CN109401201A - 用于空气耦合的超声波传感器匹配层材料及其制备方法 - Google Patents

用于空气耦合的超声波传感器匹配层材料及其制备方法 Download PDF

Info

Publication number
CN109401201A
CN109401201A CN201811320492.7A CN201811320492A CN109401201A CN 109401201 A CN109401201 A CN 109401201A CN 201811320492 A CN201811320492 A CN 201811320492A CN 109401201 A CN109401201 A CN 109401201A
Authority
CN
China
Prior art keywords
ultrasonic sensor
matching layer
layer material
parts
air coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811320492.7A
Other languages
English (en)
Inventor
程政
兰志才
吴章勇
代兰军
申桃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU HUITONG WEST ELECTRONICS Co Ltd
Original Assignee
CHENGDU HUITONG WEST ELECTRONICS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU HUITONG WEST ELECTRONICS Co Ltd filed Critical CHENGDU HUITONG WEST ELECTRONICS Co Ltd
Priority to CN201811320492.7A priority Critical patent/CN109401201A/zh
Publication of CN109401201A publication Critical patent/CN109401201A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/28Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/54Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/54Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48
    • G01D5/56Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48 using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/54Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48
    • G01D5/62Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48 using wave or particle radiation means not covered by group G01D5/58
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5808Measuring, controlling or regulating pressure or compressing force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5816Measuring, controlling or regulating temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种用于空气耦合的超声波传感器匹配层材料,由如下质量份的组分组成:50~100份的环氧树脂、20~90份的固化剂、10~50份的轻质材料和1~10份触变剂。本发明还提供了用于空气耦合的超声波传感器匹配层材料的制备方法。本发明匹配层组分简单、操作简便、孔隙率低、材料均匀性好。且本发明采用带正压的烘箱加热,所制备的匹配层中余留气孔为封闭式微孔,因此对环境湿度敏感性大大降低。同时,能够明显提高传感器与空气的耦合性能和超声波传感器生产过程中的良品率。

Description

用于空气耦合的超声波传感器匹配层材料及其制备方法
技术领域
本发明涉及一种超声波传感器匹配层材料,具体涉及一种用于空气耦合的超声波传感器的匹配层材料及其制备方法,属于传感器技术领域。
背景技术
超声波传感器是一种可逆换能器,利用压电材料的压电效应和电致伸缩效应,实现机械能和电能的相互转换。由于其成本低、体积小、安装维护方便,广泛应用于自动测距、液位监测、无损探伤、超声医学成像等领域。
制约空气耦合超声波传感器灵敏度的因素有超声波在空气中的衰减、超声波在气固界面的强反射、传感器的转换效率。而为了提高超声波传感器的灵敏度,需要解决的核心问题就是压电晶片与空气间阻抗严重不匹配问题。例如,常规PZT压电材料声阻抗约为30MRayl,空气的声阻抗为400Rayl,二者相差几个数量级,由压电晶片直接辐射到空气中的能量非常有限。
因此,合理的匹配层就是为了实现高阻抗的压电材料和低阻抗的空气媒质间的声阻抗过渡。一方面可以减少声波能量的大幅衰减,提高传感器的灵敏度;另一方面,还能够有效拓宽传感器的工作带宽,增加传感器的收发信息量,改善传感器的分辨率。
当前,国内外科研技术人员多研究开发新型复合材料制备匹配层。匹配层材料的声阻抗应介于压电材料和空气媒质之间,一般选用低粘度、润湿性能好的环氧树脂作为基体,氧化钨、二氧化钛、二氧化硅等作为填料,但此种复合材料匹配层易出现分层、填料分散不均等影响传感器性能的现象。另外,有文献报道设计多层结构的匹配层,虽能对声阻抗进行阶梯过渡,但超声波能量在传输过程中经过多个树脂层后大量吸收和衰减,导致传感器灵敏度低,且制备工艺复杂。
发明内容
本发明的目的在于提供一种组分简单、孔隙率低、材料均匀性好的用于空气耦合的超声波传感器匹配层材料。
本发明是这样实现的:
一种用于空气耦合的超声波传感器匹配层材料,由如下质量份的组分组成:
50~100份的环氧树脂、20~90份的固化剂、10~50份的轻质材料和1~10份触变剂。
更进一步的方案是:
所述环氧树脂为低粘度改性环氧树脂;具体为黏度为200~700mPa.S的氢化型环氧树脂。
更进一步的方案是:
所述固化剂为该类环氧树脂配套用固化剂;首选为三胺类环氧树脂固化剂。
更进一步的方案是:
所述轻质材料首选为玻璃微珠;具体为粒径为25~115微米的中空玻璃微珠。
更进一步的方案是:
所述触变剂首选为气相白碳黑。
本发明还提供了所述用于空气耦合的超声波传感器匹配层材料的制备方法,具体包括以下步骤:
⑴将环氧树脂和固化剂按配方称量后混合搅拌1~2分钟;
⑵将轻质材料和触变剂按配方称重后混合搅拌1分钟;
⑶将⑴和⑵中的两种材料混合搅拌2~5分钟;
⑷将⑶中混合好的材料在模具中压实成型;
⑸将⑷中的材料连同模具一起放入正压烘箱中加压保温阶梯固化。
更进一步的方案是:
步骤⑸加压保温阶梯固化条件是:在温度为50℃~90℃,压力为0.05MPa~0.2MPa条件下保温0.5~1小时,再升温至100℃~120℃保温1~3小时。
本发明的有益效果在于:所述匹配层组分简单、操作简便,由于加入了触变剂,有效降低了环氧树脂在高温固化时的流动性,从而使该匹配层的孔隙率低,材料均匀性好。且本发明采用带正压的烘箱加热,所制备的匹配层中余留气孔为封闭式微孔,因此对环境湿度敏感性大大降低。同时,能够明显提高传感器与空气的耦合性能和超声波传感器生产过程中的良品率。
附图说明
图1为现有技术的超声波传感器阻抗曲线图;
图2为本发明方法生产的超声波传感器阻抗曲线图。
具体实施方式
下面结合具体实施例对本发明进行进一步地详细说明。
实施例1
环氧树脂50份,固化剂40份,玻璃微珠30份,触变剂1.5份,固化条件气压0.05MPa,温度60℃保温0.5小时,120℃保温2小时。
实施例2
环氧树脂100份,固化剂90份,玻璃微珠20份,触变剂8份,固化条件气压0.2MPa,温度80℃保温1小时,120℃保温2.5小时。
实施例3
环氧树脂100份,固化剂80份,玻璃微珠45份,触变剂10份,固化条件气压0.1MPa,温度85℃保温0.5小时,120℃保温3小时。
实施例4
环氧树脂80份,固化剂70份,玻璃微珠25份,触变剂6份,固化条件气压0.04MPa,温度85℃保温0.5小时,115℃保温3小时。
将本发明的上述实施例制备得到的用于空气耦合的超声波传感器匹配层材料,按照常规方法制作成超声波传感器的匹配层,与现有的超声波传感器进行试验,得到现有技术的超声波传感器阻抗曲线图(如附图1)和本发明方法生产的超声波传感器的阻抗曲线图(如附图2)。从附图1和2可以看出,本发明制备得到的超声波传感器,具有谐振阻抗降低,阻抗曲线一致性好,同时回波灵敏度高的优点,印证了本发明制备得到的用于空气耦合的超声波传感器匹配层材料具有孔隙率低、材料均匀性好的特点。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (7)

1.一种用于空气耦合的超声波传感器匹配层材料,其特征在于由如下质量份的组分组成:
50~100份的环氧树脂、20~90份的固化剂、10~50份的轻质材料和1~10份触变剂。
2.根据权利要求1所述用于空气耦合的超声波传感器匹配层材料,其特征在于:
所述环氧树脂是黏度为200~700mPa.S的氢化型环氧树脂。
3.根据权利要求1所述用于空气耦合的超声波传感器匹配层材料,其特征在于:
所述固化剂是三胺类环氧树脂固化剂。
4.根据权利要求1所述用于空气耦合的超声波传感器匹配层材料,其特征在于:
所述轻质材料是粒径为25~115微米的中空玻璃微珠。
5.根据权利要求1所述用于空气耦合的超声波传感器匹配层材料,其特征在于:
所述触变剂为气相白碳黑。
6.权利要求1至5任一权利要求所述用于空气耦合的超声波传感器匹配层材料的制备方法,其特征在于包括以下步骤:
⑴将环氧树脂和固化剂按配方称量后混合搅拌1~2分钟;
⑵将轻质材料和触变剂按配方称重后混合搅拌1分钟;
⑶将⑴和⑵中的两种材料混合搅拌2~5分钟;
⑷将⑶中混合好的材料在模具中压实成型;
⑸将⑷中的材料连同模具一起放入正压烘箱中加压保温阶梯固化。
7.根据权利要求6所述用于空气耦合的超声波传感器匹配层材料的制备方法,其特征在于:
步骤⑸加压保温阶梯固化条件是:在温度为50℃~90℃,压力为0.05MPa~0.2MPa条件下保温0.5~1小时,再升温至100℃~120℃保温1~3小时。
CN201811320492.7A 2018-11-07 2018-11-07 用于空气耦合的超声波传感器匹配层材料及其制备方法 Pending CN109401201A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811320492.7A CN109401201A (zh) 2018-11-07 2018-11-07 用于空气耦合的超声波传感器匹配层材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811320492.7A CN109401201A (zh) 2018-11-07 2018-11-07 用于空气耦合的超声波传感器匹配层材料及其制备方法

Publications (1)

Publication Number Publication Date
CN109401201A true CN109401201A (zh) 2019-03-01

Family

ID=65472258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811320492.7A Pending CN109401201A (zh) 2018-11-07 2018-11-07 用于空气耦合的超声波传感器匹配层材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109401201A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003619A (zh) * 2019-03-25 2019-07-12 武汉科技大学 复杂环境用树脂基超声换能器声匹配层材料及其制备方法
CN113717500A (zh) * 2021-08-31 2021-11-30 西安安森智能仪器股份有限公司 一种气体超声波换能器阻抗渐变匹配层及其制备方法
CN115141466A (zh) * 2022-06-30 2022-10-04 武汉联影医疗科技有限公司 声匹配层材料、声匹配层、超声换能器、超声探头、超声成像装置和制备方法
CN115216113A (zh) * 2022-06-22 2022-10-21 湖北文理学院 一种超声换能器用匹配层及其制备方法、以及超声换能器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585443A (zh) * 2012-03-14 2012-07-18 中国海洋石油总公司 轻质高强浮力材料及其制备方法
CN108587162A (zh) * 2018-05-02 2018-09-28 江苏恒神股份有限公司 一种非热压罐成型预浸料用双马树脂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585443A (zh) * 2012-03-14 2012-07-18 中国海洋石油总公司 轻质高强浮力材料及其制备方法
CN108587162A (zh) * 2018-05-02 2018-09-28 江苏恒神股份有限公司 一种非热压罐成型预浸料用双马树脂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIAO WU,ET AL: ""AIR-COUPLED TRANSDUCER WITH A HOLLOW GLASS MICROSPHERES FILLED EPOXY RESIN MATCHING LAYER"", 《ABSTRACT BOOK OF 2016 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003619A (zh) * 2019-03-25 2019-07-12 武汉科技大学 复杂环境用树脂基超声换能器声匹配层材料及其制备方法
CN113717500A (zh) * 2021-08-31 2021-11-30 西安安森智能仪器股份有限公司 一种气体超声波换能器阻抗渐变匹配层及其制备方法
CN115216113A (zh) * 2022-06-22 2022-10-21 湖北文理学院 一种超声换能器用匹配层及其制备方法、以及超声换能器
CN115141466A (zh) * 2022-06-30 2022-10-04 武汉联影医疗科技有限公司 声匹配层材料、声匹配层、超声换能器、超声探头、超声成像装置和制备方法

Similar Documents

Publication Publication Date Title
CN109401201A (zh) 用于空气耦合的超声波传感器匹配层材料及其制备方法
JP4171052B2 (ja) アレイ式超音波プローブおよび超音波診断装置
CN103097865B (zh) 使用在流体介质中的超声波换能器
CN103674225B (zh) 一种局部极化压电薄膜传感器
WO2015165137A1 (zh) 一种含氟聚合物在配制透明冻土中的应用
DE102009046148A1 (de) Ultraschallwandler zum Einsatz in einem fluiden Medium
CN111112035B (zh) 收发一体式全光超声换能器装置及其制备方法
CN103682080B (zh) 一种局部极化压电薄膜传感器的制备方法
CN205785609U (zh) 一种基于碳纤维封装的光纤光栅应力传感器
CN103323154A (zh) 浇注炸药固化过程中内部应力的测量方法
CN104342079A (zh) 一种用于粘结碳毡的高温粘结剂的制备及其使用方法
CN105510443A (zh) 一种低温超声振动疲劳实验系统
CN109437830A (zh) 一种耐高温透波隔热瓦及其制备方法
CN109367058A (zh) 一种碳纤维复合材料的自动控制微波加热固化装置
CN106483200B (zh) 一种应用于超声探头的吸声背衬材料及其制备方法
CN209126203U (zh) 一种复合材料用微波固化装置
CN209096064U (zh) 一种复合材料固化装置
CN110726609A (zh) 一种高温高压下的混凝土应力测试系统
CN109546351A (zh) 一种宽频带电磁波吸收的泡沫介质基超材料
CN113717500A (zh) 一种气体超声波换能器阻抗渐变匹配层及其制备方法
CN205229106U (zh) 一种用于低温超声振动疲劳实验的系统
Villareal et al. Advancement of Out Of Autclave (OOA) Technology at Tencate Advanced Composites, USA
CN209803148U (zh) 一种封闭液式聚合物pvt关系测试装置
CN208408550U (zh) 一种超声波辅助热压烧结炉
CN206756090U (zh) 一种结构胶固化应力测试装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190301

RJ01 Rejection of invention patent application after publication