ≤y ≤ 0.1,0 ≤z ≤ 1;当z ≠ 0时,(LM)组合不能是(NaBi)。其制备方法包括以下步骤:
(1)按照所述陶瓷材料的化学配比式,计算称取各原材料所需质量;
(2)将称量好的原材料进行球磨,球磨10-24 h;
(3)将步骤(2)球磨后的浆料烘烤干,压紧后在原料表面扎出少量细孔后置于马弗炉中,以3 ℃/min升温速率升至850 ℃并保温4-6 h后自然冷却至室温;
(4)将步骤(3)预烧后的产物按照步骤(2)再次球磨10-16 h,使粉料混合均匀得到陶瓷前驱粉体;
(5)向步骤(4)所得前驱粉体加入质量为8-12 %的聚乙烯醇溶液造粒后压制成圆片,得到陶瓷生坯体;
(6)将步骤(5)所得陶瓷生坯体置于马弗炉排除陶瓷生坯体中的PVA后并在1080℃-1250 ℃烧结4-6 h即可得到所述陶瓷材料;
(7)将步骤(6)得到的陶瓷材料上下表面抛光后涂覆银浆并烤干后,然后再于马弗炉中600 ℃-800 ℃烧结10-20 min以在陶瓷表面得到导电金属银电极;
(8)将步骤(7)所得陶瓷置于180 ℃-220 ℃硅油中预热10 min后分两段施加直流电场,第一段场强为7.0-10.0 kV/mm并保压10-20 min;第二段场强为10.0 kV-15.0 kV/mm并保压15-45 min即可得到充分极化的压电陶瓷。
请参阅图1-图6,从图1-图6可以看出,通过本发明方法制备的压电陶瓷材料兼具居里温度高、高温直流电阻率大、压电活性好、热稳定性好的优点。
实施例1:
(1) 固相法制备高居里温度压电陶瓷粉体
将原料分别按通式Ca1-x (LiCe) x/2Bi2Ta2O9x = 0、0.06)来计算配方,将化学计量比的原料进行称量、配料,放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星式球磨机球磨16 h后,转速为180 rpm,随后出料,在烘灯下烘烤直至烘干,然后在程序控温箱式炉中连续升温至850 ℃,保温4 h,得到高居里温度压电陶瓷粉体;
(2) 二次球磨
将制得的高居里温度压电陶瓷粉体放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星式球磨机球磨12 h后,转速为180 rpm,然后出料在烘灯下烘烤直至烘干;
(3) 造粒压片
在上述烘干的粉体中适量地逐渐加入浓度为8 wt%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为10 MPa下压制成直径10 mm、厚度为0.8 mm的高居里温度压电陶瓷圆片;
(4) 排胶烧结
将上述高居里温度压电陶瓷圆片在温度850 ℃排胶,然后在温度1200 ℃烧结6 h制成高居里温度压电陶瓷圆片;
(5) 被银极化
将上述烧结后获得的高居里温度压电陶瓷圆片表面抛光至0.5 mm后再刷上浓度为8 wt%的银浆,然后在温度700 ℃保温10 min制成样品。将样品放入180 ℃的硅油浴锅中进行极化,极化场强为11 kV/mm,保压时间为30 min,制成样品编号为1#、2#的高居里温度压电陶瓷材料。
实施例2:
(1) 固相法制备高居里温度压电陶瓷粉体
将原料分别按通式Ca1-z (NaBi) z/2Bi2Ta2O9z = 0.10、0.30、0.50)来计算配方,将化学计量比的原料进行称量、配料,放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星式球磨机球磨16 h后,转速为180 rpm,随后出料,在烘灯下烘烤直至烘干,然后在程序控温箱式炉中连续升温至850 ℃,保温4 h,得到高居里温度压电陶瓷粉体;
(2) 二次球磨
将制得的高居里温度压电陶瓷粉体放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星式球磨机球磨12 h后,转速为180 rpm,然后出料在烘灯下烘烤直至烘干;
(3) 造粒压片
在上述烘干的粉体中适量地逐渐加入浓度为8 wt%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为10 MPa下压制成直径10 mm、厚度为0.8 mm的高居里温度压电陶瓷圆片;
(4) 排胶烧结
将上述高居里温度压电陶瓷圆片在温度850 ℃排胶,然后在温度1200 ℃烧结6 h制成高居里温度压电陶瓷圆片;
(5) 被银极化
将上述烧结后获得的高居里温度压电陶瓷圆片表面抛光至0.5 mm后再刷上浓度为8 wt%的银浆,然后在温度700 ℃保温10 min制成样品。将样品放入180 ℃的硅油浴锅中进行极化,极化场强为11 kV/mm,保压时间为30 min,制成样品编号为3#、4#、5#的高居里温度压电陶瓷材料。
实施例3:
(1) 固相法制备高居里温度压电陶瓷粉体
将原料分别按通式Ca0.96-y (LiCe)0.02Sr y Bi2Ta2O9y = 0.05、0.10)来计算配方,将化学计量比的原料进行称量、配料,放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星式球磨机球磨16 h后,转速为180 rpm,随后出料,在烘灯下烘烤直至烘干,然后在程序控温箱式炉中连续升温至850 ℃,保温4 h,得到高居里温度压电陶瓷粉体;
(2) 二次球磨
将制得的高居里温度压电陶瓷粉体放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星式球磨机球磨12 h后,转速为180 rpm,然后出料在烘灯下烘烤直至烘干;
(3) 造粒压片
在上述烘干的粉体中适量地逐渐加入浓度为8 wt%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为10 MPa下压制成直径10 mm、厚度为0.8 mm的高居里温度压电陶瓷圆片;
(4) 排胶烧结
将上述高居里温度压电陶瓷圆片在温度850 ℃排胶,然后在温度1200 ℃烧结6 h制成高居里温度压电陶瓷圆片;
(5) 被银极化
将上述烧结后获得的高居里温度压电陶瓷圆片表面抛光至0.5 mm后再刷上浓度为8 wt%的银浆,然后在温度700 ℃保温10 min制成样品。将样品放入180 ℃的硅油浴锅中进行极化,极化场强为11 kV/mm,保压时间为30 min,制成样品编号为6#、7#的高居里温度压电陶瓷材料。
实施例4:
(1) 固相法制备高居里温度压电陶瓷粉体
将原料分别按通式Ca0.96-y (LiCe)0.02 y Bi2Ta2O9(□表示氧空位,y = 0.05、0.10)来计算配方,将化学计量比的原料进行称量、配料,放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星式球磨机球磨16 h后,转速为180 rpm,随后出料,在烘灯下烘烤直至烘干,然后在程序控温箱式炉中连续升温至850 ℃,保温4 h,得到高居里温度压电陶瓷粉体;
(2) 二次球磨
将制得的高居里温度压电陶瓷粉体放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星式球磨机球磨12 h后,转速为180 rpm,然后出料在烘灯下烘烤直至烘干;
(3) 造粒压片
在上述烘干的粉体中适量地逐渐加入浓度为8 wt%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为10 MPa下压制成直径10 mm、厚度为0.8 mm的高居里温度压电陶瓷圆片;
(4) 排胶烧结
将上述高居里温度压电陶瓷圆片在温度850 ℃排胶,然后在温度1200 ℃烧结6 h制成高居里温度压电陶瓷圆片;
(5) 被银极化
将上述烧结后获得的高居里温度压电陶瓷圆片表面抛光至0.5 mm后再刷上浓度为8 wt%的银浆,然后在温度700 ℃保温10 min制成样品。将样品放入180 ℃的硅油浴锅中进行极化,极化场强为11 kV/mm,保压时间为30 min,制成样品编号为8#、9#的高居里温度压电陶瓷材料。
实施例5:
(1) 固相法制备高居里温度压电陶瓷粉体
将原料分别按通式Ca0.5(LiCe) x/2(NaBi) z/2Bi2Ta2O9x = 0.04、0.08,x+z = 0.5)来计算配方,将化学计量比的原料进行称量、配料,放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星式球磨机球磨16 h后,转速为180 rpm,随后出料,在烘灯下烘烤直至烘干,然后在程序控温箱式炉中连续升温至850 ℃,保温4 h,得到高居里温度压电陶瓷粉体;
(2) 二次球磨
将制得的高居里温度压电陶瓷粉体放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星式球磨机球磨12 h后,转速为180 rpm,然后出料在烘灯下烘烤直至烘干;
(3) 造粒压片
在上述烘干的粉体中适量地逐渐加入浓度为8 wt%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为10 MPa下压制成直径10 mm、厚度为0.8 mm的高居里温度压电陶瓷圆片;
(4) 排胶烧结
将上述高居里温度压电陶瓷圆片在温度850 ℃排胶,然后在温度1200 ℃烧结6 h制成高居里温度压电陶瓷圆片;
(5) 被银极化
将上述烧结后获得的高居里温度压电陶瓷圆片表面抛光至0.5 mm后再刷上浓度为8 wt%的银浆,然后在温度700 ℃保温10 min制成样品。将样品放入180 ℃的硅油浴锅中进行极化,极化场强为11 kV/mm,保压时间为30 min,制成样品编号为10#、11#的高居里温度压电陶瓷材料。
实施例6:
(1) 固相法制备高居里温度压电陶瓷粉体
将原料分别按通式Ca0.5-x (LiCe) x/2(NaBi)0.25Bi2Ta2O9x = 0.04、0.08)来计算配方,将化学计量比的原料进行称量、配料,放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星式球磨机球磨16 h后,转速为180 rpm,随后出料,在烘灯下烘烤直至烘干,然后在程序控温箱式炉中连续升温至850 ℃,保温4 h,得到高居里温度压电陶瓷粉体;
(2) 二次球磨
将制得的高居里温度压电陶瓷粉体放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星式球磨机球磨12 h后,转速为180 rpm,然后出料在烘灯下烘烤直至烘干;
(3) 造粒压片
在上述烘干的粉体中适量地逐渐加入浓度为8 wt%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为10 MPa下压制成直径10 mm、厚度为0.8 mm的高居里温度压电陶瓷圆片;
(4) 排胶烧结
将上述高居里温度压电陶瓷圆片在温度850 ℃排胶,然后在温度1200 ℃烧结6 h制成高居里温度压电陶瓷圆片;
(5) 被银极化
将上述烧结后获得的高居里温度压电陶瓷圆片表面抛光至0.5 mm后再刷上浓度为8 wt%的银浆,然后在温度700 ℃保温10 min制成样品。将样品放入180 ℃的硅油浴锅中进行极化,极化场强为11 kV/mm,保压时间为30 min,制成样品编号为12#、13#的高居里温度压电陶瓷材料。
表1. 部分实施例所得陶瓷样品的室温压电常数d 33、高温直流电阻率ρ 650℃、居里温度T C和退极化最高温度(急剧降低点)T d
Figure 169705DEST_PATH_IMAGE002
从表1可以看出,样品实施例较纯CBTa陶瓷的压电性(d33 ~ 5.2 pC/N)有大幅度提高,在650 ℃时,直流电阻率均大于1.0×106 Ω·cm,且均具有高的居里温度(T C > 920℃)和退极化温度(T d > 900 ℃)。样品实施例中,10#样品综合性能最佳,压电常数d 33 ~ 13pC/N,热退极化高达960 ℃,当退火温度接近900 ℃时,d 33降低的百分比小于10 %,表明样品有良好的热稳定性。热稳定性增强主要是由于采用本发明方案可使陶瓷晶粒长大,减少应力作用,进而增强其热稳定性。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (2)

1.一种用于高温压电传感器的压电陶瓷材料,其特征在于:该陶瓷材料的化学配比式为:Ca1-x-y-z(LM)x/2Ny(NaBi)z/2Bi2Ta2O9;其中L表示Li;M表示镧系金属元素Ce;N表示Sr或+2价空位;x、y、z表示相应元素的摩尔分数,式中0< x+y+z≤1,且0<x ≤0.4,0≤ y ≤0.1,0≤z ≤1,该陶瓷材料是以CaBi2Ta2O9基体,引入掺杂离子得到。
2.如权利要求1所述的用于高温压电传感器的压电陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)按照所述陶瓷材料的化学配比式,计算称取各原材料所需质量;
(2)将称量好的原材料进行球磨,球磨10-24 h;
(3)将步骤(2)球磨后的浆料烘烤干,压紧后在原料表面扎出少量细孔后置于马弗炉中,以3℃/min升温速率升至850℃并保温4-6 h后自然冷却至室温;
(4)将步骤(3)预烧后的产物按照步骤(2)再次球磨10-16 h,使粉料混合均匀得到陶瓷前驱粉体;
(5)向步骤(4)所得前驱粉体加入质量为8-12%的聚乙烯醇溶液造粒后压制成圆片,得到陶瓷生坯体;
(6)将步骤(5)所得陶瓷生坯体置于马弗炉排除陶瓷生坯体中的PVA后并在1080℃-1250℃烧结4-6 h即可得到所述陶瓷材料;
(7)将步骤(6)得到的陶瓷材料上下表面抛光后涂覆银浆并烤干后,然后再于马弗炉中600℃-800℃烧结10-20 min以在陶瓷表面得到导电金属银电极;
(8)将步骤(7)所得陶瓷置于180℃-220℃硅油中预热10 min后分两段施加直流电场,第一段场强为7.0-10.0 kV/mm并保压10-20 min;第二段场强为10.0 kV-15.0 kV/mm并保压15-45 min即可得到充分极化的压电陶瓷。
CN201811175251.8A 2018-10-10 2018-10-10 一种用于高温压电传感器的压电陶瓷材料及其制备方法 Active CN109437857B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811175251.8A CN109437857B (zh) 2018-10-10 2018-10-10 一种用于高温压电传感器的压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811175251.8A CN109437857B (zh) 2018-10-10 2018-10-10 一种用于高温压电传感器的压电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109437857A CN109437857A (zh) 2019-03-08
CN109437857B true CN109437857B (zh) 2020-07-31

Family

ID=65546263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811175251.8A Active CN109437857B (zh) 2018-10-10 2018-10-10 一种用于高温压电传感器的压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109437857B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372099A (zh) * 2021-07-13 2021-09-10 浙江清华长三角研究院 一种耐高温耐辐照压电陶瓷及其制备方法
CN116120054B (zh) * 2023-02-10 2024-03-12 厦门乃尔电子有限公司 一种钛酸铋钙基压电陶瓷材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3391307B2 (ja) * 1999-08-16 2003-03-31 株式会社村田製作所 圧電セラミックスの製造方法
JP2002241175A (ja) * 2001-02-13 2002-08-28 Kazuo Shoji 高機械的品質係数圧電材料
JP2003176176A (ja) * 2001-12-12 2003-06-24 Foundation For The Promotion Of Industrial Science ビスマス層状構造強誘電体、その製造方法、これを用いたメモリ素子および圧電・電歪素子
CN101074164A (zh) * 2007-06-21 2007-11-21 中国科学院上海硅酸盐研究所 掺钕和钐的铋层状压电陶瓷及其制备方法
CN101367671B (zh) * 2008-09-12 2011-01-12 济南大学 用于高温压电器件的无铅双层铁电复合薄膜及其制备方法
CN102276248B (zh) * 2011-04-22 2014-07-16 同济大学 铋层状类钙钛矿结构的氧化物上转换发光压电材料及其制备方法
CN103922722B (zh) * 2014-04-01 2015-08-19 四川大学 一种锂、铈、钽共掺铌酸铋钙基压电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN109437857A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN111302797B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN110590352B (zh) 低极化场强产生高压电铁酸铋-钛酸钡基压电陶瓷及制备
CN102180665A (zh) 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
JP6144753B2 (ja) セラミック材料およびこのセラミック材料を備えるコンデンサ
CN109626988B (zh) 高压电响应和高居里温度的压电陶瓷材料及其制备方法
CN108546125B (zh) 一种面向高温环境应用的压电陶瓷材料及其制备方法
CN109796205B (zh) 一种铋层状结构钛钽酸铋高温压电陶瓷材料及其制备方法
Cen et al. Effect of Zr4+ substitution on thermal stability and electrical properties of high temperature BiFe0. 99Al0. 01O3–BaTi1− xZrxO3 ceramics
CN109437857B (zh) 一种用于高温压电传感器的压电陶瓷材料及其制备方法
CN111548156A (zh) 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法
CN106220169A (zh) 改性铌镍酸铅‑锆钛酸铅压电陶瓷及其制备方法
KR101333792B1 (ko) 비스무스 기반의 무연 압전 세라믹스 및 그 제조방법
CN107032790B (zh) 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
KR101333793B1 (ko) 비스무스계 압전 세라믹스 및 그 제조방법
JP5118848B2 (ja) 圧電セラミック材料、多層構造素子及び該セラミック材料の製造方法
Nam et al. Effect of A-site off-stoichiometry on ferroelectric and piezoelectric properties of BaTiO3–Bi (Mg1/2Ti1/2) O3–BiFeO3 ceramics
CN115894020B (zh) 一种高压电系数的pmnzt基压电陶瓷及其制备方法和应用
CN115286386B (zh) 一种非化学计量Nb5+的铌钽锆铁酸钾钠铋陶瓷及其制备方法
CN115385675B (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
CN115477538A (zh) 一种两步烧结制备铌酸钾钠基压电陶瓷的方法
CN106554203B (zh) 一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法
CN109485416A (zh) 一种钛酸钡钙基无铅压电陶瓷及其制备方法
CN114507070B (zh) 一种掺杂改性的铌酸铋钙基陶瓷材料及其制备方法
CN117964359A (zh) 一种铌酸铋钙基铋层状结构铁电压电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant