CN109417091A - 异质结肖特基栅双极晶体管 - Google Patents

异质结肖特基栅双极晶体管 Download PDF

Info

Publication number
CN109417091A
CN109417091A CN201780029060.8A CN201780029060A CN109417091A CN 109417091 A CN109417091 A CN 109417091A CN 201780029060 A CN201780029060 A CN 201780029060A CN 109417091 A CN109417091 A CN 109417091A
Authority
CN
China
Prior art keywords
area
undoped
transistor arrangement
lightly doped
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780029060.8A
Other languages
English (en)
Inventor
阿迪蒂亚·钱德拉·萨伊·拉查
阿米特·维尔马
雷扎·内科维
穆罕默德·M·卡迪尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Guelph
Qatar University
Original Assignee
University of Guelph
Qatar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Guelph, Qatar University filed Critical University of Guelph
Publication of CN109417091A publication Critical patent/CN109417091A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/1121Devices with Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/1127Devices with PN heterojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明的某些实施例可以针对晶体管结构。所述晶体管结构可以包括半导体衬底。所述半导体衬底可以包括漂移区、集电极区、发射极区和轻掺杂/未掺杂区。所述轻掺杂/未掺杂区可以是轻掺杂和/或未掺杂的。所述晶体管结构还可以包括异质结构。所述异质结构与所述轻掺杂/未掺杂区形成异质结。所述晶体管结构还可以包括集电极端子。所述集电极端子与所述集电极区相接触。所述晶体管结构还可以包括栅极端子。所述栅极端子与所述异质结构相接触。所述晶体管结构还可以包括发射极端子。所述发射极端子与所述轻掺杂/未掺杂区和所述发射极区相接触。

Description

异质结肖特基栅双极晶体管
背景
领域
本发明的某些实施例可以涉及异质结肖特基栅双极晶体管。
现有技术的描述
本发明的某些实施例提供了对传统绝缘栅双极晶体管的改进。绝缘栅双极晶体管通常被理解为可以作为电子开关来操作的三端功率半导体器件。绝缘栅双极晶体管通常可以提供以快速方式发生且具有高效率的切换。绝缘栅双极晶体管已经用于各种各样的现代电器中。
发明内容
根据第一实施例,晶体管结构可以包括半导体衬底。所述半导体衬底可以包括漂移区、集电极区、发射极区和轻掺杂/未掺杂区。所述轻掺杂/未掺杂区可以是轻掺杂和/或未掺杂的。所述晶体管结构还可以包括异质结构。所述异质结构可以与所述轻掺杂/未掺杂区形成异质结。所述晶体管结构还可以包括集电极端子。所述集电极端子与所述集电极区相接触。所述晶体管结构还可以包括栅极端子。所述栅极端子与所述异质结构相接触。所述晶体管结构还可以包括发射极端子。所述发射极端子可以与所述轻掺杂/未掺杂区和所述发射极区相接触。
在第一实施例的所述晶体管结构中,所述漂移区可以包括N-掺杂区。
在第一实施例的所述晶体管结构中,所述集电极区可以包括P+掺杂区。
在第一实施例的所述晶体管结构中,所述发射极区可以包括n+掺杂区。
在第一实施例的所述晶体管结构中,所述半导体衬底可以包括砷化镓。
在第一实施例的所述晶体管结构中,所述异质结构可以包括砷化铝镓。
在第一实施例的所述晶体管结构中,所述异质结构可以是n+掺杂的。
在第一实施例的所述晶体管结构中,所述晶体管结构可以被配置为经由所述栅极端子上的照明而光学可控。
在第一实施例的所述晶体管结构中,对应于所述异质结的量子阱可以为电子流提供低电阻通道。
根据第二实施例,一种用于制造晶体管结构的方法可以包括执行光刻工艺以将器件图案转移到半导体衬底上。所述半导体衬底可以包括漂移区和轻掺杂/未掺杂区,并且所述轻掺杂/未掺杂区可以是轻掺杂和/或未掺杂的。所述方法还可以包括掺杂所述衬底的集电极区。所述方法还可以包括掺杂所述衬底的发射极区。所述方法还可以包括形成异质结构。所述异质结构可以与所述轻掺杂/未掺杂区形成异质结。所述方法还可以包括形成集电极端子。所述集电极端子可以与所述集电极区相接触。所述方法还可以包括形成栅极端子。所述栅极端子可以与所述异质结构相接触。所述方法还可以包括形成发射极端子。所述发射极端子可以与所述轻掺杂/未掺杂区和发射极区相接触。
在第二实施例的方法中,所述漂移区可以包括N-掺杂区。
在第二实施例的方法中,所述掺杂所述集电极区可以包括执行P+掺杂。
在第二实施例的方法中,所述掺杂所述发射极区可以包括执行n+掺杂。
在第二实施例的方法中,所述半导体衬底可以包括砷化镓。
在第二实施例的方法中,所述形成所述异质结构可以包括形成包括砷化铝镓的异质结构。
在第二实施例的方法中,所述形成所述异质结构可以包括形成包括n+掺杂的异质结构的异质结构。
在第二实施例的方法中,制造所述晶体管结构包括制造可以经由在所述栅极端子上的照明实现光学可控的结构。
在第二实施例的方法中,制造所述晶体管结构可以包括制造这样的结构,其中对应于所述异质结的量子阱为电子流提供低电阻通道。
附图说明
为了正确理解本发明,应参考附图,其中:
图1示出了依照本发明某些实施例的异质结肖特基栅双极晶体管(HSGBT)的截面图。
图2示出了硅平面绝缘栅双极晶体管(IGBT)的不同区域中的掺杂密度。
图3示出了砷化镓(GaAs)IGBT的不同区域中的掺杂密度。
图4示出了依照本发明的某些实施例的HSGBT器件的不同区域中的掺杂密度。
图5(a)示出了依照某些实施例的在被电控制时HSGBT器件中的电流。
图5(b)示出了依照某些实施例的当被光学控制时HSGBT器件中的电流。
图6示出了依照本发明某些实施例的制造器件的方法。
具体实施方式
传统的硅平面绝缘栅双极晶体管(IGBT)是功率集成电路中的重要部件。某些实施例针对可以称为异质结肖特基栅双极晶体管(HSGBT)的功率器件,HSGBT可以提供对传统硅平面IGBT的改进。与传统IGBT相比,某些实施例的HSGBT可能有潜力承载如下电流的水平,即该电流比Si IGBT承载的电流大至少1000倍并且大于由类似尺寸的GaAS IGBT承载的电流。
某些实施例的HSGBT器件可以通过在第一半导体材料和第二、不同的半导体材料之间形成结来形成量子阱。例如,某些实施例的HSGBT器件可以通过在砷化铝镓(AlGaAs)和砷化镓(GaAs)之间形成结来形成量子阱。量子阱可以在非常轻掺杂砷化镓(GaAs)的导带中形成。量子阱可以为电子从HSGBT的集电极到发射极的流动提供低电阻通道,从而增加电流量。
某些实施例的HSGBT器件可以通过在重掺杂较宽带隙材料(例如AlGaAs)和轻掺杂/未掺杂较窄带隙材料(例如,GaAs)之间形成结来形成量子阱。形成该结导致在结附近的GaAs中量子阱的形成。由于电子从AlGaAs的真实空间电荷载流子转移,该量子阱比邻近的GaAs具有相对较高的电子浓度。
由于减少了电子电离杂质散射,在该量子阱中的电子具有更高的迁移率。因此,电子在电场的施加时移动相对较快,这导致较低的电阻,并因此导致较高的电流。关于本实施例的某些实施例,量子阱的宽度可以大约为0.5微米(微米)宽。将AlGaAs层的掺杂密度改变10个等级通常不会导致器件性能的任何显著变化。量子阱的宽度可以基于GaAs和AlGaAs的带隙差来确定。
某些实施例的HSGBT器件也可能具有光学可控的潜力。例如,某些实施例可以由在可见光谱中的光进行光学控制。特别地,基于入射到HSGBT器件上的光的特性,可以控制HSGBT器件的电流。因此,某些实施例可以针对可以称为光控HSGBT(OC HSGBT)的器件。落在HSGBT器件上的光生成额外的电子-空穴对。由于电子从AlGaAs转移到量子阱,光也增加了量子阱中电子的数量。因此,总电子的这种增加具有进一步降低通道电阻的效果,因此增加了电流。
通过光学可控,某些实施例的器件除了适用于传统的功率集成电路之外,还可以适用于大功率光电通信电路。此外,因为某些实施例可以提供能够承载增加的电流量的优点,某些实施例可以允许它们对应的集成电路经历更低的功耗损失。
图1示出了依照本发明某些实施例的异质结肖特基栅双极晶体管(HSGBT)100的截面图。
参照图1,P+集电极区120被P型杂质重掺杂。P+集电极区120负责少数载流子到N-漂移区110中的注入。AlGaAs区140在非常轻掺杂/未掺杂的主体区域上的放置是重要的,因为AlGaAs区140有助于电子可以快速移动所通过的量子通道的形成。发射极区150被n型杂质重掺杂。在施加适当的发射极电压时,发射极区150具有朝向N-漂移区110和/或朝向轻掺杂/未掺杂区130移动的高密度电子。
N-漂移区110轻掺杂n型杂质。N-漂移区110是收集流过发射极区的电子和从P+集电极区注入的少数载流子的区域。
如上所述,(图1的)器件可以由光源(例如,激光束101)光学控制。在某些实施例中,HSGBT器件100可以响应于一定范围的可见光。在图1的示例中,HSGBT 100可以响应来自激光束101的发射光,其中激光束101的光可以具有0.6μm的波长。激光束101还可以包括0.9mW的光源。
用于控制HSGBT器件100的激光束101的光子能量应该能够激发在照明的区域中的电子,并且因此,光子能量生成电子-空穴对。一些额外生成的电子被转移到量子阱中。因此,入射光子的能量应该等于或大于材料的带隙,在这种情况下,是AlGaAs的带隙。在图1的示例中使用的激光束具有2.06eV的能量,这足以激发在栅极区的砷化铝镓(AlGaAs)中的电子,其具有1.99ev的带隙能量。
图1示出了HSGBT器件100的不同区域/层以及不同区域/层的相应掺杂。关于某些实施例,HSGBT 100可以包括轻掺杂(N-)漂移区/层110。N-漂移区/层110可以包括半导体材料。例如,关于某些实施例,N-漂移区/层110可以包括III-V直接带隙半导体,例如砷化镓(GaAs)。HSGBT 100还可以包括P+掺杂的集电极区120。在漂移区的“N-”符号通常表示,该区域相对于重掺杂n型杂质的标有“n+”的其他区域,是轻掺杂n型杂质的区域。集电极区的“P+”表示集电极区重掺杂p型杂质。HSGBT器件100还可以包括轻掺杂/未掺杂区130。轻掺杂/未掺杂区130可以是轻掺杂的和/或可以是未掺杂的。此外,HSGBT器件100还可以包括n+掺杂区150。
关于某些实施例,HSGBT 100还可以包括异质结构140。异质结构140可以包括不同于N-漂移区110的半导体材料的半导体材料。例如,关于某些实施例,异质结构140可以包括砷化铝镓(AlGaAs),而N-漂移区110可以包括砷化镓(GaAs)。本发明的每个实施例可以在Al和Ga之间使用不同的合金。例如,图1的示例使用了合金,其中Al为0.47,Ga是0.53。关于其他实施例,异质结构140可以包括例如砷化铟镓或其他类型的III-V半导体。
如图1所示,可以在N-漂移区110和异质结构140之间形成至少一个异质结。在这种情况下,在(HSGBT 100的主体区的)砷化镓(GaAs)和砷化铝镓(AlGaAs)之间形成异质结。AlGaAs可以是合金,其中Al的组份组成是0.47而Ga的组份组成是0.53。尽管具体提到该组份组成,但是其他实施例可以使用不同材料的不同组份组成。AlGaAs是宽带隙材料,而且是重掺杂的。主体区中使用的GaAs材料可以是未掺杂的/非常轻掺杂的。当在GaAs和AlGaAs之间形成结时,该结导致了量子通道的形成,在该量子通道中,电子可以自由且快速地移动。
如图1所示,关于某些实施例,HSGBT器件100还可以包括与P+掺杂的集电极区/层120相接触的集电极端子150。HSGBT器件100还可以包括与异质结构140相接触的栅极端子160。HSGBT 100还可以包括与轻掺杂/未掺杂区130和/或n+掺杂区150相接触的发射极端子170。发射极端子170与n+掺杂区150和轻掺杂/未掺杂区130二者相接触。
图2示出了硅平面绝缘栅双极晶体管(IGBT)的不同区域中的掺杂密度。如图2所示,硅平面IGBT的顶部可以包括二氧化硅(SiO2)的部分。硅平面IGBT还可以包括集电极、栅极和发射极。如图2所示,集电极周围的区域和发射极周围的区域可以具有n型掺杂。
图3示出了砷化镓(GaAs)IGBT的不同区域中的掺杂密度。GaAs IGBT还可以包括集电极、栅极和发射极。如图3所示,集电极周围的区域可以具有p型掺杂,并且发射极周围的区域可以具有n型掺杂。
图4示出了依照本发明的某些实施例的HSGBT器件100的不同区域中的掺杂密度。关于某些实施例,集电极150周围的区域(例如P+掺杂的集电极区120)可以具有p型掺杂。例如,集电极周围的区域中的p型掺杂可以具有在大约1012cm3和大约1020cm3之间的掺杂浓度。集电极周围的区域中的p型掺杂可以在0到大约10微米的深度之间。栅极160和发射极170周围的区域可以具有较轻的p型掺杂(即,轻掺杂/未掺杂区130)。栅极和发射极周围的区域中的较轻的p型掺杂可以在0到大约5微米的深度之间。例如,栅极160和发射极170周围的区域中的p型掺杂可以具有大约1012cm3的浓度。如图4所示,n-掺杂漂移区110可以具有n型掺杂,例如,浓度在大约1014.1cm3和大约1017.3cm3之间。
图5(a)示出了依照某些实施例的当被电控制时HSGBT器件中的电流。从图5(a)可以看出,电流是0.016A。图5(a)示出了没有光照的HSGBT的电流-电压特性。
图5(b)示出了依照某些实施例的当被光学控制时HSGBT器件中的电流。如图5(b)所示,电流是0.04A。图5(b)示出了光控HSGBT的电流-电压特性。
从图5(a)和5(b)的I-V特性中显而易见的是,光学控制的HSGBT器件中的电流高于非光学控制的器件中的电流。当被光学方式控制时,这个器件可以承载2.5倍高的电流。更重要的是,该器件可以在没有任何栅极电压的施加的情况下被接通。而是,某些实施例的器件可以通过简单地把光照向器件来打开。这些特性可以使器件光学可控。在这种情况下,在没有栅极电压的情况下,光可以起到栅极电压的作用。
与传统的硅平面IGBT和砷化镓IGBT器件相比,HSGBT器件(无论它们是光控的还是无光照的)可以提供更高水平的集电极电流。某些实施例的HSGBT器件由于其结构,比其他传统器件表现出更高水平的集电极电流。光学控制的HSGBT器件可以被发现具有比未被光学控制的器件更高的电流,这是因为在光学控制的器件中通过光照的大量电子-空穴对的生成。
如上所述,某些实施例的光控肖特基栅双极晶体管(OC HSGBT)可以用作智能功率光学器件,这为它们的对应电路提供了较低的功率损耗。OC HSGBT可被用在智能功率集成电路以及大功率光电电路中。
如上所述,本发明的某些实施例可以表现出较低的功率损耗,同时提供较高的载流能力。在重掺杂宽带隙AlGaAs和非常轻掺杂窄带隙GaAs之间形成的异质结可以导致在GaAs材料的导带中量子阱的形成。由于从AlGaAs到量子阱的真实空间电子的转移,该量子阱具有更高的电子浓度。量子阱中的电子受到减少的电子电离杂质散射。那里的电子移动相对较快,从而导致更高的载流能力。某些实施例可以具有光学控制的灵活性,以及电控制的能力。因此,某些实施例可用于高功率电路应用中,包括使用IGBT的应用,以及具有高功率光通信电路和系统的应用中。
先前的方法通常使用电子的表面和块(bulk)传输。如上所述,本发明的实施例可以使用通过量子阱的传输和真实空间电子转移。量子阱可以在宽带隙半导体和窄带隙半导体之间形成的异质结处形成。此外,某些实施例的器件可以被光学控制,不同于目前存在的器件。
关于某些实施例的实施,可以使用分子束外延工艺在GaAs(Si)衬底上生长高质量的GaAs和AlGaAs异质结构。对于p型掺杂,可以使用铍。对于n型掺杂,可以使用硅。
可以通过标准光刻和湿法化学蚀刻技术来产生另外的器件层。制造上述器件的不同方法可能涉及不同的制造技术。对于某些实施例,器件制造可以在具有n外延层的GaAs异质结构晶体的(110)表面上开始。可以使用光刻法(通过使用例如光致抗蚀剂,对图案进行对准和/或显影)将器件图案转移到表面上,之后进行湿法蚀刻工艺。然后,器件的集电极和发射极可以轻掺杂。最后,可以使用例如分子束外延来生长重掺杂AlGaAs栅极。
图6示出了依照本发明的某些实施例的制造器件的方法。该方法可以制造晶体管结构。在610,该方法包括执行光刻工艺以将器件图案转移到半导体衬底上。半导体衬底可以包括漂移区和轻掺杂/未掺杂区。轻掺杂/未掺杂区可以是轻掺杂和/或未掺杂的。在620,该方法包括掺杂衬底的集电极区。在630,该方法包括掺杂衬底的发射极区。在640,该方法包括形成异质结构。异质结构与轻掺杂/未掺杂区形成异质结。在650,该方法包括形成集电极端子。集电极端子与集电极区相接触。在660,该方法包括形成栅极端子。栅极端子可以与异质结构相接触。在670,该方法还可以包括形成发射极端子。发射极端子与轻掺杂/未掺杂区和发射极区相接触。
在一个或多个实施例中,可以以任何合适的方式组合本发明的所述特征、优点和特性。相关领域的技术人员将认识到,本发明可以在没有特定实施例的一个或多个具体特征或优点的情况下实践。在其他情况下,可以在某些实施例中认识到附加的特征和优点,这些特征和优点可能不存于本发明的所有实施例中。本领域普通技术人员将容易理解,如上所述的本发明可以以不同次序的步骤来实践,以及/或者采用与所公开配置不同的配置的硬件元件来实践。因此,尽管已经基于这些优选实施例描述了本发明,但是对于本领域的技术人员来说,显而易见的是,在本发明的精神和范围内,某些修改、变化和替代结构将是显而易见的。

Claims (18)

1.一种晶体管结构,包括:
半导体衬底,其中所述半导体衬底包括:
漂移区,
集电极区,
发射极区,以及
轻掺杂/未掺杂区,其中所述轻掺杂/未掺杂区是轻掺杂和/或未掺杂的;
异质结构,其中所述异质结构与所述轻掺杂/未掺杂区形成异质结;
集电极端子,其中所述集电极端子与所述集电极区相接触;
栅极端子,其中所述栅极端子与所述异质结构相接触;以及
发射极端子,其中所述发射极端子与所述轻掺杂/未掺杂区和所述发射极区相接触。
2.根据权利要求1所述的晶体管结构,其中所述漂移区包括N-掺杂区。
3.根据权利要求1所述的晶体管结构,其中所述集电极区包括P+掺杂区。
4.根据权利要求1所述的晶体管结构,其中所述发射极区包括n+掺杂区。
5.根据权利要求1所述的晶体管结构,其中所述半导体衬底包括砷化镓。
6.根据权利要求1所述的晶体管结构,其中所述异质结构包括砷化铝镓。
7.根据权利要求1所述的晶体管结构,其中所述异质结构是n+掺杂的。
8.根据权利要求1所述的晶体管结构,其中所述晶体管结构被配置为经由在所述栅极端子上的照明而光学可控。
9.根据权利要求1所述的晶体管结构,其中对应于异质结的量子阱为电子流提供低电阻通道。
10.一种用于制造晶体管结构的方法,所述方法包括:
执行光刻工艺以将器件图案转移到半导体衬底上,其中所述半导体衬底包括漂移区和轻掺杂/未掺杂区,并且所述轻掺杂/未掺杂区是轻掺杂和/或未掺杂的;
掺杂所述衬底的集电极区;
掺杂所述衬底的发射极区;
形成异质结构,其中所述异质结构与所述轻掺杂/未掺杂区形成异质结;
形成集电极端子,其中所述集电极端子与所述集电极区相接触;
形成栅极端子,其中所述栅极端子与所述异质结构相接触;以及
形成发射极端子,其中所述发射极端子与所述轻掺杂/未掺杂区和所述发射极区相接触。
11.根据权利要求10所述的方法,其中所述漂移区包括N-掺杂区。
12.根据权利要求10所述的方法,其中掺杂所述集电极区包括执行P+掺杂。
13.根据权利要求10所述的方法,其中掺杂所述发射极区包括执行n+掺杂。
14.根据权利要求10所述的方法,其中所述半导体衬底包括砷化镓。
15.根据权利要求10所述的方法,其中形成所述异质结构包括形成包含砷化铝镓的异质结构。
16.根据权利要求10所述的方法,其中形成所述异质结构包括形成n+掺杂的异质结构。
17.根据权利要求10所述的方法,其中制造所述晶体管结构包括制造经由在所述栅极端子上的照明实现光学可控的结构。
18.根据权利要求10所述的方法,其中制造所述晶体管结构包括制造一种结构,其中对应于所述异质结的量子阱为电子流提供低电阻通道。
CN201780029060.8A 2016-05-09 2017-05-09 异质结肖特基栅双极晶体管 Pending CN109417091A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/149,979 2016-05-09
US15/149,979 US9793430B1 (en) 2016-05-09 2016-05-09 Heterojunction schottky gate bipolar transistor
PCT/US2017/031742 WO2017196835A1 (en) 2016-05-09 2017-05-09 Heterojunction schottky gate bipolar transistor

Publications (1)

Publication Number Publication Date
CN109417091A true CN109417091A (zh) 2019-03-01

Family

ID=60022656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780029060.8A Pending CN109417091A (zh) 2016-05-09 2017-05-09 异质结肖特基栅双极晶体管

Country Status (3)

Country Link
US (2) US9793430B1 (zh)
CN (1) CN109417091A (zh)
WO (1) WO2017196835A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034183A (zh) * 2019-04-16 2019-07-19 西安电子科技大学 一种横向肖特基栅双极晶体管及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0136108B1 (en) * 1983-08-31 1988-06-08 Masataka Inoue Heterojunction semiconductor device
US5359220A (en) * 1992-12-22 1994-10-25 Hughes Aircraft Company Hybrid bipolar/field-effect power transistor in group III-V material system
CN1741296A (zh) * 2004-08-24 2006-03-01 株式会社东芝 半导体衬底及在半导体衬底上通过外延生长制造的半导体器件
US20110254010A1 (en) * 2010-04-16 2011-10-20 Cree, Inc. Wide Band-Gap MOSFETs Having a Heterojunction Under Gate Trenches Thereof and Related Methods of Forming Such Devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218681A (ja) * 1989-11-24 1991-09-26 Toshiba Corp ヘテロ接合バイポーラトランジスタ
US8294507B2 (en) * 2009-05-08 2012-10-23 Cree, Inc. Wide bandgap bipolar turn-off thyristor having non-negative temperature coefficient and related control circuits
US8629509B2 (en) * 2009-06-02 2014-01-14 Cree, Inc. High voltage insulated gate bipolar transistors with minority carrier diverter
JP2012124207A (ja) * 2010-12-06 2012-06-28 Toshiba Corp 半導体装置
GB2495949B (en) * 2011-10-26 2015-03-11 Anvil Semiconductors Ltd Silicon carbide epitaxy
US8912569B2 (en) * 2012-07-27 2014-12-16 Freescale Semiconductor, Inc. Hybrid transistor
US9276160B2 (en) * 2014-05-27 2016-03-01 Opel Solar, Inc. Power semiconductor device formed from a vertical thyristor epitaxial layer structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0136108B1 (en) * 1983-08-31 1988-06-08 Masataka Inoue Heterojunction semiconductor device
US5359220A (en) * 1992-12-22 1994-10-25 Hughes Aircraft Company Hybrid bipolar/field-effect power transistor in group III-V material system
CN1741296A (zh) * 2004-08-24 2006-03-01 株式会社东芝 半导体衬底及在半导体衬底上通过外延生长制造的半导体器件
US20110254010A1 (en) * 2010-04-16 2011-10-20 Cree, Inc. Wide Band-Gap MOSFETs Having a Heterojunction Under Gate Trenches Thereof and Related Methods of Forming Such Devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RATCHA, ADITYA C.: ""Design of optically controlled lateral heterojunctoin Schottky Gate Bipolar Transistor"", 《PROQUEST DISSERTATIONS PUBLISHING》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034183A (zh) * 2019-04-16 2019-07-19 西安电子科技大学 一种横向肖特基栅双极晶体管及其制作方法
CN110034183B (zh) * 2019-04-16 2021-04-13 西安电子科技大学 一种横向肖特基栅双极晶体管及其制作方法

Also Published As

Publication number Publication date
US20170323994A1 (en) 2017-11-09
US20180013032A1 (en) 2018-01-11
US9911889B2 (en) 2018-03-06
US9793430B1 (en) 2017-10-17
WO2017196835A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
US8853827B2 (en) Silicon carbide bipolar junction transistor (BJT) having a surface electrode disposed on a surface passivation layer formed at a region between emitter contact and base contact
US20080157117A1 (en) Insulated gate bipolar transistor with enhanced conductivity modulation
US9608092B2 (en) Method of manufacturing a semiconductor device having a rectifying junction at the side wall of a trench
CN103858236A (zh) 利用再生长栅极的GaN垂直JFET的方法和系统
CN103875075A (zh) 利用再生长沟道的GaN垂直JFET的方法和系统
US9941439B2 (en) Optically assist-triggered wide bandgap thyristors having positive temperature coefficients
US20160343801A1 (en) Vertical gallium nitride power field-effect transistor with a field plate structure
US20100276699A1 (en) Silicon Carbide and Related Wide Bandgap Semiconductor Based Optically-Controlled Power Switching Devices
Bose et al. Atomistic and electrical simulations of a GaN–AlN–(4H) SiC heterostructure optically-triggered vertical power semiconductor device
Sheng et al. Demonstration of the first SiC power integrated circuit
CN112768532A (zh) 一种单片集成续流二极管的SiC MOSFET器件及其制备方法
CN109417091A (zh) 异质结肖特基栅双极晶体管
Maher et al. A triple channel HEMT on InP (Camel HEMT) for large-signal high-speed applications
Yong et al. Analysis and optimal design of a novel SiGe/Si power diode for fast and soft recovery
Wang et al. Recessed-anode AlGaN/GaN diode with a high Baliga's FOM by combining a p-GaN cap layer and an anode-connected p-GaN buried layer
KR101435479B1 (ko) 반도체 소자 및 그의 제조방법
CN115985960B (zh) 一种高速GaN功率器件及其制备方法
Mazumder et al. Optically-triggered power transistor (OTPT) for Fly-by-light (FBL) and EMI-susceptible power electronics: Plenary paper
KR102125386B1 (ko) 전력 반도체 소자 및 그 제조방법
CN108962984B (zh) 一种具有量子点结构的绝缘栅双极型晶体管
JPH03196573A (ja) 半導体装置
KR100424443B1 (ko) 다이버터 구조의 횡형 트렌치 전극 절연 게이트 바이폴라트랜지스터
Stein Gan Junction Devices for Microwave and Power Electronics
Meneghesso et al. Smart Power Devices Nanotechnology
Herath Mudiyanselage Design and optimization of edge termination techniques for β-Ga2O3/GaN heterojunction for pn power diodes using TCAD simulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190301