CN109422345A - 含氨氮循环冷却水处理用体系及其应用 - Google Patents

含氨氮循环冷却水处理用体系及其应用 Download PDF

Info

Publication number
CN109422345A
CN109422345A CN201710758113.1A CN201710758113A CN109422345A CN 109422345 A CN109422345 A CN 109422345A CN 201710758113 A CN201710758113 A CN 201710758113A CN 109422345 A CN109422345 A CN 109422345A
Authority
CN
China
Prior art keywords
ammonia nitrogen
containing ammonia
cooling water
water
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710758113.1A
Other languages
English (en)
Inventor
郦和生
吴颖
秦会敏
谢文州
楼琼慧
张春原
王洪英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Original Assignee
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Beijing Research Institute of Chemical Industry, China Petroleum and Chemical Corp filed Critical Sinopec Beijing Research Institute of Chemical Industry
Priority to CN201710758113.1A priority Critical patent/CN109422345A/zh
Publication of CN109422345A publication Critical patent/CN109422345A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/348Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the way or the form in which the microorganisms are added or dosed
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • C02F2209/055Hardness
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/07Alkalinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明涉及循环冷却水领域,涉及含氨氮循环冷却水处理用体系及其应用和含氨氮循环冷却水处理的方法。具体地,本发明提供了一种含氨氮循环冷却水处理用体系,该体系含有生物滤料、硝化细菌、阻垢分散剂和可选的氧消耗剂。使用本发明提供的体系对含氨氮循环冷却水进行处理时,可以使含氨氮的循环水系统中的换热管保持较低的碳钢腐蚀速率、粘附速率和铜腐蚀速率。

Description

含氨氮循环冷却水处理用体系及其应用
技术领域
本发明涉及循环冷却水领域,具体地,涉及一种含氨氮循环冷却水处理用体系及其应用,以及含氨氮循环冷却水处理的方法。
背景技术
原油中通常含有含氮化合物,因此在炼制的过程中会产生含氨氮的物料流。换热装置一旦发生泄漏,氨氮会随物料进入循环冷却水系统,导致循环冷却水水质不稳定甚至恶化,造成换热器腐蚀、结垢、菌藻滋生,不仅降低换热器的热交换能力,还会加重泄漏,造成恶性循环。
漏氨对换热器的影响主要有:循环水的pH值下降,造成碳钢换热器的腐蚀;氨与水中的重碳酸钙反应生成CaCO3,CaCO3沉积在换热器上,降低换热效率;当氨浓度高时,与循环水中的锌离子发生反应,生成Zn(OH)2沉淀,影响缓蚀和传热;氨和铜生成铜—氨络离子,腐蚀铜及铜合金。
CN103030225A提供了一种漏氨氮循环水处理方法,其包括以下步骤:a)控制循环水的pH值在7.5-9.0之间;b)加入阻垢缓蚀剂,所述阻垢缓蚀剂包含以下组分:A)至少一种无磷缓蚀剂,所述无磷缓蚀剂为选自硫脲及其衍生物和含氮杂环化合物类吸附膜型缓蚀剂,B)至少一种阻垢分散剂,所述阻垢分散剂为至少一种含羧酸基的无磷聚合物,C)锌盐;c)加入至少一种含溴杀菌剂;d)加入至少一种磺酸盐型阴离子表面活性剂。
CN103030226A提供了一种漏氨氮循环水处理方法,其包括以下步骤:a)控制循环水的pH值在7.5-9.0之间;b)加入阻垢缓蚀剂,所述阻垢缓蚀剂包含以下组分:A)至少一种无磷缓蚀剂,所述无磷缓蚀剂为水溶性钒酸盐和/或天然高分子聚合物,B)至少一种阻垢分散剂,所述阻垢分散剂为至少一种含羧酸基的无磷聚合物,C)锌盐;c)加入至少一种含溴杀菌剂;d)加入至少一种磺酸盐型阴离子表面活性剂,其中天然高分子化合物选自单宁酸和木质素类天然高分子化合物。
可见,目前循环水处理多以投加化学药剂的方式对腐蚀、结垢和生物黏泥进行控制,对于漏氨氮循环水系统,多以调整水处理剂配方,加大缓蚀阻垢剂、分散剂的投加量,补加非氧化型杀菌剂和频繁换水来应对,不仅造成水资源和水处理剂的浪费,大量化学药剂随循环水排污水外排,还加重了环境负担。因此,十分有必要寻找一种特别适用于含氨氮的循环水的处理方法。
发明内容
本发明的目的是为了克服现有技术存在的上述缺陷,提供一种含氨氮循环冷却水处理用体系及其应用,以及含氨氮循环冷却水处理的方法。使用本发明提供的体系对含氨氮循环冷却水进行处理时,可以使含氨氮的循环水系统中的换热管保持较低的碳钢腐蚀速率、粘附速率和铜腐蚀速率。
为了实现上述目的,第一方面,本发明提供了一种含氨氮循环冷却水处理用体系,其中,该体系含有生物滤料、硝化细菌、阻垢分散剂和可选的氧消耗剂。
第二方面,本发明还提供了上述体系在含氨氮循环冷却水处理中的应用。
第三方面,本发明还提供了一种含氨氮循环冷却水处理的方法,该方法包括:将生物滤料、硝化细菌、阻垢分散剂和可选的氧消耗剂投加至含氨氮循环冷却水系统中。
本发明通过在含氨氮循环冷却水系统的集水池中投加生物滤料、硝化细菌和阻垢分散剂,同时在循环泵的入口处投加氧消耗剂,特别是控制含氨氮循环冷却水以CaCO3计的钙度和碱度之和在特定范围内(600-1000mg/L),可以使含氨氮的循环水系统中的换热管的粘附速率保持在10.1mcm以下,碳钢腐蚀速率保持在0.067mm/a以下,以及铜腐蚀速率保持在0.002mm/a以下。
附图说明
图1为本发明使用的含氨氮循环冷却水系统的示意图。
附图标记说明
A 集水池 B 循环泵
C 换热器 D 冷却塔
a 进水管道 b 出水管道
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
第一方面,本发明提供了一种含氨氮循环冷却水处理用体系,其中,该体系含有生物滤料、硝化细菌、阻垢分散剂和可选的氧消耗剂。
在本发明中,以氮元素计,所述含氨氮循环冷却水的氨氮含量优选为0.01-50mg/L,更优选为5-40mg/L,进一步优选为10-30mg/L。
根据本发明,所述生物滤料可以为本领域常规使用的高分子聚合物,主要在循环水处理过程中起到固结微生物,并可以截留悬浮颗粒的作用。优选地,所述生物滤料为高分子聚合物;更优选地,所述生物滤料为涤纶、聚氨酯、聚丙烯和聚酰胺中的至少一种。
在本发明中,对所述生物滤料的含量没有特别的限定,只要可以达到水体净化及微生物附着的目的即可,例如,提供的生物滤料使得相对于每L含氨氮循环冷却水,所述生物滤料的含量为10-80cm3,优选为30-50cm3
在本发明中,对所述生物滤料的来源没有特别的限定,例如,可以通过常规的商购手段获得。
根据本发明,相对于每L含氨氮循环冷却水,所述硝化细菌的含量优选为60-400mg,更优选为80-200mg。本发明中涉及的微生物的重量均以细胞干基计。
根据本发明,所述硝化细菌优选为亚硝酸菌和/或硝酸菌,更优选为亚硝酸菌和硝酸菌。在优选的情况下,当所述硝化细菌为亚硝酸菌和硝酸菌时,所述亚硝酸菌与所述硝酸菌的重量比为1:0.02-40,更优选为1:0.05-20。
根据本发明,所述亚硝酸菌选自亚硝化单胞菌属(Nitrosomonas)、亚硝化螺菌属(Nitrosospira)、亚硝化球菌属(Nitrosococcus)和亚硝化叶菌属(Nitrosolobus)中的至少一种菌;优选地,所述亚硝酸菌选自欧洲亚硝化单胞菌(Nitrosomonas europaea)、红假亚硝化单胞菌(Nitrosomonas oligotropha)、活动亚硝化单胞菌(Nitrosomonasmobilis)、耐冷亚硝化单胞菌(Nitrosomonas cryotolerans)、亚硝基亚硝化球菌(Nitrosococcus nitrosus)、海洋亚硝化球菌(Nitrosococcus oceani)、白里亚硝化螺菌(Nitrosospira briensis)、多型亚硝化螺菌(Nitrosospira multiformis)、纤细亚硝化螺菌(Nitrosospira tenuis)和多型亚硝化叶菌(Nitrosolobus multiformis)中的至少一种;更优选地,所述亚硝酸菌选自欧洲亚硝化单胞菌、海洋亚硝化球菌、多型亚硝化螺菌和耐冷亚硝化单胞菌中的至少一种。
根据本发明,所述硝酸菌选自硝化杆菌属(Nitrobacter)、硝化刺菌属(Nitrospina)、硝化球菌属(Nitrococcus)和硝化螺菌属(Nitrospira)中的至少一种菌;优选地,所述硝酸菌选自汉堡硝化杆菌(Nitrobacter hamburgensis)、乌氏硝化杆菌(Nitrobacter vulgaris)、维氏硝化杆菌(Nitrobacter winogradskyi)、活动硝化球菌(Nitrococcus mobilis)、纤细硝化刺菌(Nitrospina gracilis)和海洋硝化螺菌(Nitrospira marina)中的至少一种;更优选地,所述硝酸菌选自维氏硝化杆菌、活动硝化球菌和纤细硝化刺菌中的至少一种。
在本发明中,对所述硝化细菌的形式没有特别的限定,只要将其投入循环冷却水系统中具有活性即可,例如,所述硝化细菌的形式可以为粉剂、菌悬液和乳剂中的至少一种,优选为粉剂。
在本发明中,对所述硝化细菌的来源没有特别的限定,例如,可以通过常规的商购手段直接获得;也可以通过常规的手段获得菌种,然后通过常规的微生物培养方法对菌种进行自行扩大培养获得。
在本发明中,所述阻垢分散剂的含量使得含氨氮循环冷却水中所述阻垢分散剂的浓度保持在4-30mg/L,优选为5-20mg/L。
根据本发明,所述阻垢分散剂为羧酸类聚合物、有机膦酸类化合物、磺酸类聚合物、羧酸-磺酸类聚合物和天然酚类物质中的至少一种;优选地,所述阻垢分散剂为聚丙烯酸、丙烯酸共聚物、聚马来酸、马来酸共聚物、聚磺化苯乙烯、丙烯酸-烯丙基磺酸钠共聚物、羟基乙叉二膦酸(HEDP)、氨基三亚甲基膦酸(ATMP)、乙二胺四甲叉膦酸(EDTMP)、乙脒基乙叉二膦酸(AEDP)、膦羧酸、三元醇酯、六元醇酯、醇胺酯、腐植酸钠、单宁和磺化木质素中的至少一种;更优选地,所述阻垢分散剂为聚丙烯酸、聚磺化苯乙烯、羟基乙叉二膦酸、氨基三亚甲基膦酸和单宁中的至少一种。
本发明对所述阻垢分散剂的来源没有特别的限定,例如,可以通过常规的商购手段获得。
在本发明中,所述氧消耗剂的含量可以根据含氨氮循环冷却水中溶解氧的浓度进行设置,优选地,所述氧消耗剂的含量使得含氨氮循环冷却水中溶解氧的浓度≤2mg/L,优选≤1mg/L。
根据本发明,所述氧消耗剂可以为本领域常见的各种可以降低水中氧含量(或消耗水中的氧气)的物质,例如,可以选自亚硫酸钠、水合肼和二甲基酮肟中的至少一种。
根据本发明,所述生物滤料、所述硝化细菌、所述阻垢分散剂和所述氧消耗剂各自分开保存。
根据本发明,所述体系还含有调节剂;优选地,所述调节剂为盐酸、硫酸和硝酸中的至少一种;更优选地,所述调节剂的含量使得所述循环冷却水以CaCO3计的钙度和碱度之和为500-1500mg/L,优选为600-1000mg/L。
第二方面,本发明还提供了上述体系在含氨氮循环冷却水处理中的应用。优选地,以氮元素计,所述含氨氮循环冷却水的氨氮含量为0.01-50mg/L,更优选为5-40mg/L,进一步优选为10-30mg/L。
在本发明的一种优选的实施方式中,在所述含氨氮循环冷却水中,以CaCO3计的Ca2 +浓度为200-300mg/L,更优选为250-270mg/L;以CaCO3计的总硬度为300-500mg/L,更优选为400-420mg/L;以CaCO3计的总碱度为150-200mg/L,更优选为160-170mg/L;Cl-浓度为50-100mg/L,更优选为80-90mg/L;COD值为5-40mg/L,更优选为10-20mg/L;以N元素计的氨氮含量为0.01-50mg/L,更优选为5-40mg/L,进一步优选为10-30mg/L;pH值为6-9,更优选为8-8.5。
在本发明中,Ca2+检测参照标准GB/T 6910-2006;总碱度检测参照标准GB/T15451-2006;总硬度检测参照标准GB/T 6909-2008;Cl-浓度检测参照标准GB/T 15453-2008;pH值检测参照标准GB/T 6920-1986;COD检测参照标准GB/T 15456-2008;氨氮含量检测参照标准HG/T 2158-2011。
第三方面,本发明还提供了一种含氨氮循环冷却水处理的方法,该方法包括:将生物滤料、硝化细菌、阻垢分散剂和可选的氧消耗剂投加至含氨氮循环冷却水系统中。
在本发明中,所述含氨氮循环冷却水的组成如上所述,在此不再赘述。
在本发明中,所述生物滤料可以长期使用,只要所述生物滤料可以起到水体净化及微生物附着的目的即可。优选地,相对于每L含氨氮循环冷却水,所述生物滤料的投加量为10-80cm3,更优选为30-50cm3
在本发明中,所述生物滤料的种类和来源如上所述,在此不再赘述。
根据本发明,所述硝化细菌的投加方式优选为分步投加。更优选地,所述硝化细菌的投加频率为每5-15天投加一次,优选为每8-10天投加一次。进一步优选地,相对于每L含氨氮循环冷却水,所述硝化细菌的每次投加量为60-400mg,优选为80-200mg。
在本发明的一种优选的实施方式中,所述分步投加包括首次投加和后续投加。更优选地,相对于每L循环冷却水,所述硝化细菌的首次投加量大于等于后续投加量,优选大于后续投加量。进一步优选地,所述硝化细菌的首次投加量为200-400mg,优选为200-300mg;后续投加量均为60-400mg,优选为80-200mg。
在本发明所述的方法中,所述硝化细菌的种类、来源和形式如上所述,在此不再赘述。
在本发明优选的实施方式中,所述硝化细菌为亚硝酸菌和/或硝酸菌,优选为亚硝酸菌和硝酸菌。更优选地,当所述硝化细菌为亚硝酸菌和硝酸菌时,所述亚硝酸菌与所述硝酸菌的重量比为1:0.02-40,优选为1:0.05-20。
根据本发明,对所述阻垢分散剂的投加方式没有特别的限定,只要保证含氨氮循环冷却水中的阻垢分散剂的浓度保持在特定的范围内即可,优选地,所述阻垢分散剂的投加量使得含氨氮循环冷却水中所述阻垢分散剂的浓度保持为4-30mg/L,更优选为5-20mg/L。在本发明中,含氨氮循环冷却水中阻垢分散剂的浓度可以根据阻垢分散剂的投加量以及补充的循环冷却水的量和排出的循环冷却水的量来确定。
根据本发明,所述氧消耗剂的投加量使得含氨氮循环冷却水中溶解氧的浓度≤2mg/L,优选≤1mg/L。
在本发明所述的方法中,所述阻垢分散剂和氧消耗剂的种类和来源如上所述,在此不再赘述。
在本发明中,所述含氨氮循环冷却水系统可以为本领域常规使用的系统,例如,如图1所示,所述循环冷却水系统包括:集水池A、循环泵B、换热器C、冷却塔D、补充水管道a和排污水管道b,其中,集水池A、循环泵B、换热器C和冷却塔D通过管道依次连接。在实际使用过程中,集水池A中的循环水经循环泵B进入换热器C,经换热后的循环水进入冷却塔D,冷却后的循环水回到集水池A,完成一个循环。在不断循环冷却过程中,损失水蒸气,循环水不断浓缩,水量减少,因此需要经补水管道a补充水,当循环水浓缩到一定程度,需经排污管道b排出部分循环水以降低循环水中各离子浓度。
在优选的情况下,所述生物滤料的投加位置为含氨氮循环冷却水系统中的集水池;更优选地,所述硝化细菌的投加位置为含氨氮循环冷却水系统中的集水池A;进一步优选地,所述阻垢分散剂的投加位置为含氨氮循环冷却水系统中的集水池A;再进一步优选地,所述氧消耗剂的投加位置为含氨氮循环冷却水系统中循环泵B的入口(也即在集水池A中的出水进入循环泵B之前向其中投加氧消耗剂)。
根据本发明,所述方法还包括:控制所述含氨氮循环冷却水以CaCO3计的钙度和碱度之和为500-1500mg/L,优选为600-1000mg/L。
在本发明中,对所述控制的方式没有特别的限定,只要可以保证含氨氮循环冷却水的钙度和碱度之和保持在上述范围内(500-1500mg/L)即可,例如,所述控制可以采用浓缩的方式,或者,所述控制的方式可以包括:将调节剂投加至所述含氨氮循环冷却水系统中,其中,所述调节剂为盐酸、硫酸和硝酸中的至少一种。
以下将通过实施例对本发明进行详细描述。
在以下实施例和对比例中,
试验用补水的水质如表1所示,并通过向其中投加氨水以模拟含氨氮循环冷却水,其中,Ca2+浓度、总碱度和总硬度均以CaCO3计,氨氮以N计。
Ca2+检测参照标准GB/T 6910-2006;总碱度检测参照标准GB/T 15451-2006;总硬度检测参照标准GB/T 6909-2008;Cl-检测参照标准GB/T 15453-2008;pH值检测参照标准GB/T 6920-1986;COD检测参照标准GB/T 15456-2008;氨氮检测参照标准HG/T 2158-2011。
表1
为了模拟现场,进行了动态模拟试验。动态模拟试验方法按中华人民共和国化工行业标准HG/T2160-2008进行,试片和试管材质为20#碳钢或铜。
动态模拟试验检测经处理后的含氨氮循环冷却水的碳钢腐蚀速率、粘附速率和铜腐蚀速率。
实施例1
本实施例用于说明本发明提供的含氨氮循环冷却水处理方法。
水质:表1中的试验用水
控制钙度与碱度之和(以CaCO3计)为700mg/L
流速:1m/s
处理:向循环水中投加氨水,维持其理论浓度在每L循环水20mg(以N计);将聚丙烯弹性纤维(购自威亚环保填料厂)放置在集水池内,投加量为每L循环水40cm3;向集水池内投加欧洲亚硝化单胞菌(购自BNCC菌种库,货号ATCC19718),投加量为每L循环水100mg,此后每10天投加一次,每次投加量为每L循环水50mg;向集水池内投加维氏硝化杆菌(购自BNCC菌种库,货号ATCC25391),投加量为每L循环水100mg,此后每10天投加一次,每次投加量为每L循环水75mg;向集水池中投加聚丙烯酸(购自山东泰和水处理科技股份有限公司),保持每L循环水中聚丙烯酸的含量为12mg;在循环水系统的循环泵的入口处投加亚硫酸钠,保持换热器出口处循环水中溶解氧浓度小于1mg/L。
循环水在换热器入口处的入口温度:32±1℃
循环水进出口温差:8-10℃
运行时间:60天
动态模拟试验结果见表2。
实施例2
本实施例用于说明本发明提供的含氨氮循环冷却水处理方法。
水质:表1中的试验用水
控制钙度与碱度之和(以CaCO3计)为900mg/L
流速:1m/s
处理:向循环水中投加氨水,维持其理论浓度在每L循环水30mg(以N计);将涤纶纤维球(购自金荣净水材料厂)放置在集水池内,投加量为每L循环水30cm3;向集水池内投加海洋亚硝化球菌(购自BNCC菌种库,货号ATCC19707),投加量为每L循环水100mg,此后每10天投加一次,每次投加量为每L循环水30mg;向集水池内投加活动硝化球菌(购自BNCC菌种库,货号ATCC25380),投加量为每L循环水100mg,此后每10天投加一次,每次投加量为每L循环水50mg;向集水池中投加聚磺化苯乙烯(购自山东泰和水处理科技股份有限公司),保持每L循环水中聚磺化苯乙烯的含量为10mg;在在循环水系统的循环泵的入口处投加水合肼,保持换热器出口处循环水中溶解氧浓度小于1mg/L。
循环水在换热器入口处的入口温度:32±1℃
循环水进出口温差:8-10℃
运行时间:60天
动态模拟试验结果见表2。
实施例3
本实施例用于说明本发明提供的含氨氮循环冷却水处理方法。
水质:表1中的试验用水
控制钙度与碱度之和(以CaCO3计)为800mg/L
流速:1m/s
处理:向循环水中投加氨水,维持其理论浓度在每L循环水10mg(以N计);将聚氨酯填料(购自宜兴市君宇水处理填料有限公司)放置在集水池内,投加量为每L循环水50cm3;向集水池内投加多型亚硝化螺菌(购自BNCC菌种库,货号ATCC25196),投加量为每L循环水100mg,此后每10天投加一次,每次投加量为每L循环水75mg;向集水池内投加活动硝化球菌(同实施例2),投加量为每L循环水100mg,此后每10天投加一次,每次投加量为每L循环水30mg;向集水池中投加HEDP(购自山东泰和水处理科技股份有限公司),保持每L循环水中HEDP的含量为15mg;在在循环水系统的循环泵的入口处投加二甲基酮肟,保持换热器出口处循环水中溶解氧浓度小于1mg/L。
循环水在换热器入口处的入口温度:32±1℃
循环水进出口温差:8-10℃
运行时间:60天
动态模拟试验结果见表2。
实施例4
本实施例用于说明本发明提供的含氨氮循环冷却水处理方法。
水质:表1中的试验用水
控制钙度与碱度之和(以CaCO3计)为1000mg/L
流速:1m/s
处理:向循环水中投加氨水,维持其理论浓度在每L循环水30mg(以N计);将聚酰胺立体弹性填料(购自宜兴市鸿图环保设备有限公司)放置在集水池内,投加量为每L循环水40cm3;向集水池内投加耐冷亚硝化单胞菌(购自BNCC菌种库,货号ATCC49181),投加量为每L循环水100mg,此后每10天投加一次,每次投加量为每L循环水5mg;向集水池内投加维氏硝化杆菌(同实施例1),投加量为每L循环水100mg,此后每10天投加一次,每次投加量为每L循环水100mg;向循环水中投加ATMP(购自山东泰和水处理科技股份有限公司),保持每L集水池中ATMP的含量为20mg;在在循环水系统的循环泵的入口处投加亚硫酸钠,保持换热器出口处循环水中溶解氧浓度小于1mg/L。
循环水在换热器入口处的入口温度:32±1℃
循环水进出口温差:8-10℃
运行时间:60天
动态模拟试验结果见表2。
实施例5
本实施例用于说明本发明提供的含氨氮循环冷却水处理方法。
水质:表1中的试验用水
控制钙度与碱度之和(以CaCO3计)为600mg/L
流速:1m/s
处理:向循环水中投加氨水,维持其理论浓度在每L循环水20mg(以N计);将涤纶纤维球(同实施例2)放置在集水池内,投加量为每L循环水40cm3;向集水池内投加欧洲亚硝化单胞菌(同实施例1),投加量为每L循环水100mg,此后每10天投加一次,每次投加量为每L循环水100mg;向集水池内投加活动硝化球菌(同实施例2),投加量为每L循环水100mg,此后每10天投加一次,每次投加量为每L循环水5mg;向集水池中投加单宁(购自郑州市伟丰生物科技有限公司),保持每L循环水中单宁的含量为5mg;在在循环水系统的循环泵的入口处投加二甲基酮肟,保持换热器出口处循环水中溶解氧浓度小于1mg/L。
循环水在换热器入口处的入口温度:32±1℃
循环水进出口温差:8-10℃
运行时间:60天
动态模拟试验结果见表2。
实施例6
本实施例用于说明本发明提供的含氨氮循环冷却水处理方法。
按照实施例1的方法进行,不同的是,控制钙度和碱度之和(以CaCO3计)为1200mg/L。动态模拟试验结果见表2。
实施例7
本实施例用于说明本发明提供的含氨氮循环冷却水处理方法。
按照实施例2的方法进行,不同的是,未投加水合肼,换热器出口处循环水中溶解氧的浓度为1.5-2mg/L。动态模拟试验结果见表2。
实施例8
本实施例用于说明本发明提供的含氨氮循环冷却水处理方法。
水质:表1中的试验用水
控制钙度与碱度之和(以CaCO3计)为700mg/L
流速:1m/s
处理:向循环水中投加氯化铵,维持其浓度在每L循环水20mg(以N计);将聚丙烯弹性纤维(同实施例1)放置在集水池内,投加量为每L循环水40cm3;向集水池内投加欧洲亚硝化单胞菌(同实施例1),投加量为每L循环水200mg,此后每10天投加一次,每次投加量为每L循环水125mg;向集水池中投加聚丙烯酸(同实施例1),保持每L循环水中聚丙烯酸的含量为12mg;在循环水系统的循环泵的入口处投加亚硫酸钠,保持换热器出口处循环水中溶解氧浓度小于1mg/L。
循环水在换热器入口处的入口温度:32±1℃
循环水进出口温差:8-10℃
运行时间:60天
动态模拟试验结果见表2。
对比例1
按照实施例2的方法进行,不同的是,未在集水池中投加生物滤料。动态模拟试验结果见表2。
对比例2
按照实施例1的方法进行,不同的是,未向集水池内投加实施例1使用的欧洲亚硝化单胞菌和维氏硝化杆菌。动态模拟试验结果见表2。
对比例3
按照实施例2的方法进行,不同的是,未向集水池中投加实施例2使用的聚磺化苯乙烯。动态模拟试验结果见表2。
表2
通过将以上实施例1-8与对比例1-3的结果相对比可以看出,本发明通过将含有生物滤料、硝化细菌、阻垢分散剂和可选的氧消耗剂的体系投加至含氨氮循环冷却水系统中,可以使含氨氮的循环水系统中的换热管保持较低的碳钢腐蚀速率、粘附速率和铜腐蚀速率。
特别地,通过将以上实施例1-5与实施例6和7的结果相对比可知,在本发明的优选实施方式中,通过在含氨氮循环冷却水系统的集水池中投加生物滤料、硝化细菌和阻垢分散剂,同时在循环泵的入口处投加氧消耗剂,特别是控制含氨氮循环冷却水以CaCO3计的钙度和碱度之和在特定范围内(600-1000mg/L),可以使含氨氮的循环水系统中的换热管的粘附速率保持在10.1mcm以下,碳钢腐蚀速率保持在0.067mm/a以下,以及铜腐蚀速率保持在0.002mm/a以下。
另外,通过将以上实施例1与实施例8相对比可知,与仅投放单一类型的硝化细菌(亚硝酸菌或硝酸菌)相比,在本发明优选的实施方式中通过将亚硝酸菌与硝酸菌配合使用,将它们均投加至集水池中,可以进一步降低含氨氮的循环水系统中的换热管的碳钢腐蚀速率、粘附速率和铜腐蚀速率。
同时,本发明使用的体系以生物产品(如生物滤料、硝化细菌)为主,具有绿色环保的优点。另外,本发明提供的循环冷却水处理用体系可以直接应用于已有的循环冷却水系统中,而无需额外增加深度处理设备,从而大大地降低了处理成本。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (17)

1.一种含氨氮循环冷却水处理用体系,其特征在于,该体系含有生物滤料、硝化细菌、阻垢分散剂和可选的氧消耗剂。
2.根据权利要求1所述的体系,其中,相对于每L含氨氮循环冷却水,所述生物滤料的含量为10-80cm3,优选为30-50cm3
优选地,相对于每L含氨氮循环冷却水,所述硝化细菌的含量为60-400mg,优选为80-200mg;
优选地,所述阻垢分散剂的含量使得含氨氮循环冷却水中所述阻垢分散剂的浓度保持在4-30mg/L,优选为5-20mg/L;
优选地,所述氧消耗剂的含量使得含氨氮循环冷却水中溶解氧的浓度≤2mg/L,优选≤1mg/L。
3.根据权利要求1所述的组合物,其中,所述生物滤料为高分子聚合物,优选为涤纶、聚氨酯、聚丙烯和聚酰胺中的至少一种。
4.根据权利要求1或2所述的体系,其中,所述硝化细菌为亚硝酸菌和/或硝酸菌,优选为亚硝酸菌和硝酸菌。
5.根据权利要求4所述的体系,其中,所述亚硝酸菌选自亚硝化单胞菌属(Nitrosomonas)、亚硝化螺菌属(Nitrosospira)、亚硝化球菌属(Nitrosococcus)和亚硝化叶菌属(Nitrosolobus)中的至少一种菌;
优选地,所述亚硝酸菌选自欧洲亚硝化单胞菌(Nitrosomonas europaea)、红假亚硝化单胞菌(Nitrosomonas oligotropha)、活动亚硝化单胞菌(Nitrosomonas mobilis)、耐冷亚硝化单胞菌(Nitrosomonas cryotolerans)、亚硝基亚硝化球菌(Nitrosococcusnitrosus)、海洋亚硝化球菌(Nitrosococcus oceani)、白里亚硝化螺菌(Nitrosospirabriensis)、多型亚硝化螺菌(Nitrosospira multiformis)、纤细亚硝化螺菌(Nitrosospira tenuis)和多型亚硝化叶菌(Nitrosolobus multiformis)中的至少一种;
更优选地,所述亚硝酸菌选自欧洲亚硝化单胞菌、海洋亚硝化球菌、多型亚硝化螺菌和耐冷亚硝化单胞菌中的至少一种。
6.根据权利要求4所述的体系,其中,所述硝酸菌选自硝化杆菌属(Nitrobacter)、硝化刺菌属(Nitrospina)、硝化球菌属(Nitrococcus)和硝化螺菌属(Nitrospira)中的至少一种菌;
优选地,所述硝酸菌选自汉堡硝化杆菌(Nitrobacter hamburgensis)、乌氏硝化杆菌(Nitrobacter vulgaris)、维氏硝化杆菌(Nitrobacter winogradskyi)、活动硝化球菌(Nitrococcus mobilis)、纤细硝化刺菌(Nitrospina gracilis)和海洋硝化螺菌(Nitrospira marina)中的至少一种;
更优选地,所述硝酸菌选自维氏硝化杆菌、活动硝化球菌和纤细硝化刺菌中的至少一种。
7.根据权利要求1或2所述的体系,其中,所述阻垢分散剂为羧酸类聚合物、有机膦酸类化合物、磺酸类聚合物、羧酸-磺酸类聚合物和天然酚类物质中的至少一种;
优选地,所述阻垢分散剂为聚丙烯酸、丙烯酸共聚物、聚马来酸、马来酸共聚物、聚磺化苯乙烯、丙烯酸-烯丙基磺酸钠共聚物、羟基乙叉二膦酸、氨基三亚甲基膦酸、乙二胺四甲叉膦酸、乙脒基乙叉二膦酸、膦羧酸、三元醇酯、六元醇酯、醇胺酯、腐植酸钠、单宁和磺化木质素中的至少一种;
更优选地,所述阻垢分散剂为聚丙烯酸、聚磺化苯乙烯、羟基乙叉二膦酸、氨基三亚甲基膦酸和单宁中的至少一种。
8.根据权利要求1或2所述的体系,其中,所述氧消耗剂选自亚硫酸钠、水合肼和二甲基酮肟中的至少一种。
9.根据权利要求1-8中任意一项所述的体系,其中,所述生物滤料、所述硝化细菌、所述阻垢分散剂和所述氧消耗剂各自分开保存。
10.根据权利要求1-9中任意一项所述的体系,其中,所述体系还含有调节剂,所述调节剂为盐酸、硫酸和硝酸中的至少一种;
优选地,所述调节剂的含量使得所述含氨氮循环冷却水以CaCO3计的钙度和碱度之和为500-1500mg/L,优选为600-1000mg/L。
11.权利要求1-10中任意一项所述的体系在含氨氮循环冷却水处理中的应用;优选地,以氮元素计,所述含氨氮循环冷却水的氨氮含量为0.01-50mg/L,优选为5-40mg/L,更优选为10-30mg/L。
12.一种含氨氮循环冷却水处理的方法,其特征在于,该方法包括:将生物滤料、硝化细菌、阻垢分散剂和可选的氧消耗剂投加至含氨氮循环冷却水系统中;
优选地,以氮元素计,所述含氨氮循环冷却水的氨氮含量为0.01-50mg/L,优选为5-40mg/L,更优选为10-30mg/L。
13.根据权利要求12所述的方法,其中,相对于每L含氨氮循环冷却水,所述生物滤料的投加量为10-80cm3,优选为30-50cm3
优选地,所述生物滤料为高分子聚合物,优选为涤纶、聚氨酯、聚丙烯和聚酰胺中的至少一种。
14.根据权利要求12所述的方法,其中,所述硝化细菌的投加频率为每5-15天投加一次,优选为每8-10天投加一次;
优选地,相对于每L含氨氮循环冷却水,所述硝化细菌的每次投加量为60-400mg,优选为80-200mg。
15.根据权利要求12所述的方法,其中,所述阻垢分散剂的投加量使得含氨氮循环冷却水中所述阻垢分散剂的浓度保持在4-30mg/L,优选为5-20mg/L;
优选地,所述氧消耗剂的投加量使得含氨氮循环冷却水中溶解氧的浓度≤2mg/L,优选≤1mg/L。
16.根据权利要求12-15中任意一项所述的方法,其中,所述生物滤料的投加位置为含氨氮循环冷却水系统中的集水池;
优选地,所述硝化细菌的投加位置为含氨氮循环冷却水系统中的集水池;
优选地,所述阻垢分散剂的投加位置为含氨氮循环冷却水系统中的集水池;
优选地,所述氧消耗剂的投加位置为含氨氮循环冷却水系统中循环泵的入口。
17.根据权利要求12-16中任意一项所述的方法,其中,所述方法还包括:控制所述含氨氮循环冷却水以CaCO3计的钙度和碱度之和为500-1500mg/L,优选为600-1000mg/L;
优选地,所述控制的方式包括:将调节剂投加至所述含氨氮循环冷却水系统中,所述调节剂为盐酸、硫酸和硝酸中的至少一种。
CN201710758113.1A 2017-08-29 2017-08-29 含氨氮循环冷却水处理用体系及其应用 Withdrawn CN109422345A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710758113.1A CN109422345A (zh) 2017-08-29 2017-08-29 含氨氮循环冷却水处理用体系及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710758113.1A CN109422345A (zh) 2017-08-29 2017-08-29 含氨氮循环冷却水处理用体系及其应用

Publications (1)

Publication Number Publication Date
CN109422345A true CN109422345A (zh) 2019-03-05

Family

ID=65503659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710758113.1A Withdrawn CN109422345A (zh) 2017-08-29 2017-08-29 含氨氮循环冷却水处理用体系及其应用

Country Status (1)

Country Link
CN (1) CN109422345A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114352400A (zh) * 2022-01-18 2022-04-15 潍柴动力股份有限公司 发动机故障检测装置及其故障检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888094A (ja) * 1981-11-17 1983-05-26 Ebara Infilco Co Ltd 有機性汚水処理方法
CN102491532A (zh) * 2011-12-09 2012-06-13 铁岭远能化工有限公司 敞开式循环冷却水生化处理方法
CN102765847A (zh) * 2011-05-06 2012-11-07 北京新国创环能工程有限公司 焦化废水复合生物脱氮及回用方法
JP2012236153A (ja) * 2011-05-12 2012-12-06 National Institute Of Advanced Industrial Science & Technology 開放循環式冷却設備及び冷却水の水質改善方法
CN103030230A (zh) * 2011-09-29 2013-04-10 中国石油化工股份有限公司 一种漏氨氮的循环冷却水处理工艺
CN103030223A (zh) * 2011-09-29 2013-04-10 中国石油化工股份有限公司 一种漏氨氮的循环冷却水处理工艺
CN104211185A (zh) * 2014-09-28 2014-12-17 付永全 循环冷却水的生物处理方法
CN105130016A (zh) * 2015-09-22 2015-12-09 铁岭远能化工有限公司 一种生化水处理药剂及其使用方法
CN105198096A (zh) * 2015-11-10 2015-12-30 重庆融极环保工程有限公司 一种降低循环水中可同化有机碳的装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888094A (ja) * 1981-11-17 1983-05-26 Ebara Infilco Co Ltd 有機性汚水処理方法
CN102765847A (zh) * 2011-05-06 2012-11-07 北京新国创环能工程有限公司 焦化废水复合生物脱氮及回用方法
JP2012236153A (ja) * 2011-05-12 2012-12-06 National Institute Of Advanced Industrial Science & Technology 開放循環式冷却設備及び冷却水の水質改善方法
CN103030230A (zh) * 2011-09-29 2013-04-10 中国石油化工股份有限公司 一种漏氨氮的循环冷却水处理工艺
CN103030223A (zh) * 2011-09-29 2013-04-10 中国石油化工股份有限公司 一种漏氨氮的循环冷却水处理工艺
CN102491532A (zh) * 2011-12-09 2012-06-13 铁岭远能化工有限公司 敞开式循环冷却水生化处理方法
CN104211185A (zh) * 2014-09-28 2014-12-17 付永全 循环冷却水的生物处理方法
CN105130016A (zh) * 2015-09-22 2015-12-09 铁岭远能化工有限公司 一种生化水处理药剂及其使用方法
CN105198096A (zh) * 2015-11-10 2015-12-30 重庆融极环保工程有限公司 一种降低循环水中可同化有机碳的装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨巍: "美国水处理化学品市场现状与展望", 《工业水处理》 *
詹卫华: "《水利风景区建设与管理实践探索》", 30 April 2013, 北京:中国环境出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114352400A (zh) * 2022-01-18 2022-04-15 潍柴动力股份有限公司 发动机故障检测装置及其故障检测方法
CN114352400B (zh) * 2022-01-18 2023-08-18 潍柴动力股份有限公司 发动机故障检测装置及其故障检测方法

Similar Documents

Publication Publication Date Title
CA2553721C (en) Inhibition of biogenic sulfide production via biocide and metabolic inhibitor combination
Painter Microbial transformations of inorganic nitrogen
CN106754583B (zh) 一种维护循环冷却水系统稳定的生物制剂及其制备方法与应用
CN109399795A (zh) 循环冷却水处理用体系及其应用和循环冷却水处理的方法
CN108102952A (zh) 一种筛选耐低温耐高盐自养硝化菌的方法及其应用
Corsino et al. A comprehensive comparison between halophilic granular and flocculent sludge in withstanding short and long-term salinity fluctuations
CN110819564A (zh) 一种自养反硝化脱氮菌剂及其制备方法
Wang et al. Effects of hexavalent chromium on performance and microbial community of an aerobic granular sequencing batch reactor
JPWO2014017429A1 (ja) アンモニア性窒素含有水の低温処理方法および装置
CN105585133B (zh) 催化剂生产过程排放的高含盐污水的生物脱氮方法
CN109422345A (zh) 含氨氮循环冷却水处理用体系及其应用
CN106745835A (zh) 一种处理含硫循环冷却水的方法
Zeng et al. Improving a compact biofilm reactor to realize efficient nitrogen removal performance: step-feed, intermittent aeration, and immobilization technique
CN110683646A (zh) 一种皮革废水快速实现短程硝化反硝化的工艺
CN109422353A (zh) 含氨氮循环冷却水处理用组合物及其应用
CN103074285B (zh) 一株高盐异养硝化-好氧反硝化除磷的小短杆菌及其在废水处理中的应用
Zou et al. The elevation of salinity above 1% deteriorated nitrification performance and reshaped nitrifier community of an MBR: An often overlooked factor in the treatment of high-strength ammonium wastewater
CN109422350A (zh) 含氨氮循环冷却水处理用体系及其应用
CN109399804A (zh) 循环冷却水处理用组合物及其应用和循环冷却水处理的方法
CN107244752B (zh) 一种高效环保型阻垢缓蚀剂及其制备
KISHIDA et al. Challenge for formation of aerobic granular sludge in a continuous-flow reactor
CN109422354A (zh) 含硫循环冷却水处理用体系及其应用
Mpongwana et al. Isolation of high-salinity-tolerant bacterial strains
CN105621610B (zh) 一种含盐污水同时硝化反硝化脱氮方法
CN109422351A (zh) 含硫循环冷却水处理用体系及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190305

WW01 Invention patent application withdrawn after publication