CN109406507B - 一种采用稳定化金纳米粒子检测海水中银离子的方法 - Google Patents

一种采用稳定化金纳米粒子检测海水中银离子的方法 Download PDF

Info

Publication number
CN109406507B
CN109406507B CN201811500227.7A CN201811500227A CN109406507B CN 109406507 B CN109406507 B CN 109406507B CN 201811500227 A CN201811500227 A CN 201811500227A CN 109406507 B CN109406507 B CN 109406507B
Authority
CN
China
Prior art keywords
graphene oxide
hyperbranched polymer
seawater
gold nanoparticles
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811500227.7A
Other languages
English (en)
Other versions
CN109406507A (zh
Inventor
刘训恿
朱晨雪
刘毅
刘军深
戴雨晴
夏云霞
高学珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ludong University
Original Assignee
Ludong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ludong University filed Critical Ludong University
Priority to CN201811500227.7A priority Critical patent/CN109406507B/zh
Publication of CN109406507A publication Critical patent/CN109406507A/zh
Application granted granted Critical
Publication of CN109406507B publication Critical patent/CN109406507B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种基于氧化石墨烯‑超支化聚合物稳定化金纳米粒子(AuNPs)对海水中银离子(Ag+)的比色检测方法。该比色探针的制备是通过氧化石墨烯‑超支化聚合物还原并稳定AuNPs。在检测过程中利用AuNPs的表面等离子体共振性质,当Ag+存在时,体系出现颜色由红变黄、紫外吸收光谱发生蓝移的双重响应。该比色探针对海水中Ag+的检测范围为0‑0.132 mM,最低检测浓度为0.44µM。本发明的比色探针具有制备简单、稳定性好等优点,能够实现成分复杂、盐度较高的海水体系中Ag+的高灵敏、高选择性快速检测,具有广阔的应用前景。

Description

一种采用稳定化金纳米粒子检测海水中银离子的方法
技术领域
本发明涉及海水中重金属离子检测领域,具体涉及一种稳定化AuNPs的制备方法和海水中Ag+的比色检测方法。
背景技术
近年来,随着工业经济的发展,工业废水和生活污水的排放使得海水中重金属离子污染日趋严重,对我国的海洋事业的发展造成了巨大的影响。其中银离子(Ag+)虽然具有较高的导电导热性、延展性和光敏性,广泛应用于摄影、影像、电器、医药等领域。但是Ag+对海洋生态系统和食物链都具有极大的破环性,能通过食物链最终富集于人体,并可与各种代谢物的胺类、咪唑类、羧基等功能基团结合,严重影响、损害人类的健康,例如:皮肤病,肝肾变性和人体呼吸系统疾病等。因此,急需发展能够快速准确检测海水中Ag+的方法,及时有效监测与防控Ag+对海水的污染。
目前传统的Ag+检测方法主要包括原子吸收光谱法、电感耦合等离子体质谱法、原子荧光光谱法、原子发射光谱法等。然而,这些检测方法都需要大型精贵仪器,操作繁琐费时,分析成本较高,不能用于现场实时快速检测,以上不足在一定程度上限制了这些方法的应用。相比于上述仪器检测方法,基于金纳米粒子(AuNPs)的比色检测方法由于具有操作简单、成本低、方便携带、可现场实时检测等优点而在Ag+的检测应用中受到了重要关注。但其应用多局限于饮用水、自来水、河水、湖水等成分简单、盐度不高的水体系中,而在盐度较高、成分较复杂的海水体系中却难以应用。这是因为AuNPs粒径较小,表面能较高,本身聚集倾向较大,在海水高盐、高离子强度下更易聚集,甚至会沉淀析出,从而干扰检测或无法应用。因此提高AuNPs的稳定性,使其能够应用于海水体系中Ag+的检测便具有重要意义。
本发明为了提高海水体系中AuNPs的稳定性,选用氧化石墨烯-超支化聚合物来还原并稳定AuNPs,其中氧化石墨烯较大的比表面积、较多的官能团以及超支化聚合物的类球型结构可增加粒子之间的空间位阻,避免其发生聚集,从而提高AuNPs的稳定性。同时,超支化聚合物既可以作为稳定剂又可以用作还原剂,避免了传感器复杂的制备过程和后期纯化过程。同时,在后期的检测应用中,Ag+的加入使得AuNPs表面等离子体共振发生变化,最终引起体系颜色和紫外吸收峰的变化,信号响应明显,检测过程简单。因此,基于氧化石墨烯-超支化聚合物稳定化AuNPs实现对成分复杂、盐度较高的海水体系中Ag+的检测具有重要意义。
发明内容
本发明内容的目的是提供一种原位还原制备并稳定AuNPs的方法,解决AuNPs在成分复杂、盐度较高的海水体系中稳定性差,易聚集的难题。本发明的另一目的是提供一种能够快速、高效检测海水中Ag+的比色检测方法,解决现有基于AuNPs比色检测方法灵敏度低、选择性差等问题。
解决上述技术问题,本发明采用的技术方案是:
1. 比色探针的合成
a. 氧化石墨烯-超支化聚合物的制备
将氧化石墨烯和超支化聚合物混合于N,N-二甲基甲酰胺中,然后一定温度下搅拌反应24 h;反应结束后,将混合物进行过滤,乙醇多次洗涤,将产物进行真空干燥24 h,得到产品氧化石墨烯-超支化聚合物。
b. 氧化石墨烯-超支化聚合物稳定化AuNPs的制备
将氯金酸(AuCl3·HCl·4H2O)水溶液加热煮沸,然后加入氧化石墨烯-超支化聚合物水溶液,反应20 min,直至混合溶液变为红色,降温冷却,得到氧化石墨烯-超支化聚合物稳定化AuNPs。
2. 比色探针的应用
将Ag+的海水溶液和抗坏血酸的海水溶液置于氧化石墨烯-超支化聚合物稳定化AuNPs溶液中,体系由原来的红色变为黄色。
氧化石墨烯-超支化聚合物稳定化AuNPs对海水中Ag+的最低检测浓度为0.44 µM。
传感器对Na+, Cd2+, Pb2+, Ba2+, Sr2+,Cs2+, Mg2+, Zn2+, Mn2+, Cu2+, Hg2+等金属离子的比色检测均无明显的变化。
本发明所述超支化聚合物为超支化聚乙烯亚胺、超支化聚酰胺-胺、超支化聚硫醚多胺的任意一种或任意两种及两种以上的混合物。
与现有技术相比,本发明的有益效果:
本发明克服了现有技术的不足,以氧化石墨烯-超支化聚合物稳定化AuNPs作为比色探针,利用其颜色变化和表面等离子体共振性质,建立了一种快速检测Ag+的比色方法。
该发明中,选用含胺类超支化聚合物对氯金酸进行还原,其一,利用超支化聚合物的还原性实现原位制备AuNPs,可显著提高AuNPs的稳定性;其二,可以协同发挥氧化石墨烯和超支化聚合物本身各自的优点,满足面对成分复杂、盐度较高的海水体系中基于AuNPs检测Ag+的苛刻条件要求。
本发明中,比色探针具有很高的灵敏度,响应时间快速,而且其对海水中Ag+的最低检测浓度低至0.44 µM,具有很高的实用性。
本发明中的比色探针对海水中Ag+的检测具有较好的选择性,抗干扰性强,应用广泛。
附图说明
图1为海水中不同浓度Ag+存在时比色体系的紫外-可见吸收光谱和其线性关系拟合图。
图2为海水中不同金属离子存在时比色体系的紫外-可见吸收光谱。
具体实施方式
本发明所要解决的技术问题是提供一种简单、高稳定比色传探针的制备方法和快速检测Ag+的应用新技术,下面结合实施例对本发明做进一步的描述:
实施例1:氧化石墨烯-超支化聚合物的制备
以氧化石墨烯和超支化聚合物为原料来制备氧化石墨烯-超支化聚合物复合材料。将氧化石墨烯和超支化聚合物以2:1的质量比混合于20 mL N,N-二甲基甲酰胺中,搅拌回流反应24 h;然后,将混合物进行过滤,并用乙醇进行多次洗涤;将产物置于40 °C的条件下真空干燥24 h,得到氧化石墨烯-超支化聚合物复合材料。
实施例2:氧化石墨烯-超支化聚合物稳定化AuNPs的制备
取20 mL 0.15 mM氯金酸(AuCl3·HCl·4H2O)水溶液加热煮沸,加入0.4 mL 0.25-2.45 mg/mL氧化石墨烯-超支化聚合物水溶液,混合溶液反应20 min,直至溶液变为红色;最后,将混合液冷却静置,得到氧化石墨烯-超支化聚合物稳定化AuNPs。
实施例3:比色检测方法的构建和检测灵敏度的考察
在本发明中,以氧化石墨烯-超支化聚合物稳定化AuNPs作为检测探针,检测海水体系中Ag+的存在。检测过程中,当存在Ag+时,由肉眼可以观察到检测体系会由原来的浅红色变为黄色,紫外吸收光谱的特征吸收峰会发生蓝移,从而实现对海水中Ag+的比色检测。取0-2.0 mL 3.94×10-4 M的Ag+海水溶液和0.5 mL 100 mg/mL抗坏血酸的海水溶液于0.10-1.50 mL 0.15 mM氧化石墨烯-超支化聚合物稳定化AuNPs溶液中,并使检测体系最终定容为4.5 mL,通过记录颜色和紫外吸收光谱变化来考察比色探针对Ag+的检测灵敏度(图1)。由图1可知,氧化石墨烯-超支化聚合物稳定化AuNPs的特征吸收峰强度随Ag+浓度变化而线性增加,并伴随蓝移。这是因为Ag+浓度的升高,引起了氧化石墨烯-超支化聚合物稳定化AuNPs表面等离子体共振性质的变化,最终由单分散状态逐渐发生聚集,并团聚在一起,引起体系颜色变化与紫外特征吸收峰的位移。最后得知氧化石墨烯-超支化聚合物稳定化AuNPs对海水中Ag+的最低检测浓度为0.44 µM。
实施例4:检测选择性的考察
在氧化石墨烯-超支化聚合物稳定化AuNPs作为比色探针检测Ag+的实验中,同时选用多种金属离子(Na+, Cd2+, Pb2+, Ba2+, Sr2+, Mg2+, Zn2+, Mn2+,Cs2+, Cu2+, Hg2+)作为干扰离子来考察比色传感器的检测选择性。分别取0.5 mL 3.94×10-4 M金属离子溶液和0.5 mL 100 mg/mL抗坏血酸溶液于0.5 mL 0.15 mM氧化石墨烯-超支化聚合物稳定化AuNPs溶液中,检测体系最终定容4.5 mL,通过记录颜色和紫外吸收光谱变化来考察比色探针对Ag+检测的选择性。由图2可知,加入相同浓度的其他金属离子,氧化石墨烯-超支化聚合物稳定化AuNPs特征吸收变化较小,表明AuNPs仍保持着单分散状态。加入Ag+之后,氧化石墨烯-超支化聚合物稳定化AuNPs在430 nm处有特征吸收峰出现,并伴随明显的位移,这是由于AuNPs与Ag+结合形成Au-Ag合金。实验结果表明,氧化石墨烯-超支化聚合物稳定化AuNPs对海水中Ag+的检测具有非常高的选择性。
AuNPs浓度、氧化石墨烯-超支化聚合物用量、水质体系的改变等因素都能影响本发明的实现,在此不再一一列举实施例。

Claims (5)

1.一种采用氧化石墨烯-超支化聚合物稳定化金纳米粒子对海水中银离子(Ag+)进行检测的方法,其特征在于包括以下步骤:向氧化石墨烯-超支化聚合物稳定化金纳米粒子溶液中依次加入抗坏血酸的海水溶液和被检测的Ag+的海水溶液,静置,观察纳米粒子溶液颜色和紫外吸收光谱的特征吸收峰的变化;其中所采用的氧化石墨烯-超支化聚合物稳定化金纳米粒子由以下方法制备:将氧化石墨烯和超支化聚合物混合于N,N-二甲基甲酰胺中,一定温度下搅拌反应24 h,反应结束后,将混合物进行过滤,乙醇多次洗涤,将产物真空干燥24 h,得到氧化石墨烯-超支化聚合物,其中氧化石墨烯和超支化聚合物的质量比为1:1-3:1;将氯金酸水溶液加热煮沸,然后加入氧化石墨烯-超支化聚合物水溶液,反应15-30 min,直至混合溶液变为红色,降温冷却,得到氧化石墨烯-超支化聚合物稳定化金纳米粒子;所述的超支化聚合物为超支化聚乙烯亚胺、超支化聚酰胺-胺、超支化聚硫醚多胺的任意一种或任意两种及两种以上的混合物。
2.根据权利要求1所述的采用氧化石墨烯-超支化聚合物稳定化金纳米粒子对海水中银离子(Ag+)进行检测的方法,其特征在于:氧化石墨烯-超支化聚合物稳定化金纳米粒子作为比色探针,其使用浓度范围为1.0×10-3-5.0×10-2 M。
3.根据权利要求1所述的采用氧化石墨烯-超支化聚合物稳定化金纳米粒子对海水中银离子(Ag+)进行检测的方法,其特征在于:Ag+作为目标物,其检测浓度范围为0-0.132 mM。
4.根据权利要求1所述的采用氧化石墨烯-超支化聚合物稳定化金纳米粒子对海水中银离子(Ag+)进行检测的方法,其特征在于:抗坏血酸溶液的浓度范围为0.1-15.0 mg/mL。
5.根据权利要求1所述的采用氧化石墨烯-超支化聚合物稳定化金纳米粒子对海水中银离子(Ag+)进行检测的方法,其特征在于:氧化石墨烯-超支化聚合物稳定化金纳米粒子还可用于纯净水、自来水、湖水、河水及土壤体系中Ag+的检测。
CN201811500227.7A 2018-12-10 2018-12-10 一种采用稳定化金纳米粒子检测海水中银离子的方法 Active CN109406507B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811500227.7A CN109406507B (zh) 2018-12-10 2018-12-10 一种采用稳定化金纳米粒子检测海水中银离子的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811500227.7A CN109406507B (zh) 2018-12-10 2018-12-10 一种采用稳定化金纳米粒子检测海水中银离子的方法

Publications (2)

Publication Number Publication Date
CN109406507A CN109406507A (zh) 2019-03-01
CN109406507B true CN109406507B (zh) 2021-09-24

Family

ID=65457979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811500227.7A Active CN109406507B (zh) 2018-12-10 2018-12-10 一种采用稳定化金纳米粒子检测海水中银离子的方法

Country Status (1)

Country Link
CN (1) CN109406507B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110153442B (zh) * 2019-06-16 2022-06-17 南通大学 一种对纤维具有亲和性的纳米金银合金溶液及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743735A (zh) * 2013-12-31 2014-04-23 皖西学院 一种比色法检测、富集与分离水环境重金属Hg2+的方法
CN104568882A (zh) * 2014-12-31 2015-04-29 江苏江大环保科技开发有限公司 一种葡萄糖光学纳米传感器的制备方法
CN104964961A (zh) * 2015-06-08 2015-10-07 上海交通大学 氧化石墨烯-金纳米棒复合纳米材料的制备方法及应用
AU2018100445A4 (en) * 2018-04-07 2018-05-10 Deng, Chi Mr A method for dopamine detection with GO-PtCu nano-enzyme

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107955179B (zh) * 2017-11-15 2021-03-30 北京工业大学 一种水相中超支化聚合物修饰的氧化石墨烯及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743735A (zh) * 2013-12-31 2014-04-23 皖西学院 一种比色法检测、富集与分离水环境重金属Hg2+的方法
CN104568882A (zh) * 2014-12-31 2015-04-29 江苏江大环保科技开发有限公司 一种葡萄糖光学纳米传感器的制备方法
CN104964961A (zh) * 2015-06-08 2015-10-07 上海交通大学 氧化石墨烯-金纳米棒复合纳米材料的制备方法及应用
AU2018100445A4 (en) * 2018-04-07 2018-05-10 Deng, Chi Mr A method for dopamine detection with GO-PtCu nano-enzyme

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
An unusual red-to-brown colorimetric sensing method for ultrasensitive silver(I) ion detection based on a non-aggregation of hyperbranched polyethylenimine derivative stabilized gold nanoparticles;Yi Liu et al.;< Analyst>;20150509;第140卷;5335-5343 *
Graphene Oxide-Hyperbranched Polyethyleneimine Fabricated and Stabilized AuNPs Nanocomposites for Colorimetric Detection of Silver Ions Based on a Non-Aggregation Mechanism;Jie Bian et al.;<ChemNanoMat>;20201111;第7卷;85-94 *
基于温敏聚合物稳定的AuNPs 比色传感器的制备、表征及应用;刘训恿 等;《中国化学会第四届卟啉与酞菁学术研讨会论文集》;20170706;119 *
石墨烯—超支化聚乙烯亚胺凝胶制备及对银离子的吸附性能研究;朱晨雪 等;《鲁东大学学报(自然科学版)》;20180115;第34卷(第1期);69-74 *

Also Published As

Publication number Publication date
CN109406507A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
Zhang et al. Internally extended growth of core–shell NH 2-MIL-101 (Al)@ ZIF-8 nanoflowers for the simultaneous detection and removal of Cu (ii)
Song et al. Europium-based infinite coordination polymer nanospheres as an effective fluorescence probe for phosphate sensing
Wang et al. Carbon dots functionalized by organosilane with double-sided anchoring for nanomolar Hg2+ detection
Xu et al. Fabrication and application of a ratiometric and colorimetric fluorescent probe for Hg 2+ based on dual-emissive metal–organic framework hybrids with carbon dots and Eu 3+
Wu et al. Colorimetric determination of hexavalent chromium with ascorbic acid capped silver nanoparticles
Xue et al. Colorimetric detection of Cd 2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and l-cysteine
Chen et al. Chitosan-capped silver nanoparticles as a highly selective colorimetric probe for visual detection of aromatic ortho-trihydroxy phenols
Qin et al. Highly water-stable Cd-MOF/Tb3+ ultrathin fluorescence nanosheets for ultrasensitive and selective detection of Cefixime
Jung et al. Selective removal and quantification of Cu (II) using fluorescent iminocoumarin-functionalized magnetic nanosilica
Zhang et al. A one-step colorimetric method of analysis detection of Hg2+ based on an in situ formation of Au@ HgS core–shell structures
Zhu et al. Chemiluminescence determination of ascorbic acid using graphene oxide@ copper-based metal–organic frameworks as a catalyst
Liu et al. Dual-emission ratiometric fluorescent probe-based lanthanide-functionalized hydrogen-bonded organic framework for the visual detection of methylamine
CN108384018B (zh) 一种mof配合物及其合成和在荧光识别铁离子的应用
Ha et al. “Green” colorimetric assay for the selective detection of trivalent chromium based on Xanthoceras sorbifolia tannin attached to gold nanoparticles
Shi et al. Concentration-dependent multicolor fluorescent carbon dots for colorimetric and fluorescent bimodal detections of Fe 3+ and l-ascorbic acid
He et al. A highly sensitive biosensing platform based on upconversion nanoparticles and graphene quantum dots for the detection of Ag+
Chen et al. Water soluble sulphur quantum dots for selective Ag+ sensing based on the ion aggregation-induced photoluminescence enhancement
CN110907589B (zh) 一种基于GQDs光催化可视化检测Cu2+的方法
CN109406507B (zh) 一种采用稳定化金纳米粒子检测海水中银离子的方法
Xie et al. A single gold nanoprobe for colorimetric detection of silver (i) ions with dark-field microscopy
Zhu et al. A rapid and sensitive electrochemiluminescent sensor for nitrites based on C 3 N 4 quantum dots on C 3 N 4 nanosheets
CN109231183B (zh) 一种柠檬酸为碳源的碳量子点及其制备方法和应用
CN109632752B (zh) 通过荧光碳点识别多种金属离子的方法及检测器
CN108392853B (zh) 一种固相萃取柱及其制备方法与应用
CN108362669B (zh) 用于检测Al3+的有机荧光聚多巴胺纳米粒子溶液及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant